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Intrinsic interactive reinforcement 
learning – Using error-related 
potentials for real world human-
robot interaction
Su Kyoung Kim1, Elsa Andrea Kirchner1,2, Arne Stefes2 & Frank Kirchner1,2

Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic 
environments based on feedback. Explicit human feedback during robot RL is advantageous, since an 
explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human 
to continuously and explicitly generate feedback. Therefore, the development of implicit approaches 
is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity 
in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) 
for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. 
ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient 
to learn to recognize gestures and the correct mapping between human gestures and robot actions in 
parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose 
gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection 
(90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback 
in RL can successfully be used to implicitly improve gesture-based robot control during human-robot 
interaction. We call our approach intrinsic interactive RL.

Reinforcement learning (RL) in real-world robotic applications is challenging for different reasons: a) the 
high-dimensional continuous state and action space, b) high-costs of generating real-world data (e.g., rollouts) 
and expensive real-world experiences which cannot be replaced by learning in simulation, and c) no straight-
forward way to specify appropriate reward functions including reward shaping to specify goals, etc1–3. These 
problems scale exponentially with the complexity of the task and the many pitfalls of the real world, which make 
it oftentimes impossible to decide whether or not an action was successful or failed.

Several approaches have been suggested to avoid specifying reward functions such as inverse RL4–6, which 
extracts reward functions from demonstrations of the human expert, e.g., obtained by kinesthetic teaching or 
teleoperation, or interactive RL7–9, in which the robot communicates with a human to improve robot’s behavior 
and learning speed. Recent approaches have focused on a more active contribution of the human to overcome the 
limitations of the initial approaches, especially of inverse RL (e.g., the so-called value alignment problem10). For 
example, in cooperative inverse RL11, the human teaches the robot about the human’s reward function and robot 
and human together try to maximize the reward. Another example is active reward learning12, in which the reward 
function is actively learned from the human as an expert while learning the policy.

In fact, the use of human feedback is advantageous in real-world robotic applications for different reasons. 
First, not all robotic applications allow us to define perfect reward functions because reliable ground truth meas-
ures of the robot’s actions are not available, e.g., gripping an object can be validated based on touch sensor data. 
However, the stability of the grip may not easily be derived from that data depending on the type of sensor used. 
Second, reward functions in real-world tasks are mostly hand-coded and require extensive task knowledge, which 
is not always available or faulty. Third, a reward function that was defined for a specific task A must be re-defined 
for task B even if A and B differ just slightly. However, human feedback can be obtained irrespective of task types 
or variation. Fourth, feedback in RL is based on a predefined reward function and usually discrete, and given for 
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one specific action. Human feedback can more easily cover and hence validate a sequence of actions or even a 
subjective impression of behavior. Subjective correctness of behavior often is not a matter of a discrete decision 
and hence a subject which is difficult to be expressed and externalized even for a human. Thus, psychologi-
cal measures, such as brain activity, are a good source of implicit feedback about complex internal evaluations 
made by a human observer that are hard to describe or to externalize. This is for example also known from the 
Uncanny Valley effect13 where the human may feel that a robot’s appearance or behavior is strange without being 
able to explicitly saying what is strange. However, this evaluation is clearly derivable from brain activity, e.g., by 
functional magnetic resonance imaging as shown for mismatches between the appearance of an agent and its 
motion14.

To make use of human feedback is of special interest in scenarios, in which the robot is directly interacting 
with a human15. Not only since the human is present anyway but also because during human-robot interaction 
the subjective sense of correctness might be more relevant than formal correctness. We could already show in sev-
eral different robotic applications that the human electroencephalogram (EEG) encodes internal states, which can 
be detected online in single trial, by embedded brain reading16–18 and can be used to improve robotic behavior, 
e.g., smoother interaction, in rehabilitation tasks19 and user workload adjustments20,21.

In this study, we use intrinsically generated human feedback in a variant of interactive RL to improve 
human-robot interaction. We want to emphasize that we used human feedback as the exclusive reward source 
in contrast to most applications of interactive RL, in which human feedback is used in addition besides more 
conventional rewards generated by a predefined reward function8. We use intrinsic human feedback, i.e., a brain 
pattern called error-related potential (ErrP) as an implicit measure of the human evaluation of correctness of the 
robot’s actions.

The ErrP is an established event-related potential (ERP) component, which has been investigated in different 
application areas (for review22). It is elicited depending on task situation and therefore different types of ErrP can 
be specified, e.g., interaction ErrP23,24, which is evoked by recognizing an error during interaction between human 
and machine, feedback ErrP25,26, which is elicited by recognizing an error that is made aware by feedback pre-
sented to the human, observation ErrP24,27,28, which is evoked, while observing an erroneous action of the robot 
(another person/external system, etc.), or response ErrP29,30, which is elicited by recognizing the own error of the 
person who is performing a task that requires rapid responses (e.g., choice reaction task). Recently, ErrPs elicited 
by execution or outcome errors have also been reported31.

It has been investigated whether it is feasible to use ErrPs in single trial to evaluate the correctness of system 
behavior24,28,32,33, or to improve gesture recognition34,35. ErrPs have also been used to build a model in reinforce-
ment learning tasks32,36. Further, ErrPs have been applied to robotic tasks to improve system performance using 
reinforcement learning32,37–39. For adaptive control of real robots, however, it is necessary to test the feasibility of 
the usage of ErrPs as online feedback not only while observing the robot’s actions28,33,37,39 but also during inter-
action with robots as suggested here in our study. In most previous studies (e.g.33), an explicit information about 
the correctness of the robot’s actions (ground truth) was displayed to the human to enable evaluation of the 
correctness of the robot’s actions while the human was observing the robot’s actions. This explicit information 
was necessary to detect ErrPs which were evoked while evaluating the correctness of the robot’s actions. Hence, 
the ground truth of the robot’s actions was predefined and this predefined ground truth was presented to the 
human while the robot was online correcting his/her actions based on ErrP detection33. In a recent experiment, 
however, it was enough that the subject knew the intended target position to elicit the ErrP, for the robot to learn 
an optimal strategy39. In other protocols outside the application field of human-robot interaction, subjects were 
even allowed to freely choose a movement target location that was not cued38,40. In our approach, the human 
performed freely-chosen gestures to communicate with the robot and the robot learns an action strategy online 
to perform correct actions according to human gestures. This kind of interaction between human and robot 
is beneficial, since the ground truth of the correctness of the robot’s actions can be implicitly generated in the 
human through an interaction with the robot via gestures. Thus, it is not necessary to display an explicit infor-
mation about the correctness of robot’s actions to the human, since the human implicitly knows the correctness 
of the robot’s actions because the human decided on a mapping between gesture and robot behavior beforehand. 
This matches natural interaction conditions in which the mapping between command and response is not always 
predetermined or may change over time or differ between users. We developed experimental scenarios to test this 
kind of human-robot interaction/collaboration, in which ErrPs were used as the outcome of an evaluation that is 
delivered to the learning robot as feedback. Based on this feedback in RL, the robot implicitly learns the meaning 
of human gestures by online learning of the assignment between human gestures and the corresponding actions 
of the robot.

In summary, this paper proposes to use EEG as the only source of online feedback (reward) in RL tasks during 
human-robot interaction/collaboration. We use intrinsically evoked brain activities that do neither distract nor 
cause additional effort (externalization) on the human part. In our application, the robot learns the assignment of 
human gestures to corresponding actions and at the same time the recognition of human gestures using RL with 
ErrPs as rewards. A main contribution of this paper therefore lies in the efficient use of the human as a valuable 
critic in reinforcement learning robots. We make use of the unique intrinsic cognitive abilities of the human 
brain to evaluate observed complex behavior, while the human is actively communicating with the robot. This 
allows the robot to learn human gestures implicitly by means of ErrP-based RL. The approach was validated in a 
simulated as well as a real robot scenario and the applicability of intrinsically evoked human feedback (ErrP) in 
human-robot interaction/collaboration tasks could be demonstrated successfully. We consider our approach as a 
promising application of embedded brain reading in robotics.
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Methods
Approaches.  Figure 1 shows the schematic overview of the concept of the proposed approach (see also 
Supplementary Movie S1). We developed a human-robot interface, which enables the control of a robot by using 
human gestures. In our approach, the robot has no prior knowledge about the gestures before the robot receives 
feedback by interacting with the human. The robot learns the meaning of the gestures in a more indirect way by 
learning the assignment of human gestures to the corresponding actions. Here, we do not use a two-step proce-
dure. The robot learns to recognize the human gestures based on gesture features extracted from a Leap Motion 
Controller41. In parallel, the robot learns the mapping between human gestures and robot actions by acting and 
receiving human feedback. On this account, theoretically, the human can change the meaning of the gestures, 
while the robot is learning the mapping between human gestures and robot actions. That means, relearning of 
gestures is possible.

Figure 1.  Concept of the proposed approach. The robot tries to find an optimal action strategy through 
interaction with the human. The robot explores the possible action strategies and receives feedback (rewards) 
from the human. The goal of the robot is to maximize the total reward in the long run. In this way, the robot 
can learn and adapt its action strategy, while the human freely chooses the gestures and delivers feedback to the 
robot. In the end, the robot implicitly learns the meaning of human gestures.
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For the learning of the mapping between human gestures and robot actions, we used a contextual bandit 
approach42, which enables to choose the robot’s actions based on context provided by human gestures. In our 
application, the user executes different gestures to control the robot and the robot chooses the actions depending 
on the gesture type. When the chosen action from the algorithm corresponds to the performed gesture of the 
user, the algorithm receives a positive feedback from the user. Otherwise, the user delivers a negative feedback to 
the algorithm. In this way, the algorithm learns a good policy for choosing actions based on a given context. That 
means, the action-selection strategy is updated with every action based on the feedback received from the user. 
To maximize the correct selection of actions in the long-term, the algorithm exploits the previous experiences 
and explores to gather new knowledge. Here, we tried to assure a robust learning through the stronger weighting 
of positive feedback compared to negative feedback.

As feedback (rewards), we used surface EEG signals measured from the user. When the user is recognizing a 
wrong mapping between the user’s gestures and the corresponding actions of the robot, an ErrP is evoked in the 
user, which is detected in real time and transferred to the learning algorithm as a negative feedback. In contrast, 
the algorithm receives a positive feedback, i.e., NoErrP, when the mapping is correct. Note that we defined that the 
positive feedback results in a higher absolute reward value (rt = 1) than the negative feedback results (rt = 0). This 
non-externalized kind of human feedback is a very effective way to communicate with the learner, since by the 
evaluation on the robot’s behavior brain activity (ErrP) is intrinsically evoked and detected for implicit feedback.

Scenario Description.  Figure 2 shows the schematic overview of the scenarios. We developed a simulated 
and real robot scenario to validate our approach. Both simulated and real robot scenario contain a training and 
test phase. In the training phase, the subjects did not interact with the robot. Instead, the subjects observed the 
robot’s actions without performing gestures (observation task). In contrast, in the test phase, the subjects inter-
acted with the robot by using gestures (interaction task). Since the time to record the data took longer compared 
to the observation task, we used a classifier trained in the observation task to online detect ErrPs in the interac-
tion task (classifier transfer approach). In previous studies, we could already show that calibration time can be 
reduced by applying such classifier transfer24,43. Both, the simulated and the real robot scenario followed the same 
concept for the training phase, i.e., the human performed no gestures. However, the test phase differed between 
simulated and real robot scenario. In the simulated robot scenario, subjects performed the gestures according to 
instructions. Hence, we could log all relevant data, i.e., action instruction, action made by the robot, errors commit-
ted by the robot, and decision from a ErrP classifier. In contrast, in the real robot scenario, the subjects could freely 
choose a gesture (no action instruction). Hence, we recorded a video of both gestures performed by the user and 
actions executed by the robot to evaluate ErrP detection performance and the robot’s performance.

Simulated Robot Scenario.  In the observation task (training phase), subjects were instructed to only observe 
commands given by gestures and the robot’s actions. The experimental procedure is depicted in Fig. 3a. A total of 

Figure 2.  Scenario concept and task procedures. Each scenario contains a training phase to train a classifier and 
a test phase to evaluate this trained classifier. The reason for such classifier transfer is to reduce the calibration 
time. In the training phase, the subject observes the robot’s actions without interacting with the robot, i.e., 
without performing gestures (observation task). In this way, the time of data collection was substantially reduced 
in the training phase compared to the test phase that required an interaction with the robot (interaction task) by 
using gestures. In other words, we used the classifier trained on observation ErrPs to online detect interaction 
ErrPs in the test phase.
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three pictures and one video were presented to the subject in each trial (Figs 3a–1, 2, 5, 6). In the first picture, the 
initial position of the robot was presented to the subjects for 1 s. In the second picture, the instruction for robot 
control was presented to the subjects (e.g., please move the robot to the right). However, the subjects were not 
required to perform the corresponding gesture. Instead, gestures and the robot’s actions were preprogrammed. 
There was one video for each movement trajectory (action), i.e., forward, right and left movement of the robot, 
that were kept identical for each action type, since in the real robot scenario trajectories that the robot performed 
were also identical (pre-programmed) for each action type starting at the same position. Erroneous actions were 
simulated with a probability of 11%. After the instruction, a fixation cross was presented for 1 s. In the end, the 
executed action of the simulated robot was displayed to the subjects for 1 s as a video. Here, the robot was sim-
ulated by using the simulation tool MARS44. Note that the actions of the robot were not simulated online, but 
recorded beforehand. An observation ErrP was expected to be evoked in the EEG of the subjects, when the sub-
jects observed and recognized an erroneous action of the robot.

In the interaction task (test phase), subjects were instructed to control the simulated robot using a gesture 
recording system called Leap Motion41. We used three kinds of hand gestures to move the robot to the left, right 
or forward (Supplementary Fig. S1). The subjects moved their right hand to the left to move the robot to the left, 
they moved their left hand to the right to move the robot to the right, and they made a fist to move the robot 
forward (it was allowed to use either the right or the left fists here). The experimental procedure is depicted in 
Fig. 3a. A total of five pictures and one video were presented to the subject in each trial. With the first picture, 
the initial position of the robot was presented to the subjects for 1 s. By the second picture, the instruction for 
robot control was presented to the subjects (e.g., please move the robot to the right). Then, the subjects were 
required to perform the gesture, which corresponded to the previous instruction for robot control. The subjects 
had 10 s to perform the gesture. The picture did not disappear until the subjects performed the gesture. Here, it 
was allowed to skip a gesture, when the subjects were not entirely sure which gesture had to be performed, for 

Figure 3.  Simulated and real robot scenario. (a) Simulated robot scenario: In the observation task (training 
phase), four pictures were presented to the subjects: (1) the initial position of the robot, (2) the instruction for 
the robot, (5) the fixation cross, and (6) the action of the simulated robot. When the subjects recognized wrong 
actions of the robot, observation ErrPs were evoked. In the interaction task (test phase), two pictures were 
additionally presented to the subjects: (3) the message that requests gesture execution and (4) the conformation 
message that indicates that the gesture was successfully recorded. When the subjects recognized erroneous 
actions of the robot, interaction ErrPs were evoked. (b) Real robot scenario (training phase): The subjects 
observed the actions of the real robot. The instruction for the robot’s actions was presented on a monitor (b1) 
and disappeared after 1 s (b2). The real robot executed the actions that were preprogrammed. Observation ErrPs 
were evoked when the subjects recognized wrong actions of the real robot. (c) Real robot scenario (test phase): 
The subjects interacted with the robot by using gestures. When the subjects recognized wrong actions of the 
real robot, interaction ErrPs were evoked. In contrast to the simulated robot scenario, the subjects could freely 
choose the gestures to control the real robot.
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example, the subjects missed the instruction for robot control. The next instruction was presented when the 
subjects performed no gestures for 10 s. In this case, the entire event was not included for evaluation. In this way, 
wrong gestures of the subjects were avoided. After performing a gesture, the subjects received the confirmation 
message that the gesture was successfully recorded. Note that the gesture performed by the subject (Figs 3a–4) 
was not yet recognized in our RL algorithm. Instead, the gesture was recorded and gesture features were extracted 
using Leap Motion41 at that moment. However we displayed “gesture recognized” to the subject, since this is more 
comprehensible. This message was displayed for 1 s. Afterwards, a fixation cross was presented for 1 s. In the end, 
the executed action of the simulated robot was displayed to the subjects for 1 s as a video, which was embedded 
in a custom presenter. As in the observation task, the robot was simulated by using the simulation tool MARS44. 
While the subjects controlled the robot, we measured EEG signals from the subjects. In cases in which a gesture of 
a subject did not assign to the intended robot action and the subject detected such mismatch (i.e., the erroneous 
interaction between the subject and the robot), we expected an interaction ErrP. Here, the online detection of the 
interaction ErrP (at the single-trial level) enabled us to automatically generate feedback for RL.

Real Robot Scenario.  As in the simulated robot scenario, we used a training and test phase. The concept of the 
training phase (observation task) is the same as of the simulated robot scenario. The experimental procedure 
is depicted in Fig. 3b (see also Supplementary Movie S2). The instruction for robot control was displayed on 
the monitor for 1 s (Figs 3–b1). Afterwards, the instruction disappeared (Figs 3–b2) and the real robot began 
to execute the action. Subjects were instructed to observe the executed actions of the real robot. Executions of 
the robot’s action were differently long depending on the type of robot’s actions (left, right, forward) and took 
between 1.5 s and 2 s. As in the simulated robot scenario, robot’s actions were preprogrammed, in which errone-
ous actions were simulated with the probability of 11%. Thus, subjects did not need to perform gestures to control 
the robot. In the interaction task (test phase), subjects were instructed to freely choose gestures to control the real 
robot (Fig. 3c and Supplementary Movie S2). However, this free selection of gestures allows no ground truth to 
evaluate the performance of the robot. Hence, we recorded both gestures performed by the subjects and actions 
executed by the robot by video to obtain the ground truth for the robot’s performance. Again, we recorded EEG 
signals from all subjects. We detected online interaction ErrPs, when the subjects recognized the errors made by 
the robot.

For both training and test phase, two labels were generated for the classification: a) correct mapping between 
human gestures and robot’s actions (Corr), which leads to no occurrence of ErrPs (NoErrP) and b) wrong map-
ping between human gestures and robot’s actions (Err), which leads to occurrence of ErrPs (ErrP). The ratio of 
correct and wrong mapping was 1:8 for the training phase. However, in the test phase (both simulated and real 

Figure 4.  Data Augmentation approach. (a) Approach to find the interest of window for feature selection 
during continuous actions of the robot and (b) approach to handle few real-world data in robotic RL.
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robot scenario), the ratio of correct and wrong mapping was different depending on the performance of the 
robot’s behaviors (Fig. 2).

Systems: gesture recording system, simulated and real robot.  For gesture recording, we used a Leap 
Motion Controller (LMC)41. The LMC is a sensor, which connects with the computer via USB. The detection range 
is approximately 50 cm. The LMC has two monochromatic infrared cameras and three infrared LEDs. Each of both 
cameras records an image and using both cameras a stereo image is created. The LMC software determines the 
position of hand and finger bones in x, y, and z coordinates relative to the sensor. In the end, the LMC API provides 
the position and orientation of hand and fingers. The LMC API also allows to obtain a high-level information such 
as palm normal vector, direction, the posture of the hand (grab strength, pinch strength). For our application, we 
used the palm normal vector and grip strength as feature vectors, i.e., the x, y, z components of the palm normal 
vector and a value from zero to one, which describes how far the hand is opened or closed (from flat hand[0] to fist1). 
We recorded 10 samples (100 ms per sample) and generated a feature vector per sample. All feature vectors from 10 
samples were averaged and this was used for the RL algorithm. Note that the RL algorithms received gesture features 
(raw values), but not the output of a separate gesture classification (i.e., recognized gestures) from the LMC API. For 
our application, we used three types of gestures: left, right, and forward gesture (Supplementary Fig. S1).

Figure 5.  Simulated robot learning. (a) Accumulated errors of the robot for each subjects, (b) accumulated 
regret for each subjects, (c) accumulated errors of the robot in the first half of the experiment (1 to 45 actions) 
for each subject, (d) accumulated errors of the robot in the second half of the experiment (46 to 90 actions) 
for each subject, (e) total number of the robot’s errors in the first or the second half of the experiment for each 
subject, and (f) comparison between the first and last half of the experiment (1 to 45 actions vs. 46 to 90 actions) 
by performing Wilcoxon sign-rank test (two-sided, alpha = 0.05). The raw values (sample size of 7, i.e., 7 data 
pairs) used for this statistical analysis were depicted in (e).
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For the real robot scenario, we used a six degree of freedom (6-DOF) robotic arm called COMPI45 (Fig. 3b), 
which was developed at our institute (http://robotik.dfki-bremen.de/en/research/robot-systems.html). In this 
application, the robot arm was controlled by sending joint values over network to the robot control computer. 
Four predefined actions (left, right, forward, back to start) were implemented as a sequence of joint positions and 
three predefined actions (left, right, forward) were triggered from the learning system. For the simulated robot 
scenario, we simulated the robotic arm COMPI (Fig. 3a) by using the simulation tool MARS44 developed at our 
institute (http://robotik.dfki-bremen.de/en/research/softwaretools.html). The same approach as for the real robot 
control was used to control the simulated robot, but instead of network transfer, the joint values were sent. In the 
simulated robot scenario, we displayed the sequence of actions of the simulated robot to the subjects as a video, 
which was embedded in a custom presenter. That means, the actions of the robot were not simulated during the 
whole time of the task.

Reinforcement learning (RL).  In our application, we used three kinds of gestures. That means, different 
types of actions should be chosen depending on gesture type. To this end, we used a contextual bandit approach42 
as a variant of reinforcement learning, in which only one action is selected per episode. Here, a learning algorithm 
sequentially selects actions of the robot based on contextual information of the user’s gestures and robot’s action 
(i.e., assignment of the user’s gestures to the robot’s actions). The learner adapts the action-selection strategy 
based on feedback (ErrPs) received from the user. In the multi-armed bandit approach, context information is 
formulated as described in Li et al.42. The algorithm proceeds in discrete trials t = 1, 2, 3, …, T. For each trial, the 
algorithm observes the current user and a set t  of arms together with the feature vector xt per action. The vector 
xt contains the context. Based on observed payoffs in previous trials, the algorithm chooses an arm at and receives 
payoff rt. The algorithm improves the arm-selection strategy with the new observation (xt, rt, at). The total payoff 
of algorithm is defined as ∑ = rn

T
x a1 ,t t

 and the optimal expected total payoff is defined as E [∑ = ⁎rn
T

x a1 ,t t
]. To obtain 

the optimal expected total payoff, the expected total payoff should be maximized. In other words, the difference 
between the expected and the received total payoff = ∑ ∑= =

⁎R T r a r a( ( ) E[ ( )]E[ ( )])A
def

n
T

x t n
T

x t1 1t t
 should be mini-

mized. To minimize the regret, the algorithm exploits the previous experience to choose the best action. However, 
the algorithm has only a limited knowledge from the previous experience and thus the action-selection strategy 
is not perfect. For this reason, the algorithm explores to gather further knowledge to build the best action-selection 
strategy46. However, this is not limited to maximize the current reward. That means, in principle, the exploration 
can increase short-term regret, but can reduce long-term regret. Hence, we need a good trade off between 
exploitation and exploration. As algorithm, we chose the LinUCB algorithm42 that assumes that the expected 

Figure 6.  Real robot learning. (a) Accumulated errors of the robot for each subject, (b) accumulated regret for 
each subject, (c) total number of the robot’s errors over all subjects in the different phases of the experiment, (d) 
accumulated regret for Subject 1 and Subject 2.

http://robotik.dfki-bremen.de/en/research/robot-systems.html
http://robotik.dfki-bremen.de/en/research/softwaretools.html
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payoff of an action a is linear in its feature xt (context) with unknown coefficient vector θ⁎
a . To obtain the optimal 

trade off between exploitation and exploration, the LinUCB algorithm42 uses an upper confidence bound (UCB) 
algorithm46–48. For each trial (t), the algorithm estimates the mean payoff of each action û( )t a,  and its confidence 
interval (ct,a) and selects the action, which has the highest UCB [at = arg maxa +û c( )t a t a, , , see line 11 in algo-
rithm 1]. As mentioned earlier, we used different types of gestures and each gesture can be assigned to a particular 
action of the robot. Thus, the gesture features provide context. However, the robot’s action provides no context. 
Hence, we modified the original LinUCB algorithm. The exploration parameter (α) was empirically set to 2. 
Details are included in the Supplementary Materials.

EEG pattern as reward in RL.  We used EEG pattern as feedback, i.e., we used positive and negative feed-
back provided by the classifier: 1 for correct mapping between human gestures and robot actions (Corr) and 0 for 
wrong mapping between human gestures and robot actions (Err): rt = 1 or 0 in algorithm 1. As mentioned earlier, 
the collection of real-world data is high-costly and time-consuming in general and especially erroneous events do 
not often occur compared to non-erroneous events in real-world applications. Thus, it takes a long time to collect 
data containing ErrPs to train a classifier. To overcome this issue, we performed two approaches.

First, we augmented EEG data to receive two epochs (time windows which were used to extract features for the 
classifier) for the same event by a time shift during data segmentation (Fig. 4a). Hence, we received two decisions 
from the classifier for the same event (Fig. 4b). Only when we obtained the correct mapping from both time win-
dows for the same event, a positive feedback, i.e., a feedback of rt = 1 was sent to the learning algorithm. Otherwise, 
we send a feedback of rt = 0 (Fig. 4b). That means, the positive feedback is more reliably obtained due to our data 
augmentation approach. Second, we emphasized non-erroneous events (correct mapping) that more often occurs in 
real-world experiences compared to wrong events (wrong mapping). Thus, the learning algorithm received 1 for a 
correct mapping and 0 for a wrong mapping. That means, positive feedback (rt = 1) was updated (see, line 13 in 
algorithm 1) and had an effect on next action selection (see, line 8 and 9 in algorithm 1). In contrast, negative feed-
back (rt = 0) was not updated (see, line 13 in algorithm 1). Nevertheless, negative feedback had also an impact on 
next action selection, since the features (context) was updated (see, line 12 in algorithm 1) and newly fitted (i.e., a 
new value of the estimated coefficient θ̂), which also affects next action selection (see, line 8 and 9 in algorithm 1).

In our application, positive feedback (rt = 1) can be given in two cases (Fig. 4b): a) true negative (TN) classification 
(ErrP was not detected when the robot made no mistake) or b) false negative (FN) classification (ErrP was not detected 
although the robot made a mistake). Note that the positive class stands for a wrong mapping (Err label, ErrP). In con-
trast, negative feedback (rt = 0) can be given in two cases (Fig. 4b): a) true positive (TP) classification (ErrP was detected 
when the robot made a mistake) or b) false positive (FP) classification (ErrP was detected although the robot made no 
mistake). To summarize, we tried to assure a robust learning by obtaining a higher reliability of positive events to over-
come the under-supply of the real-world data in general and the rare occurrence of erroneous events.

For each subject, we pre-trained the algorithm by presenting the algorithm a gesture feature set (recorded 
from an additional subject) three times per gesture type as well as a simulated perfect ErrP based feedback to 
avoid the constant occurrence of wrong mapping in the early stage of learning (details in Supplementary text). In 
fact, in real-world applications usually learning does not always start at zero. Typically some knowledge is already 
available, e.g., some gestures are known but other might wanted to be added. However, sometimes training does 
start at zero also in real-world applications. Therefore, we additionally tested our approach in one subject (Subject 
2) without pre-training. Online learning was found to be stable without pre-training. We obtained a balanced 
accuracy of 85% in the online ErrP detection (details in Supplementary text and Supplementary Fig. S2). Further, 
a similar pattern of regret was obtained with all subjects in the pre-training phase (Supplementary Fig. S3).

Algorithm 1.  Modified LinUCB algorithm.
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Online ErrP detection.  Subjects.  Seven subjects (3 females, 4 males, age: 24.85 ± 7.4, right-handed, nor-
mal or corrected-to normal vision) participated in the simulated robot scenario study. In addition, nine subjects 
participated in the study using the real robot scenario. Two subjects from nine subjects were excluded: During the 
acquisition we had technical problems with the LMC loosing the signal caused by a loose USB cable connection 
for one of these two subjects. The cable was exchanged afterwards. One subjects moved too much during acquisi-
tion (in the break between the sets) such that the EEG cap moved backwards resulting in high impedances and big 
shifts in electrode positions. In the end, seven subjects (3 females, 4 males, age: 30.28 ± 8.3, right-handed, normal 
or corrected-to normal vision) were selected for the real robot scenario study. Two subjects (Subject 1 and Subject 
2) participated in both simulated and real robot scenario.

All experiments were carried out in accordance with the approved guidelines. Experimental protocols were 
approved by the ethics committee of the University of Bremen. Written informed consent was obtained from all 
participants that volunteered to perform the experiments. Written informed consent for publication of identify-
ing information/images was also obtained from all participants.

Data Acquisition.  EEGs were continuously recorded using the actiCap system (Brain Products GmbH, Munich, 
Germany), in which 64 active electrodes were arranged in accordance to an extended 10–20 system with reference 
at FCz. Impedance was kept below 5 k Ω. EEG signals were sampled at 5 kHz, amplified by two 32 channel Brain 
Amp DC amplifiers (Brain Products GmbH, Munich, Germany), and filtered with a low cut-off of 0.1 Hz and high 
cut-off of 1 kHz.

Dataset.  An overview of the dataset is illustrated in Fig. 2. For both scenarios, i.e., the simulated and real robot 
scenario, a total of five datasets was collected for each subject. Four datasets (training data) from the observation task 
were used to train a classifier and one dataset (test data) from the interaction task was used to evaluate the trained 
classifier. Hence, a classifier transfer (observation task → interaction task) was applied for both the simulated and 
the real robot scenario. For the training phase, each dataset contained 10 erroneous and 80 correct trials. For the test 
phase, online test data contained a different number of errors depending on the robot’s online performance (Fig. 2). 
This was caused by the difference in performance of the online applied learning algorithm, since its payoff is affected 
by the quality of feedback (i.e., the performance of online ErrP detection). For the simulated robot scenario, the task 
time per set took 6 minutes for collection time of training data and 12 minutes for the online test data. We needed 
more time for the online test data, since the subjects performed gestures in the online test. However, for the training 
data, the subjects did not perform gestures. Instead, they only observed the actions of the robot. For the real robot 
scenario, the duration of the real robot’s action took longer compared to the actions of the simulated robot. Thus, 
each set took 12 minutes for both the training and the online test data (Fig. 2).

Simulated robot scenario.

Training: observation task, Test: interaction task

Subject TPR TNR bACC

Subject 1 (female) 1.00 0.98 0.99

Subject 2 (male) 0.86 0.96 0.91

Subject 3 (female) 0.92 0.83 0.88

Subject 4 (male) 0.89 0.79 0.84

Subject 5 (male) 1.00 0.73 0.86

Subject 6 (male) 1.00 0.98 0.99

Subject 7 (female) 1.00 0.77 0.89

Mean ± SEM 0.95 ± 0.02 0.86 ± 0.04 0.91 ± 0.02

% CI 0.95 ± 0.06 0.86 ± 0.10 0.91 ± 0.06

Real robot scenario

Subject TPR TNR bACC

Subject 1 (female) 1.00 0.96 0.98

Subject 2 (male) 0.50 0.96 0.73

Subject 3 (female) 1.00 0.89 0.95

Subject 4 (male) 0.57 0.89 0.73

Subject 5 (male) 1.00 0.89 0.95

Subject 6 (female) 1.00 0.96 0.98

Subject 7 (male) 1.00 0.95 0.98

Average ± SEM 0.87 ± 0.09 0.93 ± 0.01 0.90 ± 0.04

% CI 0.87 ± 0.21 0.93 ± 0.03 0.90 ± 0.11

Table 1.  Online ErrP detection during a simulated and robot control (TPR: true positive rate, TNR: true 
negative rate, bACC: balanced accuracy [(TPR + TNR)/2]). Mean, standard error of mean (SEM), and 95% 
confidence interval (CI = mean ± margin of errors are reported. Note that the positive class stands for a wrong 
mapping (Err label, ErrP).
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Preprocessing.  The EEG data was analyzed using a Python-based framework for preprocessing and classification49. 
The continuous EEG signal was segmented into epochs from −0.1 s to 1 s for each event type (correct/erroneous 
trial). Here, a challenge of online ErrP detection in our robot control scenario was to detect ErrPs without knowing 
when erroneous actions of the robot were recognized by the subjects. Another challenge is the variation of error rec-
ognition depending on the type of robot action (left, right, forward). That means, the onset of correct and erroneous 
events is unknown. Thus, we could not segment the EEG signals after each event type. Instead, we segmented the 
EEG signals after the start of the robot’s action. In other words, we began to detect ErrP after the onset of the robot’s 
action. The segmented correct trials did not overlap with the following erroneous trials, since a fixation point (cross) 
was presented for 1 s after each event type (Fig. 4a). That means, there was at least 1 s between the robot’s actions (i.e., 
between correct and erroneous events). Thus, only the correct trials without any error-related activity were labeled 
as correct. In the same way, only the erroneous trials without any correct-related activity were labeled as erroneous. 
All epochs were normalized to zero mean for each channel, decimated to 50 Hz, and band pass filtered (0.5 to 10 Hz). 
This procedure was also used in other studies28. The xDAWN spatial filter50 was used to enhance the signal-to-noise 
ratio. By applying the xDAWN the number of 64 physical channels was reduced to 8 pseudo channels.

Feature selection, feature extraction, and classification.  Since we did not know the exact time point of the occurrence 
of the erroneous events (i.e., subjectively determined onset of the erroneous actions of the robot), we performed a 
pre-analysis to find an optimal window to detect ErrPs (details, Supplementary text and Supplementary Fig. S4). Based 
on this pre-analysis, we chose two time windows for feature extraction: [−0.1 s–0.6 s, 0 s–0.7 s]] for both simulated and 
real robot scenario. Features were extracted from eight pseudo channels after spatial filtering. We extracted a total of 
280 features (8 pseudo channels ×35 data points =280 for each time window). Features were normalized over all trials 
and used to train a classifier. A linear support vector machine (SVM)51 was used to classify correct and erroneous trials. 
We optimized the cost parameter of the SVM (i.e., regularization constant52) and the class weight of underrepresented 
instances with a stratified five-fold cross validation using a grid search. We used the predetermined values [100, 10−1, 
…, 10−6] for the cost parameter of the SVM and1,2,4,6,8 for the class weight of underrepresented instances. Note that we 
had an unbalanced ratio between erroneous and correct trials of 1:8. Hence, different penalty constants were used for 
two different classes53. As a metric for classification performance we used the arithmetic mean of true positive rate and 
true negative rate, balanced accuracy (bACC), where the erroneous trials belonged to the positive class.

Results
Online ErrP detection.  In both simulated and real robot scenarios, ErrPs were elicited by errone-
ous behavior of the robot showing a characteristic waveform with fronto-central positive and negative peaks 
(Supplementary Fig. S5 and Supplementary text). Table 1 shows the online classification performance. Based on 
the number of trials the chance level should be around 58% and 60%54 for the simulated and real robot scenario 
respectively. For the simulated robot control, we achieved a high classification performance, (91% balanced accu-
racy (bACC) over all subjects). Further, we observed that there are variabilities between subjects (84–99% bACC). 
For the real robot scenario, we obtained a high classification performance as well (90% bACC over all subjects). 

Simulated robot scenario.l

Subject Accumulated number of wrong actions Total actions Accuracy (%)

Subject 1 (female) 6 90 93.33

Subject 2 (male) 7 90 92.22

Subject 3 (female) 13 90 85.55

Subject 4 (male) 19 90 78.88

Subject 5 (male) 6 90 93.33

Subject 6 (male) 5 90 94.44

Subject 7 (female) 11 90 87.77

Mean ± SEM 9.57 ± 0.32 90 89.36 ± 3.40

% CI 9.57 ± 4.71 90 89.36 ± 5.23

Real robot scenario

Subject 1 (female) 5 60 91.7

Subject 2 (male) 6 60 90.0

Subject 3 (female) 4 60 93.3

Subject 4 (male) 7 60 88.3

Subject 5 (male) 4 60 93.3

Subject 6 (female) 4 60 93.3

Subject 7 (male) 4 60 93.3

Mean ± SEM 4.86 ± 1.21 60 91.90 ± 2.02

% CI 4.86 ± 1.27 60 91.90 ± 2.12

Table 2.  Performance of the simulated and real robot (accumulated number of wrong actions, total number of 
actions, and accuracy). Mean, standard error of mean (SEM), and 95% confidence interval (CI = mean ± margin 
of errors) are reported.
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Again, we observed variabilities between subjects (73–98% bACC). These very high performances in ErrP classifi-
cation were achieved by our data augmentation approach. ErrP classification performance was improved for some 
subjects compared to a single window approach (Supplementary text and Supplementary Table S3).

Performance of robot control.  Table 2 shows the accuracy of robot actions for the simulated and the real 
robot scenario during total learning time. In both, we achieved a high performance.

Figure 5a shows the accumulated errors of the simulated robot. In general, we observed a reduction of errors 
in the last third of the experiment. This pattern was shown for all subjects. The error curve was already stable in 
the middle of the experiment for all subjects except for one (Subject 4). For most subjects (Subject 1, Subject 2, 
Subject 5, and Subject 7), errors occurred more often at the beginning of the experiment compared to the end of 
an experiment. For Subject 3, we observed that the error curve stabilized very slowly. This subject also showed a 
higher total number of errors and more errors occurring in the beginning of the experiment compared to Subject 
1, Subject 2, Subject 5, and Subject 7. However, we observed a stabilization of the error curve in the middle of 
the experiment. The highest total number of errors was obtained with Subject 4. For this subject, a very slow sta-
bilization of the error rate was observed (the errors often occurred not only in the beginning but also still in the 
middle of the experiment).

Figure 5c and d show accumulated errors of the first and second half of the experiment. It can be seen that the 
amount of accumulated errors in the second half of the experiment was obviously smaller compared to the first 
half of the experiment. Figure 5e shows that the total number of errors for each subject was substantially higher 
for the first half of the experiment compared to the second half of the experiment. We observed that this tendency 
was not obviously shown for Subject 4. However, statistical evaluation (Fig. 5f) shows that the amount of accumu-
lated errors was significantly reduced [Wilcoxon sign-rank test: first half of the experiment vs. second half of the 
experiment: p < 0.016, two-sided, alpha = 0.05]. Hence, error rate decreased over time by learning.

Not surprisingly, we observed a fast stabilization of error rate for subjects with high performance in online 
ErrP detection (Subject 1, Subject 2, Subject 5, Subject 6). In contrast, a slow stabilization of error rate was 
observed for subjects with lower performance in online ErrP detection (Subject 3, Subject 4 (Table 1 and Fig. 5a). 
Figure 5b shows the accumulated regret for each subject. We observed the correlation between the regret and 
the errors of the robot for all subjects except for one subject (Subject 5). For Subject 5, a small number of errors 
occurred, even though the regret was high. The reason for this is the high number of false positives in the online 
ErrP detection for this subject. In our approach, the false positives have less influence than false negatives (see 
Section Discussion). Thus, the learned model was stable despite of a relative higher number of false positives and 
thus a relative lower number of errors was shown for this subject. Otherwise, for all subjects showing a lower 
value of regret, less errors were also observed. In general, we observed that the higher the regret was, the more 
errors occurred.

Figure 6a shows the accumulated errors of the real robot. As expected, both the accumulated number of errors 
and the error curve were similar to the simulated robot scenario (Fig. 5a). Based on the results from the simulated 
robot scenario, which revealed that the number of errors of the robot’s action was significantly reduced after 45 
actions, we grouped the action errors in the same way for the real robot scenario. This kind of grouping enables 
the comparison between the first part of both experiments (45 actions), i.e., the simulated and the real robot 
scenario. When comparing the first part of the experiment (with again actions 1 to 45) with the second part (here 
only 15 actions due to the shorter duration of the test run in the real robot scenario compared to the simulated 
robot scenario) again an improvement in behavioral performance, i.e., a reduction of errors, could be found (see 
Fig. 6c). However, one must be careful with the interpretation of this result, since the second half of the test exper-
iment in the real robot scenario contained fewer actions. For this reason, we did not perform the statistical test as 
in the simulated robot scenario, but illustrated the results only in descriptive mode.

Effect of ErrP detection performance on the robot’s behavioral performance.  Our approach 
favours the true positive rate (TPR) compared to the true negative rate (TNR) (Fig. 4). Correspondingly, we 
found a correlation between the TPR and the robot’s performance [r = −0.899, p < 0.006] in the real robot 
scenario. Thus, the number of FNs had a stronger impact on the robot’s performance than the number of FPs 
(Supplementary Table S2). In fact, Subject 2 and Subject 4 who showed the worst accuracy of TPR achieved the 
worst performance in correctness of robot’s action compared to the remaining subjects in the real robot scenario.

Moreover, the robot’s performance was more affected when a high number of FNs and FPs occurred together 
compared to the occurrence of many FNs alone (Supplementary Table S2). The worst performance of the robot’s 
actions was achieved with Subject 4 and second worst performance was observed for Subject 3 who showed a 
large number of FNs and FPs in the simulated robot scenario (Supplementary Table S2). This finding is the reason 
why we found no correlation between the TRP and the robot’s performance in the simulation robot scenario. We 
found no large effect of the number of FPs alone except for Subject 7 (Supplementary Table S2). For this subject, 
gestures were poorly recognized (Supplementary text).

Discussion
Our results show that EEG signals (ErrPs) can successfully be used as human feedback (rewards) in RL for learn-
ing in real-world robotic applications when a binary feedback is sufficient (binary reward specification). As 
expected, we observed that the higher the performance of online ErrP detection, the smaller the number of errors 
of the robot for most subjects. This result does not surprise, since high quality of feedback is the basis of efficient 
learning. In this context, a high accuracy of online ErrP detection in single-trials is relevant for online learning 
of action strategy of the robot. In fact, we could show a real-time ErrP classification with a high accuracy (91% 
balanced accuracy for the simulated robot scenario and and 92% balanced accuracy for the real robot scenario). 
Hence, the successive detection of ErrPs on the same task event, which was proposed in33 was not necessary in 
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our study. In fact, these successive detections (due to high amounts of misclassification in the first robot’s actions) 
improved the classification performance in the case when a human observer recognized misclassifications of a 
ErrP classifier (e.g., ErrP was detected although the robot’s action was correct or ErrP was not detected although 
the robot’s action was wrong)33. However, the correction of the robot’s action by successively detecting ErrPs was 
possible only in binary tasks: the robot should pick and place the objects in the left or in the right. That means, the 
wrong actions of the robot (placing a object to the left) could be corrected (placing the object to the right) within 
a binary task33. Our approach is not limited to the number of actions due to the inherent property of RL.

Obviously, the regret curve did not exactly correspond to the performance of the robot’s actions (Fig. 5a vs. b, 
Fig. 6a vs. b), since the online ErrP detection was not 100% confident. In particular, in case of misclassification of 
wrong mappings (FN), i.e., the ErrP was not detected although the robot made a mistake, the learning algorithm, 
nevertheless, received a positive reward (rt = 1) and updated the existing strategy for action selection accordingly. 
This was seen in Subject 2 (Fig. 6b): The regret was not increased when the ErrP was not detected although the 
robot made a mistake (misclassification of wrong mapping, FN). Note that the regret should be increased when 
the ErrP is correctly detected (correct classification of wrong mapping, TP). However, in most cases, we obtained 
correct classification of correct mapping (TN). The reason for the majority of TNs is that we double-checked the 
cases of TN by a data augmentation approach. In this context, more TNs can be generated than TPs (equivalently 
more FPs can be generated than FNs). This pattern can be seen in Fig. 5b. We observed higher accumulated values 
of regret for Subject 3, Subject 4, Subject 5, Subject 7. The reason for this observation is the higher number of FPs 
for these subjects. In fact, Subject 1, Subject 2, and Subject 6 had a lower number of FPs. Nevertheless, the learn-
ing of the mapping between human gestures and robot actions was in general not affected by the high number of 
FPs (Fig. 5b, Supplementary Fig. S2), since the learning algorithm updates the existing action strategy to a small 
extent according to the update of context (gesture features), but does not update based on the reward (in this case 
rt = 0). In contrast, we obtained a higher reliability that the positive feedback (TN) provided by the classifier is 
surely correct. Furthermore, the obtained results indicate that our approaches to handle few real-world experi-
ences in robotic RL (double-check of correct mapping through EEG data augmentation and more emphasis on 
correct mapping [positive feedback]) can be successfully applied to online learning of adaptive action strategies 
for robots. We stress again that our approach contributes to making less robot behavior errors, although the num-
ber of FPs is relatively higher. Such an approach does further help to handle situations in which the occurrence 
of an event in the EEG cannot be determined exactly as it is the case here. We do not know for sure at which time 
point after the robot started to perform an action the human observer recognized an error in its behavior. Such 
asynchronous behavior of ERPs in the EEG with respect to events must be handled with care. To consider any 
detection of ErrP as negative event and only repeated absences of ErrP (double NoErrP) as positive events does 
help to handle this issue of unknown ErrP onsets. Finally, for the real robot application we could clearly show 
that ErrP detection performance (i.e., TPR due to the reasons given above) has a clear influence on the robot’s 
behavioral performance.

As a first demonstration of our proposed approach, we have used a multi-arm bandit approach42. However, 
our approach does not allow to add further gestures on the basis of the existing knowledge, i.e., on the basis of the 
already learned gestures. Instead, in our approach, the learning of gestures can be completely relearned through 
interaction with a human, when further gestures should be added. In the present study, we have not tested how 
well the relearning of gestures is working in real applications. A systematic evaluation on this issue as well as the 
influence of performance (changes) in gesture recognition is needed in future work. Further, it is also interest-
ing to investigate approaches that enable to add additional gesture-action mappings while retaining the already 
learned knowledge (i.e., retaining learned gesture-action mappings). In fact, which approaches are beneficial 
depends on real applications. When it is necessary to changes the meaning of the gestures due to new situations 
or applications, the relearning of gestures may be a good option. However, the learning of further gestures makes 
more sense, when the meaning of gestures should not be changed within the same application. Nevertheless, it 
may be useful to relearn human gestures when we consider that the generation of gesture features is not 100% 
perfect. In fact, this partly depends on the quality of the gesture recoding system as it can provide wrong features 
which strongly diverge from the gestures that were actually performed by the human (ground truth). A systematic 
investigation on this issue may be useful in future work.

Our study was designed such that the human directly communicates with the robot via gestures. The human 
implicitly provides the ground truth of the correctness of the robot’s actions. Hence, the human implicitly knows 
about the correctness of robot’s actions and it is not necessary to present the human an explicit information about 
the ground truth of the correctness of the robot’s actions. In principle, no guidance of the human is needed. The 
human can behave freely. However, in case of too many actions that a robot can perform, a pre-selection of pos-
sible actions by context of interaction or additional explicit input might be needed to avoid too long training of 
the RL approach in future work. Moreover, the expected negative effect on ErrP expression in case of an increased 
number of false behavior of the robot caused by e.g., many options available, and the effect of different levels of 
ErrP classification performance must still be investigated.

Furthermore, the development of approaches to enhance the benefit of using inherently generated human 
feedback (ErrPs) may be a relevant research topic in future work. The most important advantage of using the 
ErrP lies within its nature as an intrinsic, not externalized evaluation of a situation, which is done by the brain 
without the human being necessarily aware of it. This evaluation is the result of a complex analysis of a situation 
taking into account a rich set of experiences and a priori knowledge of the human observer. Therefore, this kind 
of feedback is most valuable in complex scenarios including many state/action pairs and even contextual infor-
mation. An example could be a robotic system and a human working in a car production scenario to assemble 
the windshield into the car. Here the human is the experienced part that observes the doings of the unexperi-
enced part (the robot) continuously and recognizes any suboptimal activity of the robot. These observations are 
not necessarily related to a very specific action in a specific state but are more likely an evaluation of a series of 
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actions that the robot performed and that together resulted in a suboptimal performance. Even if the human 
does perceive the suboptimal performance immediately (and an ErrP is generated) there is no time for corrective 
statements of the human to the robot. Instead the intrinsically generated ErrP could be used as a feedback to the 
robot to improve its doing for the next windshield. Moreover, the feedback is instantaneous in its nature. There is 
in principle no need to wait for the robot to finish an action. Further, data processing with specifically optimized 
hardware55 can be performed within nanoseconds. How this very valuable feedback is used best in such a parallel 
continuous fashion is a question that must be studied further and can only be solved by means of adequate control 
architectures. Future work will therefore focus on questions such as scalability to an increased number of possible 
robot actions and continuous integration of ErrP based feedback. Using it directly could be an approach that 
would however require some form of background learning of the robot and foreground acting as it is known from 
a RL concept called Dyna-Q56,57. ErrPs could also be used in an indirect way and be combined with an RL strategy 
that uses old experience for replay called Experience Replay57–61.

In summary, we presented an intrinsic interactive RL approach using ErrP-based human feedback, which ena-
bles the learning of adaptive behaviors of a robot during interaction with a human. We showed that the assignment 
of freely chosen gestures to robot action can be learned by a robot during human-robot interaction based on spe-
cific intrinsically generated and online analyzed brain activity, i.e., brain states. That means, the robot does (in case 
of no pre-training) not know about the gestures at all in the beginning. Instead, the robot receives the input from 
gesture features from the gesture recording system. In case of pre-training, the robot has only few information on 
the gestures that might be chosen to control it. In addition, in both cases the meaning of the gestures is unknown 
to the robot and is learned by interaction. This kind of integration allows to relearn human gestures while learning 
to change gesture-action mapping online or to even adapt to new users with different gesture to action mappings 
online. Further, the real-time ErrP detection can be successfully used to send human intentions and evaluation 
on the robot’s behaviors to the robot. We achieved a high accuracy of the online ErrP detection for the simulated 
and real robot scenario (91% and 90%) although the onset of ErrP activity could not be determined beforehand, 
since for different users the subjective experience of error onset (in the robot’s behavior) may differ. We could also 
increase the reliability of successful online learning of adaptive action strategy of the robot by double-checking cor-
rect mappings using EEG data augmentation and by emphasizing correct mapping (positive feedback). In the end, 
we could demonstrate that the robot can adapt an optimal action strategy online by learning the mapping between 
human gestures (i.e. human intention) and its own actions based on ErrP-based RL. Since the brain pattern used 
as feedback is intrinsically generated by the human observer or interaction partner and needs no extra effort from 
the human this type of reinforcement learning can be called intrinsic interactive RL.
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