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In-sensor imagememorization and encoding
via optical neurons for bio-stimulus domain
reduction toward visual cognitive processing

Doeon Lee1,4, Minseong Park1,4, Yongmin Baek 1, Byungjoon Bae 1,
Junseok Heo 2 & Kyusang Lee 1,3

Asmachine vision technology generates large amounts of data from sensors, it
requires efficient computational systems for visual cognitive processing.
Recently, in-sensor computing systems have emerged as a potential solution
for reducing unnecessary data transfer and realizing fast and energy-efficient
visual cognitive processing. However, they still lack the capability to process
stored images directly within the sensor. Here, we demonstrate a hetero-
geneously integrated 1-photodiode and 1 memristor (1P-1R) crossbar for in-
sensor visual cognitive processing, emulating a mammalian image encoding
process to extract features from the input images. Unlike other neuromorphic
vision processes, the trained weight values are applied as an input voltage to
the image-saved crossbar array instead of storing the weight value in the
memristors, realizing the in-sensor computing paradigm. We believe the het-
erogeneously integrated in-sensor computing platform provides an advanced
architecture for real-time and data-intensive machine-vision applications via
bio-stimulus domain reduction.

Machine vision technology provides the capability to inspect and
analyze the surrounding environment using image sensors integrated
with processing units1–4. Recent advances in image sensing and artifi-
cial intelligence (AI) technology have enabled the efficient generation
of digital images from the physical world and interpretation of
the acquired images, respectively. A key feature of machine vision
is real-time object recognition and/or classification via machine
learning using an artificial neural network (ANN), which is inspired
by the visual reasoning process of mammals5. Therefore, machine
vision has been widely employed in applications that require in situ
sensing, environment analysis, and interpretation of visual images,
such as autonomous vehicles, robotics, and smart production
systems1,6–8.

In conventional machine vision systems, image sensors are
externally connected tomemory and processing units by adapting the
von Neumann computing architecture. Sensing occurs in the analog

domain, which leads to the generation of large amounts of raw data in
the image sensor. The large amounts of redundant analog data,
including unnecessary background information, must be converted to
digital data via an analog-digital-converter (ADC), then transferred to
processing units or cloud-based computing systems6,9, in which image
processing and analysis are conducted formachine vision applications.
Thus, this sensory data processing requires energy-hungry long-dis-
tance data communication from the sensors to the memories and
processing units with a limited data transfer rate1,6,10. This massive
amounts of data conversion/transportation causes significant issues in
terms of energy consumption, delayed response time, and the com-
munication bandwidth, all of which are important for machine vision
applications with strict delay and power-consumption requirements.
Therefore, this data transportation bottleneck issue in integrated
sensor andprocessor systems shouldbemitigated for fast and efficient
machine vision processes.
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In contrast, the human vision system outperforms conventional
imagers and machine vision systems, particularly with regard to
unstructured image classification and recognition, low latency, and
energy efficiency6. The human retina detects imageswith rod and cone
photoreceptors and conveys them through the optic nerve to the
brain, which then processes the collected information for visual per-
ception. Interestingly, many of the imaging processes begin in a neural
circuit within the retina11–13. The retina compresses the large volume of
visual signals detected by ~100 million photoreceptor cells and then
transmits the encoded data to the brain via the optic nerve, without
latency or significant energy consumption. This in-retina computation
mechanism can be effectively applied to machine vision systems,
alleviating the data transportation bottleneck issues at the sensor/
processor interfacedue to the bigdata acquisition at the sensor nodes,
as well as the heavy computation burden and reliance on the post-
processor.

Analogous to the neural circuit and photoreceptor cells in the
retina, photodetectors in image sensors can bedirectly integratedwith
artificial synapses (e.g., oxide memristors, phase change memories),
constructing an artificial neural circuit14–16. Integrated analog com-
puting units can store image information as resistance states, while
also performing computational tasks to implement an ANN for a
cognitive algorithm. In this way, so-called “in-sensor computing,” the
image information can be processed within the sensors, significantly
reducing datamovement by processing it at the edgeof the system in a
similar way to mammalian vision1,6. There have been efforts to
demonstrate in-sensor computing systems for analog machine vision
using optoelectronic memory devices. However, previously demon-
strated in-sensor machine vision systems mostly conducted image
memorization and pre-processing (e.g., image enhancement) within
the sensors2,3,17–25. Thus, all the image data still needs to be transferred
to a back-end post-processor for high-level image processing, such as
feature extraction, image encoding, and image classification. However,
minimizing unnecessary data transportation between the sensor,
memory, and computation unit is the key feature and ultimate goal of
in-sensor computing to achieve an energy-efficient and latency-free
sensor/processor system.As such, advancements in-sensor computing
systems require the capability to memorize images and directly per-
form high-level image processing within the sensor.

In this study, we developed an advanced in-sensor computing
system with neuromorphic image memorization and encoding cap-
abilities within the pixel for visual cognitive processing, emulating
the biological visual processing system of the mammalian retina and
biological long-term plasticity. This in-pixel computing system effi-
ciently computes and conveys visual information to minimize data-
transportation bottlenecks. In a single sensor, a photodiode is directly
integrated with resistive random-access memory (ReRAM) to con-
struct 1-photodiode 1-resistive random-access memory (1P-1R) pixels,
where HfO2-based ReRAMs are fabricated on InGaAs-based p-i-n pho-
todiodes. First, we fabricated a 1P-1R single pixel with an InGaAs pho-
todetector and HfO2-based ReRAM and characterized the electrical
and optoelectrical properties for the image memorization and data
processing of visual information within the sensor. Subsequently, a 16
× 16 1P-1R crossbar array with an InGaAs photodiode and a HfO2-based
ReRAM was fabricated and characterized. Subsequently, the imaging
of the MNIST handwritten digits was performed, where the visual sti-
muli of the images were effectively stored in pixels. Subsequently,
using the fabricated 1P-1R array, the biomimicking image encoding
process was performed by in-memory vector-matrix-multiplication
without data transfer. In contrast to typical in-memory computing
methods, input image data were stored in ReRAMs and weights were
applied to the crossbar array as input voltages, in which 2D-1D vec-
torization was no longer needed and the size of the crossbar array was
significantly reduced. The encoded images were then conveyed
to a central processor for image classification. In the in-sensor

computing process, the saved images in the sensor array were
directly computed via multiply-accumulate (MAC) operation without
any data transportation between an external memory and processor.
Our process dramatically reduces redundant data movement between
the sensor, memory, and processor by performing in-pixel encoding,
possibly alleviating data transportation bottlenecks and energy
overconsumption.

Results
Figure 1a shows a schematic illustration of the image encoding and
classification processes in themammalian retina and brain system. The
various types of ganglion cells tile the perceived visual images, and the
following bipolar and amacrine cells encode and transmit the infor-
mation to the brain. The outputs of the rod and cone photoreceptors
are decomposed into ~12 parallel information streams, which are then
connected to the retinal ganglion cells. Bipolar and amacrine cell
activity are combined in a ganglion cell to create diverse encodings of
features extracted from the visual world, such as edges, direction, and
color; the retina then transmits these pre-processed data to the
brain11–13. By reducing redundant information, the retina can effectively
convey image data to the central processor with a minimal transport
delay. In the visual cortex, higher-level visual cognitive processes are
conducted using encoded images from the retina11–13.

In this study, we designed and demonstrated an in-sensor neu-
romorphic machine vision system with functionalities of image
memorization and processing, by mimicking the above-mentioned
neural circuit and visual classification system in the human eye, as
shown in Fig. 1b. The image sensor consists of a crossbar array of
photodetectors and resistive memory cells, which correspond to
photoreceptors and ganglion cells in the retina, respectively. In the
retina, the ganglion cells operate as a pre-computing processor unit,
whereas the ReRAM in our system serves both as a memory and
computation unit, depending on the polarity and magnitude of the
applied bias to each pixel. When a reverse bias with respect to the
photodiode is applied to the 1P-1R pixels, the sensor operates in a
memorization mode where incident light stimuli are converted to
electrical signals in the photodetectors, and the photocurrents are
subsequently stored in the memory cells by changing the con-
ductance of the memory. Under a forward-biased voltage with
respect to the photodiode (lower than the threshold voltage for the
erase operation), the sensor operates in the computing mode to
process the stored image at the pixels via analog in-memory com-
puting for vector-matrix multiplication. Because vector-matrix mul-
tiplication is a key operation in the ANN algorithm, we utilized the 1P-
1R crossbar array to execute in-sensor image encoding, which
extracts critical features from the original image to alleviate the data
transfer burden at the sensor and processor interface, paralleling
biological processes in the human retina. Finally, image classification
was conducted in the post-processing unit with the encoded images
delivered through an ANN. While the encoded images possess com-
pressed information compared to the original images, the ANN suc-
cessfully classifies the objects with less computational load.

Figure 1c showsblockdiagramsof the image-processing sequence
in conventional in-sensor processing systems and our neuromorphic
in-pixel computing system6,20,22,23. Most previously reported conven-
tional in-sensor processing systems only perform imagememorization
and pre-processing (low-level processing) within the sensors, such as
image contrast enhancement and noise reduction. Meanwhile, the size
of the pre-processed images from the sensors (N×N) was still the same
as the size of the original images (N×N), and high-level image pro-
cessing took place in the post-processor. Therefore, conventional
systems barely reduce the data traffic load at the sensor/processor
interface, aswell as the computational burden in the post-processor. In
contrast, the fabricated neuromorphic in-pixel computing system in
this work memorizes images in each pixel and subsequently conducts
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image encoding by analog in-memorymultiply–accumulate operation
(1st high-level processing) by combining the sensing and computing
functions. Therefore, the size of the output data from the sensor (N) is
effectively reduced to the square root of the N×N original image by
the in-sensor image encoding process, thereby minimizing the trans-
portation of redundant data and reducing the computation load in the
post-processor. Therefore, this advanced in-sensor computing archi-
tecture can significantly reduce the inefficient energy usage and high
data latency of smart imaging systems.

First, a 16 × 16 1P-1R in-pixel computing chip was fabricated using
p-i-n InGaAs photodiodes, which have a broadband absorption spec-
trum including the infrared wavelength regime and HfO2-based
ReRAM (see “Methods”). The optical images of the fabricated chip and
optical microscope images of the 1P-1R crossbar array are shown in
Fig. 1d and Fig. 1e, f, respectively. Each pixel consisted of an InGaAs
photodiode and ReRAM. The row lines share the top electrodes of the
ReRAMs (Ta/Pt electrodes) and the column lines share the top elec-
trode of the InGaAs photodiodes (p+ electrodes). Prior to operating
the 1P-1R array, we studied the optical and electrical characteristics of a
single 1P-1R pixel. Figure 2a shows a schematic illustration of a single
1P-1R pixel, and its equivalent circuit diagram is shown in Fig. 2b, where
VP and VR are the applied voltages of the photodiode and ReRAM,

respectively, and Vtotal =VP + VR. The 1P-1R pixel is composed of an
InGaAs p-i-n photodiode and HfO2-based ReRAM, which converts
incoming optical signals to electrical signals and memorizes the opti-
cal information as its resistance. Additionally, the ReRAM is utilized as
an in-memory computation unit when it operates in the computation
mode. The three primary operations of the 1P-1R device, depending on
the applied bias voltage (VTotal), are depicted in Fig. 2b: (i) memoriza-
tion, (ii) computation, and (iii) erasing operations. When VTotal > 2.5 V
under light illumination, the photodiode is reverse-biased such that an
incident optical signal generates a photocurrent to modulate the
resistance of the ReRAM by forming a conductive filament (memor-
ization operation). Thus, the optical signal can be stored in the form of
resistance in a synaptic device. The stored image data in the ReRAM
can then be directly used for high-level in-sensor processing (compu-
tation operation). When −1.3 V <VTotal < −0.5 V, the photodiode oper-
ates under the ohmic regime with relatively low resistance (<50Ω)
compared to a resistance range of the ReRAM (>1 × 103Ω); in this way,
the 1P-1R circuit can be approximated to a single ReRAM circuit. Thus,
the 1P-1R crossbar array can be used for synaptic in-memory com-
puting based on Ohm’s and Kirchhoff’s laws6,10,26. Therefore, ReRAM
serves as a cross-functional device for both the memory unit and
processing unit for high-level in-sensory image processing. When a

a Retina Encoded images Human Brain

Visual cortex

PhotoreceptorGanglion cell
Image classification

b

ReRAM

Encoded images Artificial Neural network1P1R crossbar array

Image sensor
In-pixel

computing

Image classification
Photodetector

d

e

c

7 mm

400 µm

f

50 µm

Fig. 1 | In-sensor computing system with an in-pixel direct computing func-
tionality emulating human vision system. a Schematic illustration of human
vision system from the retina to the brain, and its visual cognitive processing with
in-retina image encoding process. b Schematic illustration of a process flow of the
1P-1R in-sensor computing system, which emulates the human vision system.
cBlockdiagramsof image processflowswithN×N input images in conventional in-

sensor processing systems and 1P-1R in-pixel computing system.dOptical image of
the fabricated 1P-1R focal plane array. Scale bar: 7mm. e An optical microscope
image of the fabricated 1P-1R array. Dashed red (blue) box shows a 1P-1R pixel
(ReRAM) in the array. Scale bar: 400 µm. fAn enlarged opticalmicroscope image of
the dashed blue box area in (e). Scale bar: 50 µm.
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high negative bias voltage over the RESET threshold voltage (VTotal <
−1.3 V) is applied across the 1P-1R device, the memorized data in the
ReRAM are erased (Erase operation). These three operations are key
functions for realizing neuromorphic in-pixel image processing with a
1P-1R crossbar array.

Figure 2c shows the current–voltage (I–V) characteristics of the
fabricated InGaAs photodiode in the single 1P-1R device under light
illumination (λ = 532 nm) with various light intensities under bias VP,
and the bottom electrode on the n-InP layer is grounded. The pho-
tocurrents generated from the photodiode under reverse bias
modulated the resistance states of the connected ReRAM depending
on the incident light intensity. The fabricated HfO2-based ReRAM in
the single 1P-1R device was also characterized by applying repetitive
positive and negative voltage sweeps for the SET and RESET pro-
cesses, respectively, whereas the bottom electrode (Ti/Pt) of the
ReRAM was grounded (Fig. 2d). Initially, to form a conductive fila-
ment, a positive DC voltage sweep was employed by increasing the
voltage from 0 to 5 V and the voltage was decreased from 5 V to 0 V
with 2 μA of compliance current. After the initial channel forming
process, repeated SET/RESET operations are performed by applying
the positive and negative sweeps of 3 V (SET) and −2.5 V (RESET),
respectively, along the sweep paths indicated in the graph to switch
the state of the ReRAM between the high-resistance state (HRS) and
low-resistance state (LRS). The I–V curves show stable bipolar
switching behaviorwith abrupt SET and gradual RESET, which is ideal
for binary data storage.

The optoelectronic switching behavior of the integrated 1P-1R
pixel was then characterized by an I–V measurement under light illu-
mination (λ = 532 nm and P = 67W/cm2), as shown in Fig. 2e. Voltage is
applied to the top electrode of the ReRAM (Ta/Pt contact) while the
top electrode of the photodiode (p-InGaAs contact) is grounded, as
shown in the equivalent circuit diagram in Fig. 2b. The ranges of the
three corresponding operations, which are explained in Fig. 2b,
depending on the applied bias voltage, are indicated by colored areas
in the graph. Unlike the electrical-field-driven switching process of a
single ReRAMdevice, the conductivefilament channel of the ReRAM in
the 1P-1R pixel is grown by photogenerated current from the con-
nected photodiode (memorization operation), whereas RESET
switching is still performed by the application of an electrical field. The
conductive filament was formed by the first positive voltage sweep
under light illumination, corresponding to the forming loop shown in
Fig. 2e. After the forming process, the ReRAM is switched to the OFF
state by applying a negative voltage sweep, where the light illumina-
tion has no effect on the erase operation (Supplementary Fig. 1).
Subsequently, a positive voltage sweep was conducted on the 1P-1R
device under light illumination, switching the ReRAM to the ON state
and memorizing the light information (see memorization loop in
Fig. 2d). Under dark conditions, the ReRAM in the 1P-1R device cannot
be switched ON via a positive voltage sweep owing to the
lack of sufficient driving current to build the conductive filament
(Supplementary Fig. 2), because the current flow is limited by the
reverse-biased dark current of the photodiode. This result clearly
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Fig. 2 | Design and characterizations of single InGaAs 1P-1R integrated device.
a Schematic illustration of the fabricated InGaAs 1P-1R device. b Equivalent circuit
diagram of the 1P-1R structure, and three key operations in the 1P-1R device
depending on applied bias voltage: (i) memorization, (ii) computation, and
(iii) erasing operations. Each background color matches the corresponding
operation range colored in (e). c I–V curves of the single InGaAs photodiode in

the 1P-1R unit under dark and various light illuminations with a wavelength of
532 nm.d I–V characteristic of single ReRAM in the 1P-1R unit, sweeping the applied
voltage along with the indicated loops in the graph. e I–V characteristics of the
single 1P-1R integrated device under light illumination with an incident power
density of 67mW/cm2 and wavelength of 532 nm. The colored regions indicate
operation ranges for three main processes shown in (b).
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demonstrates the capability of the 1P-1R device as a binary optoelec-
tronic memory.

Moreover, we demonstrate the functionality of the 1P-1R cell as a
multistate optoelectronic memory. The memory effect of the 1P-1R
unit was predominantly determined by the characteristics of the
ReRAM in the pixel. Hence, the multistate capability of the ReRAM
enables the 1P-1R pixel to function as a multistate optoelectronic
memory device for in-sensor computing applications. Multiple resis-
tance states in the HfO2-based ReRAM are usually achieved by the
application of various compliance currents during SET operation27,28.
Supplementary Fig. 3 presents the I–V curves of themultiple resistance
states in the ReRAMby controlling the compliance currents during the
SET operations. When a higher compliance current is applied to the
ReRAM during the SET operation, a lower resistance state is formed
owing to the continuous growth of the oxygen vacancy (Vo)-based
filament with a higher charge injection into the oxide layer27,28. The
achieved multiple conductance states are plotted in Supplementary
Fig. 4, depending on the applied compliance. This behavior is con-
sistent with the characterization results from previously reported
oxide-based ReRAMs27–29. Inspired by the above-described resistance

modulation method in HfO2-based ReRAMs, the photogenerated cur-
rents from the photodiode in the 1P-1R systemwere used as the driving
currents to perform a SET operation on the ReRAM during the mem-
orization process. Therefore, multiple resistance states in the 1P-1R
system can be enabled by light illumination with different intensities
on the photodiode, generating diverse magnitudes of the driving
photocurrent during the memorization process. Figure 3a shows
multiplememorization and eraseprocesses to demonstrate the analog
resistance states in the 1P-1R device by employing double-voltage
sweep I–V measurements under illumination with 532 nm wavelength
light. Positive voltage sweeps were applied across the photodiode-
memristor (VRP) to perform a light-driven SET operation, whereas
negative voltage sweeps were applied only to the memristor (VR) for a
RESET operation. The I–V curves in Fig. 3a clearly display the multiple
resistance behaviors depending on the incident light intensity, where
higher intensity light results in the formationof afilament channelwith
higher conductance. Figure 3b shows the conductance of multiple
states depending on the incident light power density in the memor-
ization process, which is nearly identical to the multistate character-
istic of a single ReRAM. However, the nonlinearity of the ReRAM may
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degrade accuracy in the later image classification task. To obtain linear
behavior, one possible approach is to narrow the conductancewindow
so that the focused conductance region can be regarded as a linear
region. However, narrowing the conductance window simultaneously
decreases the on/off ratio, which also possibly degrades the classifi-
cation accuracy. Another solution is to employ a logarithmic amplifier
that can linearize the exponential transitions. Both approaches have
been recently reported30 that could further improve the classification
accuracy.

The endurance characteristics of the 1P-1R optoelectronic mem-
ory were measured after the resistance of the ReRAM was set by illu-
minating lights with seven different intensities (Supplementary Fig. 5).
Themeasurement results confirm that the 1P-1Rdevicehas a stable and
reliable endurance property over 104s for memory functionality. To
validate the continuous image detection and memorization capability
using the 1P-1R system, sequential memorization/erase operations are
shown in Fig. 3c. Voltage pulses (VRP) for memorization (2 V), erase
(−3 V), and read (−0.6 V) operations were applied to the 1P-1R device
under dark or light conditions, with a power density of 50mW/cm2.
Without light illumination, no data were stored in the memory even
with SET pulses, and only leakage currents were observed. However,
the imaging data were stored in thememory once the light illuminated
the device with the application of a memorization voltage pulse, and
thememorywasmaintained in the formof an LRS until the application
of anerasing voltagepulse.When the erasing voltagepulsewas applied
to the ReRAM, the device was switched back to the HRS. Repeated
memorization/erase processes were successfully completed using the
1P-1R system. This transient switching characteristic can be utilized to
perform continuous imagememorization/erase processes by applying
a voltage pulse train to the 1P-1R focal plane arraywithout data transfer
to the external memory. To show the effectiveness of our 1P-1R sensor
for fast-switching machine vision applications, we have characterized
the optical memorization process with various voltage pulse widths
from 10 ns to 100ms in Supplementary Fig. 6.

Using the fabricated 1P-1R array, we demonstrate in-sensor image
storage, encoding, and classification. Prior to image encoding and
classification, an image-storage operation was demonstrated.
Figure 3d–g shows the schematic illustrations of the image memor-
ization, read, and erasing processes, respectively, with the 16×16 1P-1R
focal plane array. A circuit diagram of the pixels is depicted in Fig. 3d,
where aReRAM in a yellow (dark blue)-colored pixel is in the LRS (HRS)
state. To control the 1P-1R array, memorization, read, and erase
operations (Fig. 2b) were utilized. For the image memorization pro-
cess, voltage pulses of +5 V (100 µm pulse width) were applied across
the individual 1P-1R pixels, where the photodiodes were reverse-
biased, to store incident image information in theReRAMs, as shown in
Fig. 3e (see “Methods” for more experimental details). The stored
image is then read by applying voltage pulses of −1 V to each 1P-1R
pixel, where the photodiode is forward-biased, to read the resistance
states of the ReRAMs (Fig. 3f). To erase the saved image in the sensor,
voltage pulses of −5 V (100 µmpulse width) were applied to each 1P-1R
pixel to switch all pixels to the HRS state, enabling the sensor to be
ready to capture the next images (Fig. 3g).

In this study, we characterized and operated a fabricated 16 × 16
1P-1R crossbar array for image memorization under light illumination
with a wavelength of 532 nm. First, the I–V characteristics of an indi-
vidual pixel in the arrayweremeasuredunder 532 nm light illumination
(Supplementary Fig. 7). Forming voltage pulses of +6 Vwere applied to
all 256 pixels under global light illumination (P = 70mW/cm2) to form
the conductive filament channels in the active medium of ReRAMs.
Subsequently, READ voltage pulses of −1 V (100 µm pulse width) were
applied to each pixel to read the conductance state of each ReRAM in
the pixels, followed by an application of RESET voltage pulses of −5 V
to switch all pixels to the HRS state for the next image memorization
process. Figure 3h and i shows the 12 × 12 conductance maps of the

InGaAs 1P-1R array before and after the forming process, respectively,
on a logarithmic scale. Since a 4th row line of the 1P-1R array was
damaged during the fabrication process, we have only employed the
12 × 12 array (from 5th to 16th row and column) to obtain images
(Supplementary Fig. 8). After the forming process, all pixels were
effectively switched from the initial HRS state (Fig. 3h) to the LRS state
(Fig. 3i). With the operation-ready 1P-1R array, the memorization
function was demonstrated by imaging the handwritten digit images
of ‘4’ and 8’ from the MNIST dataset31. First, the ‘4’ handwritten digit
image is illuminated on the 1P-1R array, and +5 V (SET) voltage pulses
are applied to each pixel tomemorize the exposed image in the sensor
as shown in Fig. 3e (see “Methods” for detailed experimentalmethods).
After the image memorization process, −1 V (READ) voltage pulses
were applied to all pixels to read the saved image from the sensor.
Figure 3j shows the corresponding currentmapof the 1P-1R array after
the memorization process with the digit ‘4’ image, indicating that the
captured image is successfully memorized in the sensor. The saved
image in the sensor array is then erased by applying voltage pulses of
−5 V (RESET) to all pixels, and second image memorization and read-
out processeswereperformedunder the image exposureof theMNIST
handwritten digit of ‘8’ using the identical procedure described
above (Fig. 3k).

The 1P-1R crossbar array can be approximated as a 1R crossbar
array under a forward bias condition for the photodiodes because the
resistance of the forward-biased p-i-n InGaAs photodiode is relatively
low compared to that of the ReRAM. Thus, analog neuromorphic
computing can be directly performed in the 1P-1R crossbar array using
the stored image data in the ReRAMs in the same way as the 1R-based
crossbar arrays10,16,26,32. Therefore, image processing and encoding
based on ANNs can be conducted within the sensor by directly
implementing vector-matrix multiplication. This in-sensor vector-
matrix multiplication enables an efficient higher-level computation
without data transport between the sensor, memory, and processor,
reducing significant amounts of energy consumption and processing
time (see Supplementary Table 1, Supplementary Notes 1 and 3)6,10.

The fabricated 1P-1R crossbar focal plane array fuses sensing,
learning, and computing capabilities similar to those of biological
retinas. To realize a neuromorphic vision system, we stored the vision
information in each 1P-1R cell as amatrix geometry and simultaneously
harnessed the data using emulated vision encoding. Previously
demonstrated conventional crossbar geometries of neuromorphic in-
memory computing systems for image processing are associated with
pre-trained weight values in the ANN matrices, and input image data
are applied to the crossbar column as a vectorized electrical signal
(Fig. 4a)6,10,14. Because the format of image data is usually a
2-dimensional (2D) N × N array, 2D-to-1D conversion (vectorization)
must be applied as a vector input, which is an N2 × 1 vector, to the
columnof theReRAMcrossbar array. In this case, extracomplex circuit
components (e.g., ADCs, digital-to-analog converters, and multi-
plexers) must be added to a peripheral circuit to control a large
number of input signals, increasing energy consumption and opera-
tional complexity1,6,10. However, our in-pixel image processing system
transposes image data to the weights of the ANN, in which the input
image is applied and stored in the crossbar array in a weight vector
matrix form, as shown in Fig. 4b. Therefore, the 2D-to-1D conversion of
the image data is no longer necessary for this configuration, sig-
nificantly reducing the circuit complexity and improving the opera-
tional efficiency. Moreover, data transportation from image
memorization to the image encoding process is significantly dimin-
ished because the image information is directly processed in the pixels
without any data transfer.

Figure 4c shows the in-pixel computing process using the fabri-
cated 1P-1R array. The 12 × 12 image of ‘8’ is optically mapped onto the
1P-1R array (sensing) and preserved as the conductance of the ReRAMs
(learning). Meanwhile, the front-ANN and post-ANN is pre-trained with
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10,000 datasets of the MNIST handwritten numbers in the post-
processor to extract the optimum weight vector31. The pre-trained 1D
weight vector is then converted to electrical signals and applied to the
1P-1R array, enabling the physical matrix multiplication for the in-pixel
ANN computation via Ohm’s and Kirchhoff’s laws (computing). The
output current signals from the voltage-conductance multiplication
thus represent the encoded vector of the image ‘8’, achieved without
data transportation by emulating the biological encoding capability.
Figure 4d shows the 10 encoded vectors (1 × 12) for the input digits

from ‘0’ to ‘9,’ each digit exhibiting a distinguishable encoded vector.
The encoded vector is then fed to the next hidden layers to classify the
image in the post-ANN (formore details, seeMethods). Figure 4e and f
shows the classification results from the measured and memorized ‘4’
and ‘8’ digit images. Before training, the activation level of each digit is
randomly distributed. However, the activation level of the ANN output
neurons of the ANN is concentrated on a single digit after training. The
digit with the highest activation level was adopted as the classified
‘answer’. Figure 4g and h shows the results of the image classification

Fig. 4 | Image memorization, encoding, and classification via an in-pixel neu-
romorphic computing. Schematic illustration of multiply–accumulate operation
for an image encoding process in a conventional ReRAM crossbar array andb 1P-1R
crossbar array. Corresponding matrix-vector multiplication is depicted with para-
meters of the input voltage (Vj), conductance of ReRAM (Gij), and output current
(Ij). c Schematic illustration of an example of in-pixel image memorization,
encoding, and classification process with a 5× 5 1P-1R array. At the initial state,
conductance of ReRAMs is G0. After image memorization, conductance of each
ReRAM is indicated as Gij. Once an image is memorized in the sensor, pre-trained

weight voltages (−1.3 V <Vi < −0.5 V) are applied to the rows of the crossbar to
perform a multiply–accumulate operation in the sensor for the encoding process.
Theencodeddata are transferred to apost-ANN toclassify the image.d Examplesof
encoded images of MNIST handwritten numbers from 0 to 9. Classification results
from the memorized e ‘4’ and f ‘8’ digit images before and after training the ANN.
Confusion matrices for a classification result from the 10,000 MNIST handwritten
digit images g before and h after 100 training epochs. i Classification accuracy as a
function of the number of training epochs. The classification accuracy is up to 82%
with the 100 training epochs.
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before and after 100 training epochs for the full precision of 10,000
test digit images, indicating that the classification performance of the
ANN was significantly improved after training the ANN. Although the
proposed device has an N times smaller number of weight values
compared to conventional in-memory computing methods (Fig. 4a),
the classification accuracy is up to 82% with 100 training epochs
(Fig. 4i). The classification performances are also verified with respect
to various SET noises and input bits (Supplementary Figs. 9, 10).

Compared to the general 28 × 28 MNIST handwritten digit data-
set, the size of the MNIST dataset employed in this work is much
smaller (12 × 12). According to the simulation, increasing the dataset
size to the larger pixel (28 × 28) further improves the classification
accuracy from 82 to 88.1% (Supplementary Fig. 11 and Supplementary
Note 4). Further accuracy improvement could be achieved by
employing a dual-encoding neural layer in the ANN, conserving both
row- and column-wise features of images, which can be realized by
employing bi-directional peripheral circuitry (Supplementary
Figs. 12–14 and Supplementary Note 2)33. We believe that more prac-
tical in-sensor image processing can be realized by increasing the
number of pixels in the 1P-1R array integrated with the peripheral
circuitry.

We demonstrated a neuromorphicmachine vision systemwith an
in-sensor encoding process inspired by mammalian vision. The focal
plane array is based on an InGaAs photodiode directly integrated with
HfO2 ReRAM, constructing the 1P-1R optoelectronic memory and
computing pixels. The optoelectronic andmemory functionality of the
fabricated 1P-1R pixel under light illumination showed reliable digital
and multibit memory operation and endurance performance. Fur-
thermore, a 16× 16 1P-1R crossbar arraywith an InGaAsphotodiode and
HfO2-based ReRAM was used to perform edge computing of the
handwritten numbers. Finally, we demonstrated biological image
encoding with the developed 1P-1R crossbar array, utilizing direct
imagememorization and in-memory vector matrix multiplication. The
encoded images were conveyed to the ANN for image classification,
which revealed an accuracy of 82% with 100 training epochs. This
slightly lower classification accuracy is attributed to the structure of
the encoding neural network, which consists of twelve 12× 1 fully
connected layers. The architecture of the neural network is inevitably
determined by the hardware circuit structure of the 1P-1R crossbar
array. The classification accuracy of our sensor system can be further
improved by using a dual-encoding neural layer in the ANN. The in-
sensor computing concept introduced in this study is a novel method
for storing and processing image information directly within pixels
without any data transportation between external computing com-
ponents and is seamlessly scalable with conventional semiconductor
fabrication technology.

Methods
Device fabrication
InGaAs p-i-n layerswere grown on a InP substrate by generalmolecular
beamepitaxy (MBE)34. The 1P-1R crossbar array fabrication startswith a
mesa etching of p-InGaAs/Uid-InGaAs layers. The mesa areas were
protected with a bilayer photoresist (PR; LOR3A/AZ5214) by photo-
lithography, and the unprotected InGaAs area was etched using
inductively coupled plasma-reactive ion etching (ICP-RIE; BCl3
20 sccm,600W ICPpower, 150W forwardpower, 7mTorr, 20 °C stage
temperature for 6min), followed by wet etching for 1min in a solution
of H3PO4:H2O2:H2O = 3:1:25, which stopped at the n-InP layer. The PR
mask was then removed in the Remover PG (Kayaku Advanced Mate-
rials) at 60 °C.With a single PR (AZ5214) patterning, n-InPmesa for the
bottom metal electrodes was defined, followed by a wet etch process
for the n-InP/InP buffer layer using a solution of HCl:H3PO4 = 3:1 (30 s).
Next, a dielectric insulator layer of 150 nm Al2O3 was deposited by
plasma-enhanced atomic layer deposition (PE-ALD). The via holeswere
etched with a bilayer PR mask using ICP-RIE (BCl3 20 sccm, 50W ICP

power, 200W forward power, 5mTorr, 20 °C stage temperature for
6min). The top and bottom electrodes of the photodiodes were
simultaneously deposited by photolithography with bilayer PR and
e-beam evaporation of Ti/Pt/Au (5/10/50nm), which was lifted off in
the Remover PG at 60 °C. Another dielectric insulator of 150nm Al2O3

was deposited by PE-ALD, and through holes were opened on the
bottom electrodes of the photodiodes. Subsequently, the bottom
electrodes of the ReRAMs, which are connected to the bottom elec-
trodes of the photodiodes, were deposited using bilayer photo-
lithography, e-beam evaporation of Ti/Pt (5/25 nm), and a lift-off
process with the Remover PG. 5.5 nm of a HfO2 layer was deposited by
PE-ALD, followed by metal deposition of Ta/Pt (50/25 nm) on the top
electrodes of the ReRAMs using DCmagnetron sputtering of Ta (25W
RF power, 5mTorr, Ar 20 sccm, room temperature for 18min) and
e-beam evaporation of Pt. Finally, the HfO2mesa areas were defined by
dry etching with ICP-RIE with a bilayer PR mask.

1P-1R single device characterization
All electrical measurements were performed using a semiconductor
analyzer (B1500A, Keysight). The devices were illuminated using a
diode laser (DJ532, Thorlabs) with a wavelength of 532 nm, where the
incident power was controlled by a neutral density filter.

Image memorization
MNIST handwritten digit images of ‘4’ and ‘8’ are printed out on
photomasks using a direct write lithography tool (MicroWriter ML3,
Durham Magneto Optics Ltd), and the diode laser light with a
wavelength of 532 nm (P = 50mW/cm2) is illuminated on the 1P-1R
device by passing through the printed digit images. The projected
image (‘4’ or ‘8’) on the sensor is memorized by applying a + 5 V
voltage pulse to each pixel using a semiconductor analyzer. After the
memorization process, −1 V pulse is applied to each pixel to readout
the saved image. Then, the stored image is erased by applying −5 V
pulse to each pixel.

In-pixel image encoding and classification
The encoder and classifier models were implemented using Python.
We combined a matrix-to-vector encoder (12 × 12-12) and a fully con-
nected layer classifier with two hidden layers (12-20-16-10) on the
Modified National Institute of Standards and Technology (MNIST)
dataset. EachoriginalMNIST imagewas resized to 12 × 12 pixels, andwe
trained and tested 10,000 images (with 64 batch sizes for 100 epochs)
and 100MNIST images. For the backpropagation learning process, we
employed an RMSprop optimizer, rectifier (softmax for the last out-
put) nonlinearity activations, and an initial time-decaying learning
rate (0.001).

Data availability
The data supporting the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
All code used in this study is available from the corresponding authors
upon reasonable request.
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