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Abstract: Background: Hepatocellular carcinoma (HCC) originates from the hepatocytes and accounts
for 90% of liver cancer. The study intends to identify novel prognostic biomarkers for predicting the
prognosis of HCC patients based on TCGA and GSE14520 cohorts. Methods: Differential analysis was
employed to obtain the DEGs (Differentially Expressed Genes) of the TCGA-LIHC-TPM cohort. The
lasso regression analysis was applied to build the prognosis model through using the TCGA cohort as
the training group and the GSE14520 cohort as the testing group. Next, based on the prognosis model,
we performed the following analyses: the survival analysis, the independent prognosis analysis,
the clinical feature analysis, the mutation analysis, the immune cell infiltration analysis, the tumor
microenvironment analysis, and the drug sensitivity analysis. Finally, the survival time of HCC
patients was predicted by constructing nomograms. Results: Through the lasso regression analysis,
we obtained a prognosis model of ten genes including BIRC5 (baculoviral IAP repeat containing 5),
CDK4 (cyclin-dependent kinase 4), DCK (deoxycytidine kinase), HSPA4 (heat shock protein family
A member 4), HSP90AA1 (heat shock protein 90 α family class A member 1), PSMD2 (Proteasome
26S Subunit Ubiquitin Receptor, Non-ATPase 2), IL1RN (interleukin 1 receptor antagonist), PGF
(placental growth factor), SPP1 (secreted phosphoprotein 1), and STC2 (stanniocalcin 2). First, we
found that the risk score is an independent prognosis factor and is related to the clinical features of
HCC patients, covering AFP (α-fetoprotein) and stage. Second, we observed that the p53 mutation
was the most obvious mutation between the high-risk and low-risk groups. Third, we also discovered
that the risk score is related to some immune cells, covering B cells, T cells, dendritic, macrophages,
neutrophils, etc. Fourth, the high-risk group possesses a lower TIDE score, a higher expression of
immune checkpoints, and higher ESTIMATE score. Finally, nomograms include the clinical features
and risk signatures, displaying the clinical utility of the signature in the survival prediction of HCC
patients. Conclusions: Through the comprehensive analysis, we constructed an immune-related
prognosis model to predict the survival of HCC patients. In addition to predicting the survival time
of HCC patients, this model significantly correlates with the tumor microenvironment. Furthermore,
we concluded that these ten immune-related genes (BIRC5, CDK4, DCK, HSPA4, HSP90AA1, PSMD2,
IL1RN, PGF, SPP1, and STC2) serve as novel targets for antitumor immunity. Therefore, this study
plays a significant role in exploring the clinical application of immune-related genes.

Keywords: hepatocellular carcinoma; immune; clinical; mutation; prognosis

1. Introduction

Hepatocellular carcinoma (HCC) derives from the hepatocytes and accounts for 90%
of liver cancer in general. The global cancer statistics in 2020 show that the mortality of
HCC reached 8.3%, ranking the third one in all cancers [1]. The management of HCC
generated some changes in recent years. For instance, the major treatment of early HCC is
surgical resection, but the primary intrahepatic metastases increase the mortality of HCC
patients [2–4]. Therefore, it is necessary to explore novel prognostic biomarkers to predict
the prognosis of HCC patients.
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The immune cell infiltration of the tumor microenvironment affects HCC progression.
Generally speaking, aa suppressive tumor microenvironment (TME) restricts antitumor
immunity so that HCC patients cannot benefit from immunotherapy [5]. TME is complex
and continuously evolving including stromal, fibroblasts, endothelial, and immune cells [6].
At the same time, a previous study showed that tumor immune cell infiltration plays
an essential role in tumor development [7]. Additionally, Kole, C et al. emphasized that
the tumor microenvironment is vital in response to immunotherapy in HCC patients [8].
Therefore, our study was based on immune-related genes.

In our study, the TCGA and GSE14520 cohorts were utilized to construct the risk
model. The immune-related gene signature identified the specific features of immune
infiltration, tumor mutation burden, and clinical feature. Although our study was based on
the bioinformatic analysis, we claim that the ten immune-related genes (BIRC5, CDK4, DCK,
HSPA4, HSP90AA1, PSMD2, IL1RN, PGF, SPP1, and STC2) are novel targets for antitumor
immunity, which may enrich the field for treating HCC patients.

2. Materials and Methods
2.1. Data Collection

This study has four databases for collecting data: TCGA (The cancer genome atlas),
GEO (Gene Expression Omnibus), IMMPORT (The Immunology Database and Analysis
Portal), and TIDE (Tumor Immune Dysfunction and Exclusion). To be more specific, first,
the gene expression and clinical files were obtained from TCGA (https://portal.gdc.cancer.
gov/, accessed on 19 May 2022) and GEO (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 16 August 2021). The TPM (transcripts per million) format was employed in this study
in the TCGA database. Furthermore, the GSE14520 cohort was applied [9] to the GEO
database. Then, the IMMPORT database (https://www.immport.org/shared/, accessed on
7 September 2022) was applied to obtain 2483 immune genes. Finally, the TIDE score was
acquired from the TIDE database (http://tide.dfci.harvard.edu/, accessed on 23 May 2022).

2.2. Identification of Differential Immune-Related Genes

The “limma” R package was utilized to conduct the differential analysis with the
absolute log2-fold change (|log2FC|) >1 and p value < 0.05. The “heatmap” R package
was employed to paint the heatmap and volcano graph. R language was applied to acquire
the shared genes between the DEGs and 2483 immune-associated genes.

2.3. Construction of Immune-Related Genes Prognostics Model

The univariate Cox analysis applies the “survival” package to select the survival-
associated genes. Through the lasso regression analysis, the ten-gene prognostics model
was constructed. Risk value was calculated by the following equation: Risk score = (expres-
sion of HSPA4 × 0.0406229271055691) + (expression of HSP90AA1 × 0.179528757102136) +
(expression of PSMD2 × 0.00285728701338196) + (expression of DCK × 0.111291761917284) +
(expression of BIRC5 × 0.15170600457355) + (expression of IL1RN ×−0.00362204612652517) +
(expression of PGF × 0.0313919529049338) + (expression of SPP1 × 0.0599218257106274) +
(expression of STC2 × 0.182010671725519) + (expression of CDK4 × 0.013599196317501).
The lasso regression analysis uses the two R packages, covering the “survival” and
“glmnet” packages.

2.4. Identification and Analysis of Prognosis Model

Survival analysis was conducted by the “survival” and “survminer” packages. In-
dependent prognosis analysis was conducted via the “survival” package. The time–
ROC curves were painted by the following packages such as “survival”, “timeROC”,
and “survminer”.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/shared/
http://tide.dfci.harvard.edu/
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2.5. Clinical Correlation and Tumor Somatic Mutation Analyses of Prognosis Model

The “ComplexHeatmap” package was employed to construct the clinical association
heatmap. The “limma” and “ggpubr” packages were applied to paint the clinical box
plot. The Strawberry Perl software was applied to acquire the copy number variations
(CNVs) and mutation frequency files. The “maftools” package was utilized to draw the
waterfall graph.

2.6. Immune Correlation Analysis of Prognosis Model

Single-sample gene set enrichment analysis (ssGSEA) was conducted to identify the
differences in the enrichment of 28 immune cells and 13 immune functions, which were
acquired from these previous studies [10–12]. Additionally, we applied the following
calculation methods to evaluate the immune cell infiltration including the TIMER [13],
CIBERSORT, CIBERSORT-ABS [14], MCP-counter [15], quanTIseq [16], xCell [17], and
EPIC [18] algorithms. The “limma” and “ggpubr” R packages were used to display the
differential box plot of the TIDE score. The “reshape2”, “ggplot2”, “limma”, and “ggpubr”
R packages were utilized to conduct the immune checkpoint analysis and paint the box
plot. In addition, the immune scores were calculated, utilizing the “ESTIMATE” tool by R
language [19].

2.7. Drug Sensitivity Analysis

We calculated the IC50 values for medications that were collected from the GDSC
website (https://www.cancerrxgene.org/, accessed on 9 August 2022). It aims to anticipate
prospective compounds employed for HCC treatment. The therapeutic status of medicines
was observed by the “oncoPredict” R package in the high-risk and low-risk groups.

2.8. Construction and Evaluation of Nomograms

The univariate/multivariate Cox analyses were utilized to assess the prognostic sig-
nificance of the risk score and clinical features. The R language was employed to paint
nomograms and calibration curves in which nomograms were built to predict the 1-,
3-, and 5-year OS, and the calibration curves were pictured to evaluate the facticity of
the model.

2.9. Statistical Analysis

Statistical analyses were conducted by applying R language (vision 4.2.1), and p < 0.05
was deemed as statistically significant.

3. Results
3.1. Identification of Immune-Related Genes

To begin with, based on the TCGA cohort, we applied R language to conduct the
differential analysis and acquired 1557 DEGs. The heatmap (Figure 1A) and the volcano
map (Figure 1B) are shown in Figure 1. Furthermore, from the IMMPORT database,
2483 immune-related genes were obtained accordingly. Finally, we received 68 shared
genes between 1557 DEGs and 2483 immune-related genes.

3.2. Construction of Immune-Related Genes Prognostics Model

Based on the above 68 genes, we selected 16 survival-associated genes through the
univariate Cox analysis (Figure 2A). Then, 24 survival-associated genes were identified in
the TCGA cohorts. Furthermore, we constructed the ten-genes prognostics model through
the lasso regression analysis (Figure 2B, C). In addition, the risk value was calculated by the
following equation: Risk score = (expression of HSPA4 × 0.0406229271055691) + (expression
of HSP90AA1 × 0.179528757102136) + (expression of PSMD2 × 0.00285728701338196) +
(expression of DCK × 0.111291761917284) + (expression of BIRC5 × 0.15170600457355) + (ex-
pression of IL1RN × −0.00362204612652517) + (expression of PGF × 0.0313919529049338) +

https://www.cancerrxgene.org/
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(expression of SPP1 × 0.0599218257106274) + (expression of STC2 × 0.182010671725519) +
(expression of CDK4 × 0.013599196317501).
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Figure 1. The differential expression analysis in TCGA. (A) Heatmap. (B) Volcano plot. The green
dot represents the low-expression genes, the red represents the high-expression genes and the black
represents no differential genes in the volcano.

3.3. Identification and Analysis of Prognosis Model

According to the TCGA and GSE14520 cohorts, we painted the time–ROC curve. We
unfolded that the AUC values of 1-year, 3-year, and 5-year were 0.777, 0.686, and 0.694,
respectively, in the TCGA cohort (Figure 2D); the AUC values were 0.622, 0.661, and 0.686,
respectively, in the GSE14520 cohort (Figure 2E). Therefore, the results of our study indicate
that the prognosis model possesses a high accuracy, which can be practiced in clinical. Next,
we conducted the survival and independent prognosis analyses in the TCGA and GSE14520
cohorts. The results showed that the higher risk score had a worse OS for the HCC patients
(Figure 2F,G); the risk score is an independent prognosis factor (Figure 3A–D). Moreover,
we painted the heatmap of ten immune-related genes, survival time curve, and survival
status graph based on the on TCGA and GSE14520 cohorts (Figure 3E–H), whose results
revealed that the higher the risk score, the shorter the survival time.

3.4. Clinical Correlation and Tumor Somatic Mutation Analyses of Prognosis Model

First, we analyzed the correlation between the risk score and the clinical features in
the TCGA and GSE14520 cohorts. From the heatmap of clinical features (Figure 4A,B), we
observed that the risk score was closely related to the stage and level of AFP. From the
box plot of clinical features (Figure 4C,D), a statistically significant difference existed in
the grade, TNM stage, and level of AFP. The results suggest that the higher the risk score,
the higher the malignant level. In addition, we also explored the correlation between gene
expression and OS in the TCGA and GSE14520 cohorts. However, we only discovered that
the low expression of LI1RN was correlated with the worse OS; the high expression of nine
genes was associated with worse OS in the HCC patients including BIRC5, CDK4, DCK,
HSP90AA1, HSPA4, PGF, PSMD2, SPP1, and STC2 (Figure 4E,F).
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Figure 2. Lasso regression analysis, ROC curve, and Kaplan–Meier survival curves. (A) Univariate
Cox analysis. (B) Distribution of the LASSO coefficients. (C) The 10-fold cross-verification of variable
selection in the LASSO algorithm. (D) ROC curve in the TCGA cohort. (E) ROC curve in the GSE14520
cohort. (F) Survival curves in the TCGA cohort. (G) Survival curves in the GSE14520 cohort.
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Figure 3. Prognosis of the risk model in two groups. (A) Univariate prognosis analysis in the TCGA
cohort. (B) Multivariate prognosis analysis in the TCGA cohort. (C) Univariate prognosis analysis in
the GSE14520 cohort. (D) Multivariate prognosis analysis in the GSE14520 cohort. (E) Heatmap of the
ten genes’ expression in the TCGA cohort. (F) Heat maps of the ten genes’ expression in the GSE14520
cohort. (G) The overall survival risk scores, survival time, and survival status distribution in the
TCGA cohort. (H) The distribution of the overall survival risk scores, survival time, and survival
status in the GSE14520 cohort.
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Subsequently, we focused on the tumor somatic mutation in the prognosis model based
on the TCGA cohort. The “maftools” R package was applied to calculate the mutation
difference for the low-risk and high-risk groups. From the waterfall graph (Figure 5A,B),
we found that a mutation difference existed in the risk groups. The most apparent somatic
mutations in TP53, CTNNB1, and TTN existed in the low-risk and high-risk groups. How-
ever, we observed that the mutation rate of TP53 accounted for 33% in the high-risk group
and 19% in the low-risk group. Thus, we announced that the somatic mutation of TP53
was the most obvious out of all of the mutation genes. We also conducted the survival
analysis of high-TMB and low-TMB subgroups in the risk model (Figure 5C,D), revealing
that high-TMB or high-risk groups had poor OS.
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3.5. Immune Correlation Analysis of Risk Model

Firstly, we also analyzed the immune functions based on the ssGSEA analysis and
used R language to paint the heatmap of immune functions. The result displayed that
the difference of immune functions exists in the risk group (Figure 6A). Furthermore, we
observed the correlation between the risk score and immune cells based on the seven
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computational methods: TIMER, CIBERSORT, CIBERSORT-ABS, MCP-counter, quanTIseq,
xCell, and EPIC algorithms. The bubble graph (Figure 6B) clearly indicated the correlation
between the risk score and immune cells. Subsequently, we concluded the correlation
between the risk score and six immune cells based on TIMER (Tumor Immune Estimation
Resource). We thought that the risk score is positively related to B cell (Figure 6C), CD4 T
cell (Figure 6D), CD8 T cell (Figure 6E), dendritic (Figure 6F), macrophage (Figure 6G), and
neutrophil (Figure 6H).

Through our research in this study, we first performed the difference analysis of the
immune checkpoint, which revealed that the high-risk group possessed a high expression
of immune checkpoints (Figure 6I). Subsequently, TIDE predicts the patient’s response
through estimating the published transcriptomic biomarkers based on the tumor pre-
treatment expression profiles. We observed that patients in the high-risk group possessed
a lower TIDE score, which was more likely to benefit from immunotherapy (Figure 6J–M).
Finally, we discovered that the stromal score, immune score, and estimate score were
higher in the high-risk than in the low-risk group (Figure 6N–P). Results uncovered that
the content of immune and stromal was lower in the low-risk group, and the content of
tumor cells was higher in the high-risk group.

Therefore, we concluded that the high-risk group was deemed as the “hot” immune
phenotype, with a higher abundance of immune cells and better efficacy for immune
checkpoint therapy, but the low-risk group was the “clod” phenotype that featured lower
sensitivity to the immunotherapy of the HCC patients.

3.6. Drug Sensitivity of Risk Model

The chemotherapeutic response was evaluated in HCC patients utilizing the IC50
values of several chemotherapy drugs. Results revealed that patients in the low-risk
group possessed higher sensitivity to multiple drugs including 5-fluorouracil (Figure 7A),
VX-11e (Figure 7B), sapitinib (Figure 7C), selumetinib (Figure 7D), sorafenib (Figure 7E),
and gemcitabine (Figure 7F), etc. We summarized that 5-fluorouracil, sapitinib, and VX-
11e possessed lower IC50 values in the high-risk group. Still, gemcitabine, selumetinib,
and sorafenib possessed lower IC50 values in the low-risk group. 5-Fluorouracil, VX-
11e, and sapitinib were more effective in the high-risk group; selumetinib, sorafenib, and
gemcitabine were more effective in the low-risk group.

3.7. Construction and Evaluation of Nomograms

To quantify the individual risk assessment in the HCC patients and better predict the
OS of HCC patients, we built nomograms by using four parameters covering the risk score,
age, gender, and TNM stage (Figure 7G,H). Based on the scores of each index, the higher
total score had a shorter OS. Furthermore, the calibration curve displayed that nomograms
are an ideal model and may apply in clinical prediction (Figure 7I,J).
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Figure 6. Immune cell infiltration analysis. * p < 0.05; ** p < 0.01; *** p < 0.001. (A) ssGSEA scores of
immune cells and immune function in the risk group. (B) Immune cell bubble plot. (C–H) Correlation
between the risk score and six immune cells. (I) The expression of immune checkpoints. (J–M) Violin
graph of TIDE score, MSI, dysfunction, and exclusion scores between the low- and high-risk groups,
respectively. (N–P) Box graphs of ESTIMATEScore, ImmuneScore, and StromalScore between the
low- and high-risk groups, respectively.
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5-Fluorouracil (A), VX-11e (B), and sapitinib (C) were more effective in the high-risk group. Selume-
tinib (D), sorafenib (E), and gemcitabine (F) were more effective in the low-risk group. (G) Nomogram
in the TCGA cohort. (H) Nomogram in the GSE14520 cohort. (I) Calibration curves in the TCGA
cohort. (J) Calibration curves in the GSE14520 cohort.

4. Discussion

According to the global cancer statistics in 2020, the incidence of HCC ranked seventh,
and the mortality of HCC ranked third in all cancers [1]. Therefore, we constructed the
immune-related prognosis model to explore novel therapeutic targets and selected HCC
patients who gained an advantage from immunotherapy.

First, we obtained 1557 DEGs through differential expression analysis in the TCGA-
LIHC-TPM cohort. Based on the IMMPORT database, we acquired 2483 immune-related
genes. We summarized and analyzed 68 shared genes between 1557 DEGs and
2483 immune-related genes. Subsequently, we built a prognosis model of ten genes through
the lasso regression analysis. The ten genes were BIRC5, CDK4, DCK, HSP90AA1, HSPA4,
LI1RN, PGF, PSMD2, SPP1, and STC2. In the prognosis model, the TCGA cohort was
deemed as the training group, and GSE14520 was regarded as the testing group. The
previous research of the ten genes showed:

BIRC5 was also named surviving, which researchers have paid more attention to as
a cancer therapy target [20]. The other study found that BIRC5 influences the mitosis,
apoptosis, and autophagy of the cancer cells [21]. In penile cancer (PC), the silencing
BIRC5 inhibits the inflammatory tumor microenvironment (ITM) and the progression
of penile cancer [22]. CDK4 is a protein of G1/S phase transition in the cell cycle, and
CDK4/6 inhibitors have been applied to breast cancer therapy [23]. Meanwhile, R.V.
Uzhachenko et al. claimed that CDK4/6 inhibitors delayed the progress of breast cancer
and enhanced the recruitment of T cells in a tumor microenvironment [24]. At the same time,
the overexpression of CDK4 is a poor prognostic factor of nasopharyngeal carcinoma (NPC)
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and influences tumor progression by regulating the p21/CCND1/CDK6/E2F1 signaling
pathway [25]. HSPA4 is a target when B cells selectively drive lymph node metastasis in
breast cancer [26]. HSPA4 is not only involved in colorectal cancer (CRC) progression [27],
but also correlates with immune cells in HCC [28]. DCK is relevant to drug resistance in
cancer [29], but researchers have paid little attention to it. HSP90AA1 regulated the tumor
development by acting as an effective regulator of autophagy in osteosarcoma [30].

IL1RN is a competitive antagonist to interleukin-1 (IL1) and involves inflammation
regulation. The expression of IL1RN is negatively associated with bladder cancer cell
proliferation [31]. PGF belongs to the pro-angiogenic VEGF family, which is correlated with
pathological angiogenesis [32]. To be more specific, C.N. Chen et al. observed that PGF
expression had a relation to the development of gastric cancer [33]; other studies revealed
that PGF joins in the cancer microenvironment [34–36]. PSMD2 is a member of the PSMD
gene family [37], which promotes breast cancer cell proliferation through interacting with
p21 and p27 [38]. SPP1 connects with tumor-associated macrophage (TAMs) polarization in
lung cancer [39]. Furthermore, the silencing SPP1 inhibits cervical cancer cell proliferation
by downregulating the PI3K/Akt signaling pathway [40]. STC2 is a glycoprotein widely
expressed in multiple human tissues and tumor progression [41].

In conclusion, the above studies on the ten immune-related genes (BIRC5, CDK4,
DCK, HSPA4, HSP90AA1, PSMD2, IL1RN, PGF, SPP1, and STC2) displayed the correlation
between the immune-related genes and tumor progression. Therefore, our study sum-
marizes a robust prognostic ability in the ten immune-related genes prognosis model for
HCC patients.

According to the survival analysis, independent prognosis analysis, and clinical
feature analysis, we deemed that the low-risk scores had a better OS. The risk score is
an independent prognostic factor that is closely associated with the clinical features of
HCC patients.

TMB (tumor somatic mutation) is deemed as an effective predictor of tumor progres-
sion, which features microsatellite instability and represents the mutation frequency of the
tumor genome [42]. The higher TMB possessed the higher advantages of immunotherapy
in lung cancer treatment [43]. Furthermore, our study found that a difference existed in the
TMB of the risk group, and the high TMB and high-risk scores possessed a worse OS. The
huge mutation was TP53 in this study. The TP53 mutation may represent the response to
immunotherapy in lung cancer [44].

TME (tumor immune microenvironment) is involved in tumor progression and affects
tumor immunotherapy [45]. The studies revealed that different TME subtypes displayed
different advantages in tumor immunotherapy [46,47]. In this study, we carried out immune
cell infiltration analysis and then acquired the result that the risk score was relevant to
immune cell filtration. Explicitly speaking, we discovered that the risk score was positively
related to B cells, CD4 T cells, CD8 T cells, dendritic, macrophages, and neutrophils.
Furthermore, we observed that the high-risk group possessed a lower TIDE score than the
low-risk group and were more likely to benefit from immunotherapy. We also concluded
that the high-risk group had a higher expression of immune checkpoints and possessed
higher immune cell enrichment and higher immune activity. Thus, our study may help
recognize the unique mechanism of the HCC immune microenvironment, bring about a
huge breakthrough in HCC immunotherapy, and develop novel treatment strategies for
HCC [48]. Therefore, the high-risk group can be defined as the “hot” immune phenotype,
with a higher enrichment of immune cells and better efficacy for immune checkpoint
therapy. Nevertheless, the low-risk group is the immune “clod” phenotype, which features
lower sensitivity to the immunotherapy of HCC patients [49].

Enhancing the drug sensitivity of HCC treatment could benefit HCC patients [50].
Analyzing the relationship between the risk score and the drug sensitivity, we thought that
5-fluorouracil, sapitinib, and VX-11e possessed lower IC50 values compared to the high-risk
group. However, gemcitabine, selumetinib, and sorafenib possessed higher IC50 values in
the low-risk group. The lower the IC50 value, the more effective the treatment of drugs [51].
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A nomogram integrates the effects of predictors on the outcomes and allows clinicians to
predict patient survival by evaluating the whole effect [52]. In our study, nomograms were
utilized to quantify the individual risk assessment in HCC patients, which showed the
better clinical utility of the signature.

To sum up, our study constructed immune-related gene signatures to predict the
prognosis of HCC patients. Nevertheless, there were some limitations to this study. First,
all data originated from public datasets, so this study needs other large-scale prospective
studies to verify the exploration. In addition, our study was based on bioinformatics
analysis and lacked some basic experiments, so further research is urgently needed in
the future.

5. Conclusions

To conclude, first, through the lasso regression analysis, the prognosis model of
the ten immune-related genes was constructed to predict the survival of HCC patients.
Furthermore, we announced that the low-risk scores had a better OS through the survival
analysis, independent prognosis analysis, and clinical feature analysis. The risk score was
an independent prognostic factor, which was closely associated with the clinical features of
HCC patients. Finally, through the TMB analysis, immune cell infiltration analysis, and
drug sensitivity analysis, the risk score was closely associated with TP53 mutation, immune
cell infiltration, and drug sensitivity. Therefore, we summarize that the ten immune-related
genes serve as a novel target for antitumor immunity, which may provide novel insights
for the treatment of HCC patients.
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