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Abstract: The aim of this study was to demonstrate the utility of threshold logistic modelling, an
innovative approach in identifying thresholds and risk scores in the context of population antibiotic
use associated with methicillin-resistant Staphylococcus aureus (MRSA) incidence rates in hospitals.
The study also aimed to assess the impact of exceeding those thresholds that resulted in increased
MRSA rates. The study was undertaken in a 700-bed hospital in England between January 2015 and
December 2021 (84 monthly observations). By employing the threshold logistic modelling approach,
we: (i) determined the cut-off percentile value of MRSA incidence that defines a critical level of
MRSA; (ii) identified thresholds for fluoroquinolone and co-amoxiclav use that would accelerate
MRSA incidence rates and increase the probability of reaching critical incidence levels; (iii) enabled
a better understanding of the effect of antibiotic use on the probability of reaching a critical level
of resistant pathogen incidence; (iv) developed a near real-time performance monitoring feedback
system; (v) provided risk scores and alert signals for antibiotic use, with the ability to inform hospital
policies, and control MRSA incidence; and (vi) provided recommendations and an example for the
management of pathogen incidence in hospitals. Threshold logistic models can help hospitals deter-
mine quantitative targets for antibiotic usage and can also inform effective antimicrobial stewardship
to control resistance in hospitals. Studies should work toward implementing and evaluating the
proposed approach prospectively, with the aim of determining the best counter-measures to mitigate
the risk of increased resistant pathogen incidence in hospitals.

Keywords: antibiotic use; antibiotic resistance; antibiotic prescribing; antibiotic stewardship; threshold
logistic modelling; thresholds; MRSA; epidemiology; clinical practice

1. Introduction

Antimicrobial resistance (AMR) is a global threat to public health and economic
development, contributing to increased morbidity, mortality, and healthcare costs with
a significant impact on health systems [1–5]. In a recent comprehensive evaluation, the
global burden associated with drug-resistant infections in 2019 was an estimated 4.95
million deaths, of which 1.27 million deaths were directly attributable to drug resistance [6].
Medicines are considered one of the key building blocks in health systems, and it is essential
to make effective antimicrobial therapy accessible in order to support the sustainability
of health systems [7,8]. However, inappropriate antibiotic prescribing practices and the
emergence of AMR jeopardize access to effective antibiotic treatments [1,9–16].
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Several studies have shown an association between antibiotic use and the subsequent
development of resistance [17–23]. Antibiotic use (e.g., third-generation cephalosporins, fluoro-
quinolones, macrolides, and co-amoxiclav) has been linked to the development of methicillin-
resistant Staphylococcus aureus (MRSA) in ecological population studies [24–31]. These studies
applied time series techniques as a robust statistical method [24–32]. The value of time
series analysis lies in its ability to measure and assess the effectiveness of different pathogen-
controlling measures designed according to local antibiotic use, infection control practices, and
resistance patterns [10,25]. While linear time series methods have been applied to determine
the relationship between antibiotic use and resistance [24–29], studies suggest that non-linear
relationships are more useful [19,20,30,31,33–35]. As a consequence of potential non-linear
relationships, it was suggested that there might be a threshold of antibiotic use beyond which
resistance would be triggered [19,20,33]. Recently, we developed a modelling concept, named
threshold logistic, that improved the understanding of the impact of antibiotic use on AMR
when use exceeds recommended thresholds. It can also provide targets for antibiotic consump-
tion and a near real-time performance monitoring feedback system [36]. To demonstrate the
utility of this modelling concept (i.e., threshold logistic), a Gram-negative pathogen (extended
spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli)) was selected and the results
of this evaluation were reported [36]. In this study, we aimed to demonstrate the utility of
threshold logistic modelling methods in identifying thresholds for specific antibiotic use, and
to understand the impact of exceeding thresholds of antibiotic use that result in increasing
MRSA incidence. By employing a threshold logistic approach, we modelled the probability of
a hospital reaching a critical level of MRSA in advance of such an event occurring. The benefit
is an opportunity for the hospital to engage in counter-measures to mitigate the risk of an accel-
erated MRSA incidence rate. By using data from the same population for which we examined
the incidence of ESBL-producing E. coli [36], we also provided tailored recommendations and
an example of identifying antibiotic use targets for the management of Gram-positive and
Gram-negative incidence rates in hospitals.

2. Results

Over the study period, 395 non-duplicated MRSA cases were identified. The average
monthly MRSA incidence rate was 0.235 cases/1000 occupied bed-days (OBD) (range:
0.05–0.57). The average fluoroquinolone (predominantly levofloxacin and ciprofloxacin)
use was 67.2 DDD/1000 OBD (range: 37.4–123.0), and the average co-amoxiclav use was
275.5 DDD/1000 OBD (range: 190.5–413.4). A graphical representation of the relationship
between the identified antibiotics and the incidence of MRSA cases is shown in Figure 1.
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Figure 1. Monthly MRSA incidence versus use of selected antibiotic classes (thick line, MRSA, no. of
cases/1000 OBD, 5-month moving averages, left-hand y-axis; thin line, antimicrobial use, DDD/1000
OBD, 5-month moving averages, right-hand y-axis). (a) fluoroquinolones and (b) co-amoxiclav.
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2.1. Defining a Critical Level of MRSA Incidence Rates

A threshold logistic regression search algorithm was employed to identify the cut-off
percentile value of MRSA incidence that we established as a high incidence rate. The
maximization of classification sensitivity and specificity was used to select the percentile of
MRSA incidence.

2.2. Threshold Logistic Method

Based on the search results, the 70th percentile (0.276 cases/1000 OBD) of MRSA
incidence was selected as the cut-off in defining the dichotomous binary classification
variable (Figure 2).
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line represents the 70th percentile (0.276 cases/1000 OBD).

The variable representing the COVID-19 period was found to be insignificant (coeffi-
cient =−0.378; p = 0.572), therefore, it was removed from the models to maintain parsimony.
Using threshold logistic models, fluoroquinolones were found to have a threshold at 55.96
DDD/1000 ODB, and co-amoxiclav was found to have a threshold at 312.19 DDD/1000
ODB (Table 1).

The threshold logistic analysis demonstrated that for every one-unit increase in fluoro-
quinolone and co-amoxiclav use above 55.96 and 312.19 DDD/1000 OBD, the average odds
of an MRSA incidence rate exceeding the 70th percentile of historical levels increased by
4.98% and 5.05%, respectively (Table 1).
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Table 1. Threshold logistic results in modelling the MRSA incidence rate at the 70th percentile,
January 2015 to December 2021.

Predictor
Variable Lag Median Use

(IQR)

Threshold (95%
Confidence

Limit) *

Relation to
Threshold

Coefficient (95%
CI) p-Value Odds Ratio (95%

CI)

Constant NA NA NA NA −1.862
(−2.717 to 1.008) <0.001 0.1553

(0.07 to 0.37)

Fluoroquinolones
use

(DDD/1000
OBD)

3 64.55
(53.58–76.39)

55.96
(37.37 to 75.15) Above 0.0486

(0.012 to 0.085) 0.0099 1.0498
(1.01 to 1.09)

Co-amoxiclav
use (DDD/1000

OBD)
3 270.90

(247.3–297.0)
312.19

(213.72 to 333.16) Above 0.0493
(0.010 to 0.089) 0.0139 1.0505

(1.01 to 1.09)

* 95% confidence limit around the optimized threshold value, which was derived using a one-at-a-time (OAT)
approach; IQR, interquartile range; NA, not applicable.

The classification accuracy for this model was 77.8% and the area under the curve
(AUC) measure for the receiver operator characteristic (ROC) curve was 70% (Figure 3).
Cumulative MRSA incidence rates, in relation to fluoroquinolone and co-amoxiclav use
being above or below their respective thresholds, are presented in Figure 4. MRSA incidence
rates were consistently higher when antibiotic thresholds were exceeded, and lower when
thresholds were kept below their defined targets (Figure 4).
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The contour chart shows the results of triangulating antibiotic unit changes above the
identified thresholds using the threshold logistic model with the predicted probability of
exceeding the 70th percentile of the historical MRSA incidence rate (Figure 5). We observed
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increases in the probabilities of reaching a high MRSA incidence rate as the combined levels
of antibiotic use increased. The x-axis is the threshold-adjusted fluoroquinolone use at lag
3, and the y-axis is the threshold-adjusted co-amoxiclav use at lag 3. The lower-left corner
of the plot is the point at which both antibiotic series are equal to their identified thresholds;
co-amoxiclav(t−3) = 312.19 DDD/1000 OBD, and fluoroquinolone(t−3) = 55.96 DDD/1000
OBD. It is the point at which the basis functions evaluate to 0. The basis functions are:

Basis Function f or co− amoxiclav = max
(
(co− amoxiclav (t−3) − 312.19), 0

)
Basis Function f or f luoroquinolone = max

(
( f luoroquinolone(t−3) − 55.96), 0

)
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the predicted probability of exceeding the 70th percentile of historical MRSA incidence rates using
the identified threshold logistic model.

2.3. Risk Scores

Table 2 shows the ongoing performance for 2021 and presents risk scores that were
generated from the threshold logistic model for MRSA incidence rates exceeding the 70th
percentile (0.276 cases/1000 OBD). Three alert signal levels (Low, Medium, and High) were
devised for coding the probability risk scores (Table 2).

To aid the understanding of Table 2, and taking January 2021 as an example, the MRSA
incidence rate was above 0.276 (70th percentile). Fluoroquinolone use was above 55.96
DDD/1000 OBD three months prior, which recodes the basis function for fluoroquinolone
use to 2.29. Co-amoxiclav use was below 312.19 DDD/1000 OBD three months prior, which
recodes the basis function for co-amoxiclav use to 0. Applying these values to the threshold
logistic model, a predicted MRSA incidence probability above the 70th percentile of 0.148
was produced, translating to a Low alert signal.

The overall classification accuracy, which was based on the coded alert signals, is
shown in Table 3. Our analysis showed that a Low alert signal was correct 28 out of 33 times
in identifying an MRSA incidence rate below the 70th percentile (a 5.6 to 1 accuracy ratio).
A High alert signal was correct 13 out of 26 times in identifying MRSA incidence rates
above the 70th percentile (a 1 to 1 accuracy ratio). For the Medium alert signal, we were
more than two times as likely to be below the 70th percentile of the MRSA incidence rate.
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Table 2. Risk scores for MRSA incidence rates exceeding the 70th percentile for 2021.

Date

MRSA Rate
Observed above
70th Percentile

(0.276 Cases/1000
OBD)

Fluoroquinolones
Use (DDD/1000
OBD) at Lag 3

(Threshold-
Adjusted)

Co-Amoxiclav
Use (DDD/1000
OBD) at Lag 3

(Threshold-
Adjusted)

Predicted
Probability

MRSA above 70th
Percentile

Coded Alert
Signal

January Above 2.29 0.00 0.148 Low
February Below 3.72 0.00 0.157 Low

March Below 0.00 0.00 0.134 Low
April Below 0.00 0.00 0.134 Low
May Below 0.00 0.00 0.134 Low
June Below 37.39 0.00 0.489 High
July Below 12.88 0.00 0.225 Medium

August Below 0.00 0.00 0.134 Low
September Below 3.86 0.00 0.158 Low

October Below 15.25 0.00 0.246 Medium
November Above 0.00 0.00 0.134 Low
December Below 1.13 0.00 0.141 Low

Table 3. Summary of numbers of coded alert signals when the MRSA incidence rate observed was
above and below the 70th percentile (January 2015–December 2021).

MRSA Observed above or below 70th Percentile
(0.276 Cases/1000 OBD))

Above Below

Coded Alert Signal

Low 5 28 (5.6:1)

Medium 6 15

High 13 (1:1) 13

2.4. What-If Scenarios

Predictive models with varied lag structure are conducive to performing a “what-if”
scenario by adjusting the expected antibiotic levels and observing the change in predicted
outcomes. In this model, although both identified antibiotics (i.e., fluoroquinolone and
co-amoxiclav) were lagged, they were both entered into the model three months prior
to the current month, which did not afford the opportunity to adjust lower lags or the
current month. However, this model provided an indication of expected MRSA infection
levels (the probability of exceeding the 70th percentile) three months in advance. The
hospital therefore has 1–3 months to mitigate the risk of increased MRSA infections through
increased vigilance, patient protocols, and increased hygiene. Table 4 shows months in
which we can pre-determine the expected MRSA level given fluoroquinolone and co-
amoxiclav use in the preceding 3-month window. We note that the predicted probabilities
for these future months were based on co-amoxiclav use being below and fluoroquinolone
use being above identified thresholds. The alert signal for both January 2022 and March
2022 is predicted to be Medium, highlighting the need to increase vigilance and attempt
to suppress risk via increased antimicrobial stewardship and infection control practices,
hygiene, and additional patient protocol measures.

Table 4. Three-month-ahead alert signals based on threshold logistic model.

Date
Fluoroquinolones

Use (DDD/1000
OBD) at Lag 3 *

Co-Amoxiclav Use
(DDD/1000 OBD) at

Lag 3 *

Predicted
Probability MRSA

above 70th
Percentile

Coded Alert Signal

January 2022 73.76 213.72 0.269 Medium
February 2022 66.40 233.59 0.205 Low

March 2022 75.15 273.90 0.283 Medium

* Fluoroquinolones threshold = 55.96 DDD/1000 OBD; co-amoxiclav threshold = 312.19 DDD/1000 OBD.
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2.5. Recommendations for Selected Antibiotic Use for Management of Both MRSA and
ESBL-Producing E. coli [36]

Based on this study and our previous work [36], co-amoxiclav, fluoroquinolones, and
third-generation cephalosporins were identified as being associated with the incidence
of MRSA and ESBL-producing E. coli. Therefore, these antibiotics should be subjected to
close monitoring and antimicrobial stewardship interventions to influence their use. It is
possible to evaluate the identified antibiotic thresholds for various pathogens within the
combined modelling framework and thus develop recommendations for antibiotic guide-
lines. For example, to control ESBL-producing E. coli, the threshold for fluoroquinolones
was determined in a previous study to be 61.14 DDD/1000 OBD with a 95% confidence
range of (55.96 to 68.27 DDD/1000 OBD) and with a one-month lag effect on the ESBL-
producing E. coli response [36]. In the MRSA threshold logistic model used in this paper,
the threshold for fluoroquinolones was 55.96 DDD/1000 OBD with a 95% confidence range
of (37.37 to 75.15 DDD/1000 OBD) and a three-month lag effect on MRSA response. In
this case, the lowest identified threshold for both the ESBL-producing E. coli and MRSA
models (i.e., 55.96 DDD/1000 OBD) should be considered as target for antimicrobial stew-
ardship approaches.

In December 2021, fluoroquinolone use was 75.15 DDD/1000 OBD, above the 61.14 DDD/1000
OBD threshold for the ESBL-producing E. coli model [36]. It produced a Medium ESBL-producing
E. coli alert signal in January 2022 [36]. Prior information regarding the impact of fluoroquinolones
that increased the ESBL-producing E. coli incidence rate was known in November 2021 and efforts
could have been made to bring this down to under 55.96 DDD/1000 OBD. Through this mitigation
effort, the ESBL-producing E. coli alert signal would be downgraded from Medium to Low in
December 2021. We would also know that the planned reduction in fluoroquinolones for December
2021 impacts the MRSA alert signal for March 2022. By keeping fluoroquinolones under 55.96
DDD/1000 OBD, the MRSA alert signal would also have been reduced from Medium to Low. This
allows for anticipatory control of risk outcome, months in advance, by evaluating the impact of
fluoroquinolone usage in the current month as it affects the increased (or decreased) probability
of the MRSA incidence rate three months later. Without knowledge of the relational impact of
fluoroquinolone usage on MRSA incidence rates, and considering the March 2022 result (Table 4),
the probability of a high MRSA incidence rate is 28.30%, which corresponds to a Medium alert
signal. However, with prior knowledge of this modelled relationship, if fluoroquinolone usage
was controlled under 55.96 DDD/1000 OBD in December 2021, the probability of a high MRSA
incidence rate can be reduced to 13.44%. It therefore lends itself well to policy management as it
offers anticipatory control of high pathogen incidence rates.

3. Discussion

In our recently published work, we developed a modelling concept named threshold
logistic [36]. We examined the utility of this approach using a Gram-negative pathogen,
namely, ESBL-producing E. coli [36]. In this study, we applied threshold logistic modelling
methods to understand the impact of exceeding thresholds of antibiotic use that result in
increasing the incidence rate of the Gram-positive MRSA pathogen in the same population.
We wanted to provide an example of identifying antibiotic use targets for the management
of prevalent Gram-positive and -negative pathogens in hospitals. The benefit is an opportu-
nity for the hospital to engage in actionable counter-measures to mitigate accelerated rates
of AMR.

Through applying the threshold logistic modelling approach, we: (i) determined
the cut-off percentile value of MRSA incidence that defines a critical level of MRSA; (ii)
enabled the identification of thresholds for fluoroquinolone and co-amoxiclav use that
would accelerate MRSA incidence rates and increase the probability of reaching critical
levels; (iii) achieved a better understanding of the effect of antibiotic use on the probability
of reaching the defined critical level of MRSA incidence when antibiotic usage exceeds
an identified threshold; (iv) provided a near real-time performance monitoring feedback
system through a scorecard approach; (v) provided risk scores/alert signals when antibiotic
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use exceeded critical levels through what-if scenarios; and (vi) provided overall recommen-
dations for the management of AMR based on the findings of this study and our recently
published work [36].

The importance of thresholds analysis lies in its ability to provide quantitative targets
to inform antimicrobial stewardship by providing thresholds that should not be exceeded
in order to control pathogen incidence rates. This approach has been reported in a number
of studies using different pathogens and study sites [1,19,20,35]. In a recent evaluation, the
authors identified different thresholds for the use of antibiotics, with respect to the same
pathogen, across participating hospitals, indicating the need for tailored analysis based
on modelling data from each hospital [35]. The analysis undertaken in these studies was
performed on a continuous outcome variable, i.e., the pathogen incidence rate [19,20,35].
Thresholds identified in modelling ‘continuous outcomes’ represent the start of an observed
increase in the assessed pathogen’s incidence rate; they are not indicative of the pathogen’s
incidence rate exceeding tolerable levels or occurring outside normal variation of historical
incidence rates. It is important to emphasize, as has been shown by our published work [36],
that the progressive increase in levels of antibiotic use above the identified threshold will
be associated with an increased probability of the pathogen’s incidence rate being outside
its normal variation. This suggests the need to define a critical level of pathogen incidence
rate, and to predict the probability of reaching this defined critical level of incidence when
antibiotic usage exceeds an identified threshold.

The critical level of pathogen incidence rate is used as the binary event required for
threshold logistic regression modelling methods. In a hospital setting, the critical level of
the pathogen incidence rate may be based on a hospital mandate, a tolerance level set by
government recommendation, or on empirical analysis of historical infection rates.

For the purposes of this study, we used empirical analysis of historical MRSA incidence
rates to define when a critical level of MRSA incidence rate was reached. The 70th percentile
(0.276 cases/1000 OBD) of MRSA incidence was selected as the cut-off value defining a
high incidence rate (Figure 2). Fluoroquinolones were found to have a threshold at 55.96
DDD/1000 OBD, and co-amoxiclav was found to have a threshold at 312.19 DDD/1000
OBD. Using antibiotics above these thresholds would accelerate MRSA incidence rates
and increase the probability of reaching the defined critical levels. We also produced a
predicted probability of exceeding the 70th percentile of the historical MRSA incidence
rate. Probabilities ranged from near zero when antibiotics were close to the thresholds,
to approaching a near certain probability (≥99%) as antibiotic use increased above the
thresholds. This was shown in the contour plot (Figure 5), which can be used to understand
the risk of antibiotic use when exceeding recommended thresholds.

Logistic regression provides a risk score or probability of an event occurring relative
to an overall set of covariates. The threshold logistic concept combines the benefits of
identifying individual antibiotic use that should be kept below certain thresholds and
the ability to generate risk scores or probabilities of pathogen incidence rates exceeding a
critical level. In the present work, we provided a sample scorecard which can be used for
near real-time feedback on the effectiveness of implemented antibiotic policies, for example,
keeping antibiotic use below identified thresholds. In addition, the prediction utility
offered the opportunity to perform “what-if scenarios” using different levels of antibiotic
use to evaluate the expected impact on predicted pathogen incidence in the following
months [36]. In this study, our analysis identified both antibiotics (i.e., fluoroquinolones
and co-amoxiclav) with a 3-month lag, therefore, they were entered into the model three
months prior to the current month. This does not permit adjusting earlier lags with the
intent of affecting the predicted MRSA outcome. However, the model can predict the
probability of approaching the 70th percentile of MRSA incidence three months in advance
(i.e., January–March 2022 in this worked example). This provides hospital policy makers
the opportunity to mitigate the risk of increased MRSA infection through several auxiliary
methods, e.g., increased vigilance, patient treatment protocols, and increased infection
control practices, as well as hand and environmental hygiene.
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Finally, and in part (2.5) of the Results section, we aimed to provide an example of
how to identify antibiotics at high risk of driving antibiotic resistance in hospitals, and
of how we can combine the results from modelling such pathogens to inform effective
antimicrobial stewardship. In our previous study, we modelled the relationship between
certain antibiotic classes and ESBL-producing E. coli (a Gram-negative pathogen) [36].
Using the same hospital study site and the same population, we modelled the relationship
between certain antibiotic classes and MRSA (a Gram-positive pathogen). These were the
two most frequently-occurring pathogens, which enabled the conduct of robust statistical
analysis. Based on the findings for both pathogens, we made our recommendations as
follows: (i) there is a need to monitor/intervene and influence the use of co-amoxiclav,
fluoroquinolones, and third-generation cephalosporins; (ii) for fluoroquinolones, and since
use was associated with both MRSA and ESBL-producing E. coli with different thresholds,
the lowest identified threshold (i.e., 55.96 DDD/1000 OBD) should be considered as the
target for antimicrobial stewardship; and (iii) the ‘what-if scenarios’ should be used to
predict incidences for future months, and to inform antimicrobial stewardship accordingly.
In relation to the latter, we provided an example of how a reduction of antibiotic use
for ESBL-producing E. coli (determined in our previous study [36]) may also reduce the
probability of a high MRSA incidence rate in future months, downgrading the alert signal
from Medium to Low in March 2022. Importantly, if mitigation measures are taken to
control pathogen incidence rates, then evaluations of the various actions can be measured
in the hope of finding optimal mitigation actions. Since we are using predictive modelling
to influence future pathogen incidence rates, threshold models should be regularly re-
estimated to adjust for evolutionary changes in the data.

We used robust statistical methods to routinely analyse the collected data for all adult
inpatients, therefore selection and information bias are unlikely. Nevertheless, it was not
possible to adjust for potential changes in the patient population or for case mix. The
estimated model can be improved via the inclusion of further explanatory variables, for
example, infection prevention and control activities and proxy measures for changes in
patient population and case mix, if possible [37,38]. During the study period, no significant
changes to hand hygiene or cleaning practices were made. The effect of COVID-19 on the
model was considered and found to be non-significant. Finally, this work represented a
single-centre assessment, therefore, the study would benefit from a multi-centre assessment.

In conclusion, we developed an innovative method, i.e., the threshold logistic mod-
elling concept, to improve our understanding of the effect of antibiotic use on antibiotic
resistance when usage exceeds recommended threshold levels, with the utility of providing
quantitative thresholds to inform effective antimicrobial stewardship and provide a near
real-time performance monitoring feedback system for policy assessment and for keeping
antibiotic use below identified thresholds. Setting targets for antibiotic use through identi-
fying the relevant thresholds has the benefit of avoiding wholesale restriction of antibiotics
and associated challenges [24], along with providing access to antibiotic treatment. The
threshold logistic modelling approach can help in defining critical pathogen incidence
rates and facilitate a coded alert signal (High, Medium, or Low risk) for predicting prob-
ability. Future research should work toward implementing and evaluating the proposed
approach prospectively in hospitals, with the aim of determining the best counter-measures
to mitigate the risk of increased resistant pathogen incidence in hospitals.

4. Methods
4.1. Study Design and Population

The work was conducted at Pinderfields Hospital (700 beds), Mid Yorkshire Hospitals
NHS Trust in West Yorkshire, England. The Trust cares for 500,000 people, providing
medical and surgical services, intensive care, haematology/oncology, a regional burns
unit, a regional spinal injuries unit, and community services. All adult inpatients admitted
to Pinderfields Hospital were included in the study. Retrospective data collection was
performed for the study period from January 2015 to December 2021. In relation to the ana-
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lytical methods employed in this study, the minimum requirement was 5 years of monthly
antibiotic use and microbiology data [19,20]. In this study, 7 years of data were used, based
on the availability of the longest period of consistent antibiotic use and MRSA data.

We hypothesized that the use of third-generation cephalosporins, fluoroquinolones,
macrolides, and co-amoxiclav could explain variations in the incidence of MRSA. These
antibiotics were identified a priori based on their available resistance profiles obtained from
the hospital microbiology department (which showed that MRSA isolates were resistant to
ciprofloxacin, clarithromycin, and erythromycin in 66.9%, 63.3%, and 63.4% of the cases,
respectively), along with published evidence of their role as risk factors for driving hospital
MRSA incidence rates [24–31].

4.2. Microbiology and Pharmacy Data

An MRSA case was defined as any adult inpatient (≥18 years), who was admitted
to Pinderfields Hospital between 1 January 2015 and 31 December 2021, and who had
a positive MRSA result during their admission. Data were obtained using an infection
control software (ICNET; Clinical Surveillance Software’ NG 1.7.1.0, Baxter International
INC, UK). Duplicates were excluded if they were within 30 days of hospital readmittance.
All pink colonies on the MRSA-selective agar plate were tested using a latex agglutination
kit for Staphylococcus aureus identification. If the latex result was unclear, identification was
confirmed using MALDI-TOF mass spectrometry. Any isolates identified as Staphylococcus
aureus were subjected to sensitivity testing against a range of antibiotics to identify MRSA
strains. In line with the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) guidelines, sensitivity testing was performed by seeding a sensitivity plate
with a suspension of the organism in a specified dilution and adding antibiotic discs of
known concentration to the plates. Following incubation at 34–36 ◦C for 16–20 h, a zone
of inhibition around a disc was indicative of resistance. The antibiotic used to determine
whether an isolate was MRSA was cefoxitin.

Antibiotic usage quantities were obtained on a monthly basis from the hospital phar-
macy information systems (JAC). These data were then converted into Defined Daily
Doses (DDD), in line with the classification of antimicrobials for systemic use (J01) in the
WHO/ATC index and expressed as DDD per 1000 occupied bed-days (OBD) [39,40].

4.3. Modelling and Statistical Analysis

Antibiotic and MRSA series were initially assessed using descriptive statistics, plots,
and an examination of the cross-correlation functions of the series to identify linear lag
structures and relationships. Non-linear relationships and thresholds identification in
antibiotic use that influenced MRSA incidence rates were then explored with Multivariate
Adaptive Regression Splines (MARS) methods and other non-linear value-segmenting
models [41–44]. For the application of a logistic approach, the continuous pathogen rate
was converted into a binary event [45]. The binary event was defined as a critical level of
the pathogen incidence rate that was set through exploratory numerical methods.

4.3.1. Defining a Critical Level of Pathogen Incidence Rate

Continuous MRSA incidence rates were initially analysed in relation to individual
antibiotic usage variables at various lags using MARS and non-linear value-segmentation
threshold methods to identify candidate drivers of increased MRSA incidence rates. The
possibility for any shift that may have occurred due to COVID-19 after March 2020 was eval-
uated through the inclusion of a binary indicator variable. For the purpose of identifying
the critical level of the incidence rate that produced the highest classification accuracy, we
partitioned the MRSA incidence rate by various percentiles, specifically between the 50th
and 85th percentiles of the incidence rate of MRSA. We then employed a search algorithm
that recursively evaluated all threshold combinations of the candidate antibiotic series
at various lags against the binary classifier. The 50th–85th percentiles were selected as
a target since this target would be defined in the upper 50% of the historical data and
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would include enough observations so as not to be considered a rare event. The 70th
percentile (0.276 cases/1000 OBD) was identified as the cut-off for the binary event as it
produced a dominant classification performance in both classification accuracy and number
of modelled results in the top decile of accuracy measures. The binary event is defined as

Event = Ifelse (MRSA incidence rate ≥ 0.276, 1, 0).

4.3.2. Threshold Logistic Method

In relation to the binary event, we employed a threshold logistic search algorithm that
jointly optimized:

• the critical level of the MRSA incidence rate between the historical 50th and 85th
percentile range;

• the lag structure of the antibiotic series;
• antibiotic threshold values.

The threshold logistic method [46,47] can be expressed as

Pr(Yi = y|x1i, x2i, . . . , xmi) =

{
pi i f y = 1
1− pi i f y = 0

where x1i through xmi represent the threshold-adjusted and lag-adjusted antibiotic ex-
planatory variables.

Classification accuracy, using a probability cut-off that maximized the sum of sensi-
tivity and specificity, was used for model selection. This was extracted from the detailed
model summary information exported from the iterative estimation results of the search
algorithm. The computed area under the curve (AUC) of the receiver operator character-
istic (ROC) curve was used as a confirmatory measure of classification power [48,49]. A
one-at-a-time (OAT) approach was employed to undertake sensitivity analysis of the lower
and upper limit around the optimized threshold value. The 70th percentile was confirmed
to be of highest accuracy for class separation.

Predicted probabilities (risk scores) of the threshold logistic regression model were
generated. A coded alert signal (High, Medium, or Low risk) was created based on the
MinMax transformation of the predicted probabilities (risk score) coming from the threshold
logistic model.

z =
prob−min(prob)

max(prob)−min(prob)

To maximize the overall distribution accuracy of a Low signal classifying an infection
rate as being below the 70th percentile and a High signal classifying an infection rate
as being greater than the 70th percentile, we computed the cut-off ranks using a linear
programming (LP) technique. To define Low, Medium, and High coded alert signals,
the cut-off ranks optimized through LP were 0.0 to ≤0.42, >0.42 to <0.69, and ≥0.69 to
1.0, respectively. The SCA Statistical System version 8.2 (Scientific Computing Associates
Corp., River Forest, Illinois, USA) and R software version 4.1.0 (R Foundation for Statistical
Computing, Vienna, Austria) were used to perform analysis.
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