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Conscious perception of natural images is
constrained by category-related visual features
Daniel Lindh1,2,3, Ilja G. Sligte3,4, Sara Assecondi 1,2, Kimron L. Shapiro1,2 & Ian Charest1,2

Conscious perception is crucial for adaptive behaviour yet access to consciousness varies for

different types of objects. The visual system comprises regions with widely distributed

category information and exemplar-level representations that cluster according to category.

Does this categorical organisation in the brain provide insight into object-specific access to

consciousness? We address this question using the Attentional Blink approach with visual

objects as targets. We find large differences across categories in the attentional blink. We

then employ activation patterns extracted from a deep convolutional neural network to reveal

that these differences depend on mid- to high-level, rather than low-level, visual features. We

further show that these visual features can be used to explain variance in performance across

trials. Taken together, our results suggest that the specific organisation of the higher-tier

visual system underlies important functions relevant for conscious perception of differing

natural images.
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A long-standing question in cognitive neuroscience is
how visual information is transformed from segregated
low-level features to fully conscious and coherent repre-

sentations. Prevailing object recognition models propose that
rapid object identification is accomplished by extracting
increasingly complex visual features at various stages/locations
of the visual stream1–3. Objects are first processed through a
hierarchy of ventral visual areas where computations evolve from
image feature detection, shape and part segmentation, before
more invariant, semantic representations of the objects are
established4–6. Previous research has shown that animate objects
are preferably processed in a broad range of perceptual tasks7.
This led us to question whether or not animacy also has a pre-
ferential access to consciousness, and furthermore, if this could
also be true for sub-categories within the animate/inanimate
distinction.

Animate versus non-animate object processing has been
extensively studied, showing distinct processing pathways
throughout the visual stream8. Behavioural studies have shown
that animate objects are more often consciously perceived in
rapid serial visual presentations (RSVP)9–11, more quickly found
in visual search7, elicit faster responses in discrimination
tasks12,13, and animate words are better retained in working
memory14. Aggregated, these findings point to a preferential
visual processing of animate objects, most likely also reflected in
the representational organisation of the visual stream12,13.
However, the animate categorical division contains several sub-
categories also known to cluster together, such as scenes in the
parahippocampal place area15, faces in the fusiform face area16

and body parts in the extrastriate body area17 (for review see
Martin18). It remains unclear how such sub-categories also might
differ in visual processing. We address this question by testing
differences across several categories (i.e. fruits and vegetables,
processed foods, objects, scenes, animal bodies and faces, human
bodies and faces), known to cluster together throughout the visual
stream, in their propensity to conscious access using the Atten-
tional Blink (AB) paradigm19.

In the AB paradigm, two targets (T1 and T2) are embedded in
a rapidly presented stimulus stream (RSVP). The frequently
replicated finding is a reduced ability to report T2 when it is
presented in a temporal window of 200–500 ms after a correctly
identified T1. This effect disappears when subjects are asked to
ignore T119, indicating that the fundamental explanation for this
effect is attentional rather than perceptual. Most theoretical
accounts of the AB suggest a two-stage information-processing
model20,21. First, both targets are rapidly and automatically
processed to a high-level representational stage. This is followed
by a capacity-limited second stage, where the percept is trans-
formed into a reportable state (i.e. working memory). Neural
findings22–26 have suggested that the AB arises at the second
stage, after semantic processing of the object. This is in contrast to
backwards masking, which is known to interrupt feedback loops
in early processing27–29. Since feedback loops between visual
areas are thought to be intact in the AB26, combined with a
behavioural outcome that typically yields a significant number of
both correct and incorrect trials, this paradigm is an ideal
approach to investigate the bifurcation between conscious and
unconscious visual processing.

One potential problem of studying categorical differences is
that many categories share low-level scene statistics30, which also
are known to explain behaviour31. Consequently, an issue that
must be taken into account is how to control for low-level scene
statistics in a neurally plausible way. We address this issue by
using a Deep Convolutional Neural Network (DCNN)32 which is
designed in a hierarchy encompassing feature representations of
increasing complexity, similar to the visual system. Recent studies

using DCNNs trained to classify a large corpus of natural images
have revealed a significant correspondence between DCNN layers
and the visual hierarchical organisation in the brain both using
fMRI33–36, and MEG5,37. This makes DCNNs attractive for
modelling visual features rather than relying on manually label-
ling image features without knowing their relevant correspon-
dence to the visual system.

The main question of the current study is if the organisation of
the visual system promotes conscious access to certain objects
more than to others. A priori, we had two related hypotheses: first
we hypothesised that categories will differ in their access to
consciousness. Our second hypothesis was that variance in con-
scious access between image exemplars could be predicted using
high-, as opposed to low-, level features derived from the DCNN.
These two predictions are consistent with our current under-
standing of the categorical organisation of the ventral visual
stream4,6,38,39, the high resemblance in representational geometry
between the brain and DCNNs33–37, and theoretical models
positing the AB as a disruption of late selection20,21. In addition,
we explore whether trial-by-trial variance in performance is
related to the similarity between the two targets in terms of visual
features. We asked whether this relationship has any impact on
conscious access and, if so, at what stage of processing do the two
targets interact? To test this formally, we used a method called
representational sampling, where trials of the AB are constructed
with stimuli selected according to their location in DCNN
representational geometries. To foreshadow, we show that there
are categorical differences in the probability of conscious access.
Differences across images are predicted using mid- to high-level
visual features. Furthermore, we find a facilitating interaction
effect between targets, increasing the probability to recover T2.

Results
Experiment 1. Differences in AB magnitude as a function of
category: Participants were presented with RSVP, consisting of
scrambled masks, and two embedded targets. The targets were
selected from a stimulus set of 48 images derived from 8 different
categories—fruits and vegetables, processed foods, objects, scenes,
animal bodies, animal faces, human bodies and human faces. At
the end of each trial, participants were requested to recall the first
and the second target (see Fig. 1a). First, we observed a significant
AB effect using a two-tailed-dependent t-test in T2 performance
(T2 performance is always conditional on T1 correct trials; T2|
T1) between lags (Lag 2; accuracy M= 0.704, SD= 0.041, Lag 8;
M= 0.847, SD= 0.129, t(18)=−6.427, p < 0.001, see Fig. 2a).
We first pooled the images according to animate and inanimate
(excluding scenes) objects (see Table 1). Animate and inanimate
objects have previously been shown to be differentially
affected during the AB9–11. Similarly here, a repeated measures
2 × 2 ANOVA with lag and animacy as factors showed a main
effect of lag (F(1,18)= 34.09, p < 0.001, η²= 0.654) and animacy
(F(1,18)= 27.72, p < 0.001, η²= 0. 606) as well as a significant
interaction effect (F(1,18)= 45.63, p < 0.001, η²= 0.606; see
Fig. 2b). Thus, in accordance with previous studies, the AB was
less pronounced for animate images. For each sub-category
(Table 2), using a repeated measures ANOVA, we observed a
main effect of T2-lag (F(1,18)= 42.87, p < 0.001, η²= 0.704) and
category (F(7,126)= 45.49, p < 0.001, η²= 0.716), along with an
interaction between category and T2-lag (F(7, 126)= 23.99, p <
0.001, η²= 0.571). Beyond the expected AB effect, the interaction
effects reveal that different categories exhibit different AB mag-
nitudes (ABM; difference in performance between lag 8 and
lag 2). Separate AB effects were tested by contrasting lag 8 and lag
2 performance within each category using a two-tailed-dependent
t-test (Fig. 2c)—fruits and vegetables (t(18)= 6.912, p < 0.001),
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processed foods (t(18)= 6.748, p < 0.001), objects (t(18)= 3.003,
p= 0.004), scenes (t(18)= 8.073, p < 0.001), animal bodies (t(18)
= 5.259, p < 0.001), animal faces (t(18)= 2.712, p= 0.007),
human bodies (t(18)= 1.162, p= 0.13), human faces (t(18)=
2.632, p= 0.008).

Mid and high-level image features explain ABM variance: For
each image we extracted unit activations from all the layers
throughout an AlexNet DCNN (see Methods). For the convolu-
tional layers, we averaged over the spatial domain to obtain
feature activations. It is important to note that this DCNN was
trained on classifying objects into categories from a different set
of images than those presented in our experiment, and at no
point was trained on the AB. To increase the generalization of the
model fits to the test data, we selected informational features
through a variance thresholding approach. The feature selection
was done by calculating the variance across samples in the
training data (important to note that the test data was never part
of the feature selection) and remove features with near-zero
variance from both training and test data. The remaining feature
activations were then applied to a cross-validated linear
regression model aimed at predicting each image’s ABM. From
these predicted ABMs, we can compute in each participant the
mean absolute error (MAE). For significance testing, we
permuted the image labels, repeated the cross-validated linear
regression model, and computed the average MAE across
subjects. We repeated this permutation procedure 3000 times to
estimate the distribution of MAE under the null hypothesis that
our image labels are interchangeable. We then compared our
observed MAE (averaged across subjects) to this null distribution,
and obtained p-values. We were able to significantly (Bonferroni-
corrected alpha= 0.00625) predict the ABM using features

derived from layer conv4 (MAE M= 0.19, STD= 0.04, p=
0.003), conv5 (M= 0.179, STD= 0.04, p < 0.001), fc6 (M= 0.159,
STD= 0.033, p < 0.001), fc7 (M= 0.1593, STD= 0.033, p <
0.001), and fc8 (M= 0.191, STD= 0.048, p < 0.001). To see
whether one layer had significantly lower error than any other
layer, we tested the MAE for each pair-wise comparison
of layers across subjects with a two-sided-dependent t-test.
In Fig. 3b, we show a summary of this result, where we
find that Layer 7 (Fig. 3c) has a significantly lower error
than layer 1 (mean difference=−0.21, t(17)=−6.14, p < 0.001),
layer 2 (mean difference=−0.15, t(17)=−7.8, p < 0.001), layer 3
(mean difference=−0.16, t(17)=−10.83, p < 0.001), layer 4
(mean difference=−0.18, t(17)=−5.8, p < 0.001) and
layer 8 (mean difference=−0.18, t(17)=−5.17, p < 0.001).

Shared image features between targets predict performance: In
addition to predicting the ABM for each image, we sought to
better understand the trial-by-trial differences in the AB. For each
trial, we correlated the two targets (T1 and T2) based on their
features (Pearson correlation, Fig. 3b) to obtain a T1-T2 similarity
measure within each layer. We then averaged the similarity for all
hit and miss trials for each participant and tested the difference
for each layer using a two-tailed dependent t-test. Our test
revealed a significantly higher representational similarity between
targets in hit-trials compared to miss-trials for layer conv2 (Hit;
similarity M= 0.375, SD= 0.008, Miss; M= 0.354, SD= 0.014,
t(18)= 4.967, p < 0.001, Cohen’s d= 1.761), conv3 (Hit; M=
0.329, SD= 0.010, Miss; M= 0.299, SD= 0.016, t(18)= 6.273,
p < 0.001, Cohen’s d= 2.130), conv4 (Hit; M= 0.257, SD= 0.009,
Miss; M= 0.244, SD= 0.012, t(18)= 3.505, p= 0.003, Cohen’s
d= 1.258), conv5 (Hit; M= 0.131, SD= 0.007, Miss; M= 0.119,
SD= 0.011,

a

b

10
0 

m
s

T1

T2

20
0 

m
s

Lag 2

T1

T2

10
0 

m
s

80
0 

m
s

Lag 8

Which image was
the second target?

?

Which image was
the first target?

Fit to behavioural dataΔ Representational distance

Extract features

Stimuli Conv1
Conv2

Conv3 Conv4 Conv5

fc6 fc7

fc8

Δ

Fig. 1 Modulating conscious access using the Attentional Blink Paradigm. Due to copyright reasons, all photos except for the faces (which were
photographed by one of the authors but have been anonymised) have been replaced by representational images. Eye regions are occluded above in the
images to protect privacy but were not occluded in the experiment. a We presented a rapid serial visual presentation to participants, with two targets (T1
and T2) following each other within a stream of distractors. On the left, the second target (T2) is shown 200ms after the first target (T1), and on the right,
800ms after the T1. In every trial, participants had to detect and later recall both T1 and T2 targets. b We used a deep convolutional neural network
(DCNN; yellow insert; 5 convolutional layers and 3 fully connected layers) to model the stimulus representational geometries (left) and predict our
participants’ behaviour (right). The visual stimuli were fed into the DCNN, providing a hierarchical representation for each image. These unit activations
were then analysed layer-by-layer and used to predict behaviour
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t(18)= 3.311, p= 0.004, Cohen’s d= 1.233), fc6 (Hit; M= 0.023,
SD= 0.002, Miss; M= 0.018, SD= 0.004, t(18)= 4.009, p=
0.001, Cohen’s d= 1.520), fc7 (Hit; M= 0.026, SD= 0.003, Miss;
M= 0.021, SD= 0.005, t(18)= 3.189, p= 0.005, Cohen’s d=
1.093), fc8 (Hit; M= 0.139, SD= 0.013, Miss; M= 0.104, SD=
0.022, t(18)= 6.134, p < 0.001, Cohen’s d= 1.864; Fig. 4b). This
suggests that the ongoing visual processing of T1 can lower the

conscious access threshold for T2, if T2 shares visual features with
T1. This was true for all layers except for layer 1.

Experiment 2. Constructing AB trials using representational
sampling: The finding that T1-T2 similarity influences T2 per-
formance prompted us to design a follow-up study. We sought to
investigate the causal effect of target-target similarity by manip-
ulating the targets’ category and feature similarity. We developed
a procedure called representational sampling, which first char-
acterises a variety of stimulus response profiles, and samples a
subset of stimuli tailored for our experiment. We used unit
activations from layer 5 (see methods for rationale) of the DCNN
as stimulus response profiles. We measured these unit activations
on 250 images, derived from ImageNet40, to yield 16 images as
our T2s; in turn chosen to represent four categorical groups
equally (mammals, insects, vehicles, and furniture). For each
image we then selected two T1s based on category (same or
different) and similarity within layer 5 (similar or dissimilar),
resulting in eight T1s per T2. This allowed us to examine the
specific contribution of high-level feature similarity and category
membership separately. We presented these four conditions to 24
new participants in an AB task similar to that of Experiment 1.

Table 3 shows the group means of T2 performance for each of
the four conditions. The probability of correctly reporting T2 was
the highest when T1 came from the same category and had
similar visual feature activation in layer 5 of the DCNN (M=
0.849, SD= 0.097). In contrast, the lowest probability of correctly
reporting T2 was observed when T1 came from a different
category and was dissimilar (M= 0.741, SD= 0.123). A 2 × 2
(Category by Similarity) repeated measure ANOVA showed a
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Fig. 2 Animate objects elicit weaker attentional blink. a The accuracy in detecting the second target conditional on having detected the first target for lag 2
and lag 8. Individual dots represent the mean performance for each subject, bold dots represent the mean performance across subjects, and error bars
indicate 95% confidence interval around the mean in all plots. b Performance plotted separately for animate and inanimate T2 targets. Attentional Blink
Magnitude (ABM) is defined as the difference in performance between lag 8 and lag 2. Asterisks indicate significant difference in ABM between animate
and inanimate. c T2 performance for each category separately. Asterisks indicate an ABM significantly different from zero. Two-tailed-dependent t-test
*p < 0.05, **p < 0.01, ***p < 0.001

Table 1 Mean and SDs for T2 performance for each category

Category Mean
(Lag 2)

SD (Lag 2) Mean
(Lag 8)

SD (Lag 8) N

Fruits vegetables 0.651 0.199 0.867 0.139 19
Processed foods 0.595 0.214 0.853 0.110 19
Objects 0.806 0.173 0.893 0.079 19
Scenes 0.406 0.234 0.695 0.237 19
Animal bodies 0.642 0.232 0.822 0.159 19
Animals faces 0.782 0.197 0.858 0.134 19
Human bodies 0.859 0.179 0.879 0.153 19
Human faces 0.886 0.133 0.927 0.085 19

Table 2 Mean and SDs for T2 performance for animacy

Animacy Mean
(Lag 2)

SD (Lag 2) Mean
(Lag 8)

SD (Lag 8) N

Animate 0.792 0.171 0.872 0.126 19
Inanimate 0.683 0.185 0.871 0.097 19
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significant main effect for both category (F(1,23)= 20.68,
p= < 0.001, η2= 0.473) and similarity (F(1,23)= 45.468,
p= < 0.001, η2= 0.664), as well as an interaction effect
(F(1,23)= 5.413, p= 0.029, η2= 0.191). The larger effect size
for the similarity factor indicates that visual features over
semantic relevance determine behaviour.

Discussion
We investigated the effect of category membership and image
features on conscious access using natural images in the Atten-
tional Blink19 paradigm (Fig. 1a, b). By testing images spanning
several categories we first show a clear division in performance
between animate and inanimate objects, where animate objects
reveal a reduced AB caused by the processing of the T1 (Fig. 2b),
in line with previous reports9,10. We further show that this bias is
not only expressed between this super-ordinate division, but also
extends to various sub-categories. Using a DCNN to model the
stimulus visual features, we show that mid- and high-level fea-
tures in natural images (Fig. 3) regulate the AB magnitude. In
addition, we show that target-target similarity (Figs. 4 and 5)
interacts with target selection, providing a mechanistic

explanation of the AB phenomenon and of conscious access in
object recognition.

Previous studies have shown differences between categories in
the AB, most extensively between animate and inanimate
objects9–11,41. The animacy bias in visual processing has been
attributed to evolutionary relevance, as opposed to visual exper-
tise, reflected in its importance for ancestral hunter-gatherer
societies (The animate monitoring hypothesis)42. Evidence for
this hypothesis comes from a wealth of behavioural studies
showing that animate objects are more quickly and more often
detected in different types of attentional tasks7,42. Likewise, ani-
mate and inanimate objects are distinctly represented throughout
the ventral visual stream8,43, which has been argued to be an
evolutionary phenomenon and not contingent on visual experi-
ence44. In our current study, we find that the AB magnitude
(ABM – performance difference between Lag-8 and Lag-2) is
larger for inanimate objects, similar to Guerrero and Calvillo10.
The finding by Guerrero and Calvillo has been contested by
Hagen and Laeng11 who showed that animate objects are simply
reported more often, but that the ABM is unaffected. Our results
argue against the findings of Hagen and Laeng and, more
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importantly, reveal that differences in AB magnitude exist in a
myriad of sub-categories. Here we examine a significant number
of categories, which are known to cluster throughout the visual
cortex. We show a high variance in the effect of the AB across
categories (Fig. 2c), implying that distinctive sub-categories have
special privilege in the path to conscious access. One possible
mechanism for categorical differences in conscious access can be
related to the findings of Carlson et al.12, who showed that ani-
mate objects that are neurally coded as more animate (as assessed
by a decoding scheme) in the human analogous of inferior
temporal cortex (hIT) are more quickly categorised as animate in
a speeded discrimination task. Translated to our task, this would
mean that certain categories are more distinctly represented, with
less representational overlap to other images, leading to more

robust processing of these categories. It is important to note that
by looking at the differences between Lag-8 and Lag-2, effectively
baselining each image with its own Lag-8 performance, our
results cannot be explained by differential effects of masking.
Importantly, this implies a dissociation between attentional
relevance and conscious access, since it would be reasonable to
assume that attentional relevance would affect Lag-2 and Lag-8
equally.

The finding that the ABM varies across categories (Fig. 2c) is
hard to interpret without properly examining image features of
different complexities. Many semantic categories share low-level
statistics30,31 and, without delving further than categorical
membership, one cannot disentangle at which level of processing
the differences occur. The prediction of ABM across visual objects
achieved by modelling DCNN unit activations from the mid to
late layers explained a large proportion of AB variance across
images (~46% of the variance in layer fc7, Fig. 3c). This implies
that the bottleneck produced by the AB is due to late visual
processing and probably reflects the particular categorical orga-
nisations within higher-tier visual areas. This relationship
between neural representation of images and behavioural out-
comes is supported by recent work showing that the particular
representational organisation in late visual areas predicts
certain behavioural measures, such as reaction time12,13,45. This
‘conceptual’ approach to conscious access promotes a more
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Table 3 Mean and SDs for T2 performance in experiment 2

T2|T1

Category Similarity Mean SD N

Same Similar 0.85 0.10 24
Dissimilar 0.81 0.09 24

Different Similar 0.82 0.08 24
Dissimilar 0.74 0.12 24
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fundamental view to how visual consciousness might operate by
focusing on the organisation of the visual system rather than on
top-down mechanisms.

Our experiments further enabled us to explore the importance
of T1–T2 similarity. Only a handful of studies have investigated
target-target similarity in the context of AB9,41,46–48. In one of the
earliest attempts to study target–target similarity and its effect on
T2 performance, Awh et al.46 concluded that similarity between
targets is detrimental to T2 reportability. This led to the multiple-
resource channel hypothesis (MRCH)46. According to the MRCH,
two targets (T1 and T2) can be processed in parallel, but only if
their visual features are different enough to be processed through
distinct feature channels. While a few following studies have
corroborated this notion41,47,48, our study reveals that similarity is
beneficial for performance. The difference in results might be
explained by the way we define similarity by image features.
Previous studies used categorical membership as a proxy to
similarity, and thus it is possible that our findings reflect a facil-
itation effect not found in the previous studies (but see ref. 9).
Importantly, while visual features function as stepping stones
toward semantic meaning, it is unclear that such visual features
would be maintained in working memory in our paradigm. Task-
relevant similarity (i.e. the semantic content stored in working
memory necessary to successfully carry out the task) between
targets has been shown to be key for inducing a larger blink48. We
would argue that the visual features within the DCNN models
processes that precede working memory representations. As such,
the target–target similarity rather enhance visual processing of T2,
leading to a more probable recovery. The combined findings of all
these studies highlight a relatively unexplored aspect of AB, where
the relationship between the targets might play a significant role in
explaining many AB phenomena. Further questions could be
explored using a combination of brain measures to determine
representational similarity within subjects, which might poten-
tially also explain individual differences in performance.

In conclusion, we present compelling evidence that there are
categorical differences in conscious access in object recognition.
Specifically, we present findings that attribute differences in
conscious access between image exemplars to difficulties in
representational readouts of features in higher-tier visual areas.
This visual feature-related bias is reflected in a stable functional
organisation, where fined-grained category distinctions have a
larger impact on conscious access than previously believed.
Moreover, we point to a more dynamic way in which the context
(i.e. the similarity between T1 and T2) biases the probability for a

target to be consciously perceived. In summary, our findings
suggest that object categories and high-level visual features con-
strain conscious perception of natural images.

Methods
Experiment 1. Participants: Twenty participants (19 females; age range: 19–22;
mean= 20.1 ± 1.2) were recruited for the study. We excluded two participants due
to incomplete data. One additional participant was excluded for the image-by-
image analyses due to lack of trials where T2 was correct for one image after
filtering for T1 correct. All participants provided and signed informed consent and
were rewarded for their time via course credits or financial compensation (at the
standard rate of £7/h). All participants had normal or corrected-to-normal vision,
and no known history of neurological disorders. The Ethical Review Committee of
the University of Birmingham approved the experiment.

Procedure: Participants viewed visual objects in a RSVP, and were asked to
detect two targets (T1 and T2) embedded into a stream of distractors (Fig. 1a).
Following the stream, a response menu was presented for T1, which included
the T1 and two foils, and the participant had to identify the target with a
button press. A similar response menu was then presented to identify the T2.
The foils in the menu always belonged to the same category as the targets
(Fig. 1a, right panel).

Design and stimuli: Participants were seated 60 cm away from a Stone monitor
(60 Hz refresh rate), and stimuli covered 5 degrees of visual angle centrally on a
grey background. Stimulus presentation was achieved using the Psychtoolbox
extension (version 349) in MatLab 2016b (MathWorks Inc., Natick, USA). Stimuli
consisted of 48 images, derived from eight different categories: fruits and
vegetables, processed foods, objects, scenes, animal bodies, animal faces, human
bodies, and human faces (Fig. 1b). It is important to note that images were
displayed in greyscale to reduce performance for human observers. To generate the
items used as distractors in the stream, each image was divided into 5 × 5 (25 total)
squares. Each square was then inverted and randomly assigned to a new square
position. Following a standard AB paradigm19, each trial started with 300 ms of
fixation, followed by a RSVP consisting of 19 images. Each image was presented for
16.7 ms with a stimulus-onset asynchrony (SOA) of 100 ms (Fig. 1a). Embedded
into the stream of distractors, two non-scrambled targets (T1 and T2) were
presented at two different lag conditions (Lag-2: 200 ms and Lag-8: 800 ms). The
T1 was always presented as item 5 in the stream, while T2 was either presented as
item 7 (Lag 2) or item 13 (Lag 8). Each participant completed 12 runs (excluding
one practice run of 5 trials). Across all runs each image was presented 12 times as
T2 for both lags, for a total of 24 repetitions per image, and a total of 1152 trials. All
48 images were presented on an equal number of trials either as T1 or as T2,
randomized within blocks with no trial having the T1 and T2 coming from the
same superordinate category. Importantly, the same pair of T1 and T2 was always
presented in both the Lag-2 and Lag-8 conditions, within the exact same stream of
distractor masks in the RSVP trial. Participants had to press one out of three
buttons to identify the correct target from the foils, or a fourth button when they
missed the target. The two foils came from the same category as the target.

Deep convolutional neural network (DCNN): We employed a DCNN (AlexNet,
see Fig. 1c)32, implemented through Python and Caffe50, as a model of the visual
cortex for extracting hierarchical visual features from our stimuli (we do not intend
the use of model here to mean an exact biological model, but merely to
approximate the hierarchical architecture that is known to exist in both). We chose
AlexNet due to its relative simplicity, compared to more recent DCNNs, and its
well-studied relation to the human visual system33–36,43. AlexNet consists of eight
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layers of artificial neurons stacked into a hierarchical architecture, where preceding
layers feed-forward information to the next layer (Fig. 1b). The first five layers are
convolutional layers, whereas the last three are fully connected layers. While the
fully connected layers (fc6, fc7, and fc8) consist of one dimensional arrays (sizes of
4096, 4096, and 1000 units respectively), the convolutional layers have the
dimensionalities of: layer 1 (conv1)—96 × 55 × 55 (96 features, over 55 × 55
retinotopic units), layer 2 (conv2)—256 × 27 × 27, layer 3 (conv3)—384 × 13 × 13,
layer 4 (conv4)—384 × 13 × 13, and layer 5 (conv5)—256 × 13 × 13. For all analyses
we averaged the values in the convolutional layers for each image over the spatial
dimension, leaving them with the vector length of 96, 256, 384, 384, and 256
respectively. This network was pre-trained on 1.3 million hand-labelled, natural
images (ImageNet; Russakovsky et al.40) for classification into 1000 different
categories (available at http://caffe.berkeleyvision.org/model_zoo.html), reaching
near-human performance on image classification32. Our test set of 48 images were
analysed through the network, and we used the last processing stage of each layer
as model output for further analyses. To keep the images as close to the training
data as possible, and to avoid distortions of all levels of feature representations, the
colour versions of the images were used.

Analyses of behaviour and image features: For each image, we calculated
mean T2 accuracy at both Lag-2 and Lag-8 across subjects. We then computed
ABMs by subtracting Lag 2 mean accuracy from Lag 8 mean accuracy. ABM
then becomes a measure of how much the AB time window affects the recall
of each image separately. In the interest of quantifying image features, within
our DCNN, we extracted unit (neuron) activation patterns for each image
from all the layers. For the first five convolutional layers, we averaged the
activation over the spatial dimension. These activation patterns were
incorporated into a multivariate linear regression model, with the activation
patterns from each layer as features in the model to predict each image’s ABM
within subjects. The prediction pipeline followed a leave-one-image-out
procedure (i.e. train on forty-seven images and test on one left out image)—
where, based on the training data, the features were thresholded to have a larger
variance than 0.15, to remove near-zero-varying features, and later standardised
to unit variance with a mean of zero. Our choice of a threshold of 0.15 was
arbitrary and had little to no effect when compared to only removing zero
variance features. It’s important to note that the test data was never part of any
feature selection, as this would constitute double dipping. All pre-processing and
fitting procedures were implemented using Sci-kit learn51, for python code see
https://github.com/Charestlab/abdcnn.

Target–target similarity: We further tested the effect of target-target similarity
on conscious access. Here, we go beyond using predetermined categories as a proxy
for feature similarity and examined the representational distance between images
within a given layer of the DCNN. For each layer we calculated the Pearson
correlation between all possible T1–T2 pairs (Fig. 4a). We then averaged the
similarity for hit and miss trials separately. This allowed us to test the difference
between hit and misses in terms of the relationship between the targets.

Experiment 2. Participants: We recruited 24 participants (Age—M= 19.38, SD=
0.95, females= 19, males= 5) with normal, or corrected-to-normal, vision. All
participants provided and signed informed consent and were rewarded for their
time via course credits or financial compensation (at the standard rate of £7/h).
The experiment was approved by the ethics committee at the University of
Birmingham.

Procedure and stimuli: Unless stated otherwise, all procedure and visual
presentations were identical to Experiment 1 (Fig. 5a). Sixteen images, a subset of
250 labelled and processed images from the ImageNet database40, were selected as
T2s. The T2s derived from four different categories (mammals, insects, vehicles,
and furniture), and each category was uniformly represented in the T2 selections.
Similarity between images was determined by their Pearson correlation coefficient
within layer 5 of the DCNN. The layer 5 was chosen because it was a high-
performing layer in the first study and to still maintain the retinotopic information
for an additional analyses not used in this study. To model the layer-wise unit
activations for this new set of images, we used the same pre-trained network
(AlexNet)32 as in Experiment 1. For each T2, we selected two similar and two
dissimilar images from the same category and any of the other categories as T1.
This resulted in eight potential T1s for each T2 in a 2-by-2 factorial design
(Similarity × Category) (Fig. 5a). Each condition had the following mean Pearson
correlation between T1 and T2, Same category/Similar layer 5 representation
(Pearson r M= 0.43, SD= 0.114), Same category/Dissimilar (M= 0.136, SD=
0.113), Different category/Similar (M= 0.337, SD= 0.114) and Different category/
Dissimilar (M=−0.056, SD= 0.099). T1 was always placed at position 11, and T2
at position 13 (in a RSVP of 19 items for each trial). Each block consisted of a
presentation of each T2 paired with every possible T1, for a total of 128 trials per
block divided into 4 runs (32 trials per run). Each participant completed 2 blocks
for a total number of 256 trials per session (64 trials per condition).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data associated with this article can be found, in the online version, at https://github.
com/Charestlab/abdcnn/. A reporting summary for this article is available as a
Supplementary Information file.

Code availability
Code associated to the manuscript is available at https://github.com/Charestlab/abdcnn/.
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