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Abstract
Comparing hospital performance in a health system is traditionally done with multilevel regressionmodels that adjust for differences in
hospitals’ patient case-mix. In contrast, “template matching” compares outcomes of similar patients at different hospitals but has
been used only in limited patient settings.
Our objective was to test a basic template matching approach in the nationwide Veterans Affairs healthcare system (VA),

compared with a more standard regression approach.
We performed various simulations using observational data from VA electronic health records whereby we randomly assigned

patients to “pseudo hospitals,” eliminating true hospital level effects. We randomly selected a representative template of 240 patients
and matched 240 patients on demographic and physiological factors from each pseudo hospital to the template. We varied hospital
performance for different simulations such that some pseudo hospitals negatively impacted patient mortality.
Electronic health record data of 460,213 hospitalizations at 111 VA hospitals across the United States in 2015.
We assessed 30-day mortality at each pseudo hospital and identified lowest quintile hospitals by template matching and

regression. The regression model adjusted for predicted 30-day mortality (as a measure of illness severity).
Regression identified the lowest quintile hospitals with 100% accuracy compared with 80.3% to 82.0% for template matching

when systematic differences in 30-day mortality existed.
The current standard practice of risk-adjusted regression incorporating patient-level illness severity was better able to identify

lower-performing hospitals than the simplistic template matching algorithm.

Abbreviations: APACHE= acute physiology and chronic health evaluation, IPEC= inpatient evaluation center, IQR= interquartile
range, SAIL = strategic analytics for improvement and learning, SMR = standardized mortality ratio, VA = veterans affairs.
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1. Introduction

Hospital performance measurement seeks to identify and
remediate low-quality care. However, because patients are not
randomly allocated to hospitals, cross-hospital comparisons are
limited by differences in patient case-mix and illness severity. The
US Center for Medicare and Medicaid Services, the Veterans
Affairs (VA), and other programs sponsors typically adjust for
differences in patient case-mix using regression models for
indirect standardization.[1–4] However, clinicians often consider
these models: unfair because of enduring concerns about residual
confounding; unclear because clinicians have limited expertise in
interpreting and applying the findings from complex multi-level
risk-adjusted regression models; and unhelpful because the
models do not reveal why, or in which patients, outcomes differ
across hospitals. As a result, the National Academy of Medicine
has called for greater transparency and interpretability of
hospital benchmarking systems.[5,6]

Template matching, a form of direct standardization, has been
proposed to have greater fairness and transparency than
conventional regression approaches used for case-mix adjust-
ment.[7] In template matching, hospitals are compared on a set of
patients with similar characteristics, thereby making benchmark-
ing more credible.[7] A set of hospitalization profiles are identified
(e.g., an 80-year-old nursing home resident with a history of heart
failure who is hospitalized with acute renal failure and has a
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creatinine of 2.5). Each hospitalization profile specifies all key
risk attributes at the time of admission; several hundred
hospitalization profiles aggregated into a template set. Hospitals
are then compared directly with the outcomes of their own
patients who best match this standard set of hospitalization
profiles. Compared with regression models, template matching
could be considered fairer (as hospitals are compared on a similar
set of patients), clearer (no further risk-adjustment is required),
and more helpful (hospitals can examine the specific hospital-
izations to see where their outcomes lag).
However, template matching has been evaluated in only

limited patient and hospital populations, focusing on select
common surgical procedures or medical diagnoses.[7–9] It is
unclear how template matching performs for assessing overall
hospital quality in a real-world health care system. Furthermore,
it is unknown whether template matching results similar
benchmarking assessments than regression assessments incorpo-
rating patient’s physiology (the current standard within the VA),
and if not, which benchmarking approach is more accurate.
Thus, in this study, we sought to test a basic template matching

approach for benchmarking hospital performance in the
nationwide VA healthcare system, compared with the standard
regression approaches currently in use. In contrast to prior work,
we incorporated all hospitalizations (as opposed to sampling
specific diagnoses or medical procedures) and used a simpler
matching algorithm, as this approach would be easier to
implement in practice. To assess the accuracy of template
matching versus regression benchmarking assessments, we used
simulation, in which the true hospital effect could be known with
certainty.
2. Methods

2.1. Context

The VA healthcare system has been a leader in developing and
implementing performance measurement methods. The VA was
among the first healthcare systems to have a universal electronic
patient record,[10] and to operationally measure and report risk-
adjusted mortality using a risk-adjustment model that performs as
well as APACHE IV (Acute Physiology and Chronic Health
Evaluation score, Cerner Corporation).[11] The VA uses compre-
hensive performance assessment methods—Strategic Analytics for
Improvement and Learning (SAIL)[12]—which incorporates a
variety of metrics including risk-adjusted 30-day mortality.
Table 1

Eight measurement scenarios, characterized by hospital case-mix, c

Scenario Hospital case-mix Hosp

1 Uniform Unifo
2a Varies—by age Unifo
2b Varies—by predicted mortality Unifo
3 Uniform Unifo
4a Varies—by age Unifo
4b Varies—by predicted mortality Unifo
5 Uniform Varie
6a Varies—by age Varie
6b Varies—by predicted mortality Varie
7 Uniform Varie
8a Varies—by age Varie
8b Varies—by predicted mortality Varie

2

Hospitals are compared with their overall performance using a
star rating system (from 1 to 5 stars). In this study, we focus on all-
cause risk-adjusted 30-day mortality, and assign “stars” based on
the quintiles in which each hospital falls for this metric.
2.2. Data source and cohort

We used clinical data from the 2015 VA Inpatient Evaluation
Center (IPEC) dataset, which contains all hospitalizations in the
VA healthcare system. We excluded hospitalizations for a
primary psychiatric diagnosis and limited our sample of hospitals
to those with at least 960 hospitalizations per year (to allow for a
4:1 matching ratio in the template matching procedure, which is
described below). For each hospitalization, we generated a
predicted 30-day mortality using variables contained in the VA’s
illness severity score[13] (age, sex, race, admission source, surgical
indicator, top 20 admission diagnosis categories, 29 comorbid
conditions, and 11 laboratory values drawn in the first 24hours
of hospitalization: sodium, blood urea nitrogen, glomerular
filtration rate, glucose, albumin, bilirubin, white blood cell count,
hematocrit, pH, PaCO2, and PaO2), as we have done in prior
analyses.[14,15] Patients with missing laboratory measures were
assumed to have a normal laboratory value. The c-statistic for the
predicted mortality model was 0.856.

2.3. Measurement scenarios

We considered 8 simulation scenarios for assessing template
matching versus conventional regression (Table 1). These
scenarios are characterized by variation (or uniformity) in
patient case-mix, hospital case volume, and hospital performance
(modeled as systematic differences in mortality rate, as described
below). First, we considered a baseline scenario in which there
were no systematic differences in patient case-mix, case volume,
or performance across hospitals. We simulated this scenario by
allocating the patient hospitalizations in the dataset to “pseudo-
hospitals” by random assignment to eliminate any true hospital
level effects that may exist. Therefore, any true variations in 30-
day mortality were due to patient-level factors and patient case-
mix (and random variation) rather than hospital-level care.
In subsequent scenarios, we varied patient case-mix, hospital

case volume, and hospital risk-adjusted mortality rates—both
separately, and in combination. For case-mix variation, we
caused illness severity or age to vary across pseudo-hospitals. We
achieved this case-mix variation in the simulations by weighting
ase-volume, and mortality.

ital case-volume Hospital performance (30-day mortality)

rm Uniform
rm Uniform
rm Uniform
rm Varies
rm Varies
rm Varies
s Uniform
s Uniform
s Uniform
s Varies
s Varies
s Varies
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the random allocation of hospitalizations to pseudo-hospitals by
age (scenarios 2a, 4a, 6a, and 8a), and separately, by predicted
30-daymortality as ameasure of illness severity (scenarios 2b, 4b,
6b, and 8b) (online Supplement, Appendix 1, http://links.lww.
com/MD/C994). We chose this rather simplistic implementation
of case-mix variability (weighting the allocation by just a single
variable) over more complex approaches to maximize the
transparency and interpretation of the simulations.
For scenarios in which we specify that hospital risk-adjusted

mortality varies (scenarios 3, 4a, 4b, 7, 8a, and 8b), we did this by
randomly generated a “pseudo-outcome.” Conceptually, we
randomly selected one-fifth of the pseudo-hospitals to be in the
lowest-quintile (higher 30-day mortality rate), one-fifth of the
pseudo-hospitals to be in the top quintile (lower 30-day mortality
rate), and the remaining pseudo-hospitals as median hospitals.
The pseudo-outcome was generated by adding a hospital level
component of variance, generated from the geometric distribu-
tion, to the patients’ real predicted mortality such that the top and
lowest quintile pseudo-hospitals had a standardized mortality
ratio (SMR) of approximately 2.0 and 0.5, respectively (Online
Supplement, Appendix 2, http://links.lww.com/MD/C994).
2.4. Template matching procedure: selecting the optimal
template

We selected a template size of 240 hospitalization profiles, since
we estimated that this would provide 80% power to detect a
SMR of ≥1.75 (Online Supplement, Appendix 3, http://links.
lww.com/MD/C994). We sampled 240 hospitalizations from the
entire population (at random, without replacement) 500 times to
generate 500 potential templates. Following the approach of
Silber et al,[7] we assessed the fit of each potential template to the
overall population and selected the template that most resembled
the patient population. We determined this by selecting the
template that minimized the Mahalanobis distance,[16] a
commonly used multivariate measure of the sum of squares of
the difference of the means (in units of the standard deviation)
with an adjustment for the correlation between variables.
2.5. Template matching procedure: matching hospitals to
the template

Next, we matched hospitalizations at each hospital to the
template based on 70 variables (Online Supplement, Appendix 4,
http://links.lww.com/MD/C994) including demographic charac-
teristics (age, sex, ethnicity), hospitalization characteristics
(admission source, indicator for major surgery within 24hours
of admission), values for 11 laboratories collected within 24
hours of admission, predicted 30-day mortality, 29 Elixhauser
comorbidities, admitting diagnosis and laboratory values at
admission. We elected to include physiologic data (laboratories,
predicted risk of death) since such data improve prediction of
hospital mortality over administrative data alone.[17] Further-
more, incorporation of physiological data in template matching
reduces variation in illness severity across matched hospital
sample and results in different hospital rankings.[9]

We used SAS PSMATCH procedure[18] with an optimal
matching algorithm, equal weighting of each matching variable,
and no calipers (to ensure a full 240 hospitalizations would be
matched to the template for each pseudo-hospital). This matching
approach is simpler than the approach described by Silber et al[7]

which used fine balance and multiple integer processing to ensure
3

covariate balance across the matched cohorts. However, if
effective, this simpler approach would be much easier to
implement for benchmarking within the VA system.
2.6. Comparing template matching and regression in
simulations

For each measurement scenario, we completed 1000 simulations.
In each simulation, we: identified a template by sampling without
replacement from the overall pool of hospitalizations; allocated
patients to the pseudo-hospitals; matched hospitalizations from
each pseudo-hospital to the template using the simple matching
algorithm; assessed the performance of each pseudo-hospital
using template matching and a regression model adjusting for
predicted 30-day mortality; and compared the template matching
versus regression performance assessments. Specifically, we were
interested in the extent to which template matching and
regression agreed on the classification of hospitals as being in
the lowest quintile (to align with VA’s star rating system).
Furthermore, for measurement scenarios where there was a
systematic difference in 30-day mortality between pseudo-
hospitals (scenarios 3, 4a, 4b, 7, 8a, 8b), we assessed the extent
to which template matching and regression correctly identified
lowest-quintile pseudo-hospitals. All analyses were done in SAS
version 9.4 (SAS Institute Inc., Cary, NC) and a P-value threshold
of .05 was used to indicate statistical significance. The SAS code
for these simulations is available at: https://github.com/CCMRco
des/TemplateMatching.
2.7. Comparing template matching and regression in real
data

Additionally, we compared the performance of template
matching and regression using 2015 IPEC data (preserving
patients’ true hospital assignment). The best template was
selected from 500 potential templates and hospitalizations were
matched from each hospital using the same techniques as in our
simulations. We assessed the performance of each hospital using
template matching and regression. We were interested in how
often hospitals classified as in bottom quintile for 30-day
mortality by regression were also classified as bottom quintile by
template matching.
2.8. Assessing the selected templates and matching
quality

We performed a post hoc assessment of the fit of the selected
template to the population. Because we used a multivariate
measure when selecting the template, there was no guarantee that
the individual variables would be representative of the popula-
tion.We assessed the distributions of 3 illustrative variables—30-
day mortality (outcome), age, and proportion with admission
through the emergency department—across all 500 potential
templates with the population rates and highlight the selected
template highlighted. We illustrate these distributions over 20
simulation iterations.
In a second post-hoc assessment, we evaluated the match

quality across one iteration of the baseline scenario. We use the
standardized mean difference[19] for each covariate, which is
calculated as the difference in the means of the template and the
matched groups divided by the standard deviation (template and
matched pooled) of the covariate. If the standardized mean
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Table 2

Descriptive characteristics of patients and hospitalizations.

Hospitalizations, N 460,213
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difference<0.25, then a covariate is considered balanced.We use
a box-and-whisker plot to display the distributions of the
standardized mean difference across the 111 pseudo hospitals for
each variable.
30-day mortality, N (%) 22,935 (5.0%)
Predicted mortality, median (IQR) 0.020 (0.008, 0.051)
Age, median (IQR) 66 (60,70)
Male, N (%) 436,643 (94.9%)
Race, N (%)
White 333,097 (72.4%)
Black 95,134 (20.7%)
Hispanic 27,042 (5.9%)
Other 4940 (1.1%)

Top 5 diagnosis categories, N (%)
CHF 24,157 (5.3%)
Sepsis 16,821 (3.7%)
Alcohol-related disorders 15,178 (3.3%)
Dysrhythmia 15,117 (3.3%)
Pneumonia 14,250 (3.1%)

Laboratory values, median (IQR)
Albumin 3.9 (3.3, 4.3)
White blood cell count 8.2 (6.6, 11.2)
2.9. Post-match adjustment

We performed an additional post-hoc analysis where we used a
post-match adjustment of variables due to poor performance of
template matching in our initial simulations. We considered the
most complex scenario (8b). A hierarchical logisticmodel adjusted
for 30-day predicted mortality using patients matched to the
template from our simulations. We included a random intercept
identifying the template patient to which the observed patient was
matched. Using this method, the outcomes of patients resembling
each patient in the template was compared across each of the
pseudo-hospitals, adjusting for differences in illness severity. This
differs from our initial simulations, where all patients in the
template are compared across pseudo-hospitals. This technique
more closely aligns with what was done by Silber et al.[7]
Creatinine 1.1 (0.8, 1.5)
Comorbidities, N (%)
COPD 93,688 (20.4)
Liver disease 31,341 (6.8%)
Metastatic cancer 18,860 (4.1%)
CHF 68,347 (14.9%)

Predicted mortality ranges from 0 to 1.
IQR= Interquartile range.
3. Results

In 2015, there were 470,263 hospitalizations at 129 hospitals
with a non-psychiatric principal diagnosis. After excluding
hospitalizations that occurred at hospitals with fewer than 960
hospitalizations that calendar year, there were 460,213 hospital-
izations at 111 hospitals available for the analysis. Only 2.1% of
hospitalizations were at hospitals with <960 hospitalizations.
Patient and hospitalization characteristics are provided in
Table 2.
3.1. Simulation results

Simulation results are presented in Table 3. For the baseline
measurement scenario, where patients were allocated to pseudo-
hospitals at random (i.e., no systematic difference in hospital
case-mix, case-volume, or mortality), there was weak correlation
between a pseudo-hospital’s quintile ranking by template
matching versus conventional regression, r=0.192 (95%
Table 3

Simulation results.

Pseudo-hospital variation in

Case-Mix Case-Vol. Mortality

Correlation between quin
ranking by TM and regres

(r and 95% CI)

1 0.192 (0.187, 0.198)
2a ✓ 0.212 (0.207, 0.218)
2b ✓ 0.415 (0.410, 0.420)
3 ✓ 0.736 (0.733, 0.738)
4a ✓ ✓ 0.738 (0.735, 0.740)
4b ✓ ✓ 0.733 (0.730, 0.735)
5 ✓ 0.225 (0.220, 0.230)
6a ✓ ✓ 0.242 (0.236, 0.247)
6b ✓ ✓ 0.355 (0.350, 0.360)
7 ✓ ✓ 0.745 (0.742, 0.748)
8a ✓ ✓ ✓ 0.737 (0.734, 0.740)
8b ✓ ✓ ✓ 0.738 (0.735, 0.741)

TM= template matching, Reg= regression.

4

confidence intervals [CI]: 0.187, 0.198). Of hospitals ranked
as bottom quintile by regression, 29.1% were also ranked as
bottom quintile for template matching (whereas in the null
scenario we would expect 20% and in a perfect agreement
scenario we would expect 100%).
For the scenario with case-mix variation by age (2a), there was

weak correlation between a pseudo-hospital’s lowest-quintile
classification by template matching versus regression, r=0.212
(95% CI: 0.207, 0.218). Likewise, as in the baseline scenario,
hospitals classified as bottom quintile by regression were also
classified as bottom quintile by template matching 28.3% of the
Percent classified correctly by

tile
sion

Percent agreement
between TM and

regression for bottom
quintile (P and 95% CI) TM Reg.

29.1 (28.5, 29.7) N/A N/A
28.3 (27.7, 28.9) N/A N/A
37.4 (36.8, 38.1) N/A N/A
81.5 (81.0, 82.1) 81.5 100
81.8 (81.3, 82.3) 81.8 100
80.3 (79.8, 80.9) 80.3 100
29.8 (29.2, 30.4) N/A N/A
30.2 (29.6, 30.8) N/A N/A
36.0 (35.4, 36.7) N/A N/A
82.0 (81.5, 82.5) 82.0 100
80.5 (80.0, 81.0) 80.5 100
80.8 (80.2, 81.3) 80.8 100
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time—suggesting that variation by age does not induce additional
bias into the performance assessment. However, for the scenario
with case-mix variation by predicted mortality (2b), there was
moderate correlation between a pseudo-hospital’s classification
by template matching versus regression, r=0.415 (95% CI:
0.410, 0.420). Template matching agreed with regression
classifications of bottom-quintile pseudo-hospitals 37.4% of
the time—suggesting that variation by predicted mortality
introduced additional bias into the performance assessments.
For the scenario with systematic variation in pseudo-hospital

mortality (3) (i.e., there was a true lowest quintile of pseudo-
hospitals), there was strong correlation between the template
matching and regression classifications, r=0.736 (95% CI:
0.733, 0.738). Template matching agreed with regression
classifications of bottom quintile pseudo-hospitals 81.5% of
the time. Across the 1000 simulations, regression correctly
classified pseudo-hospitals as lowest quintile with 100%
accuracy, while template matching classified 81.5% of pseudo-
hospitals correctly.
When pseudo-hospital mortality and case-mix by age both

varied (4a), results were similar to the scenario with case-mix by
age variation only (2a). Template matching and regression
assessments were strongly correlated (r=0.738 [95% CI: 0.735,
0.740]). Regression identified the lowest-quintile pseudo-hospi-
tals with 100% accuracy; and template matching classified
81.8% of bottom quintile pseudo-hospitals correctly. When
pseudo-hospital mortality and case-mix by predicted mortality
both varied (4b), results were like case-mix by predicted mortality
variation only (2b): template matching and regression assess-
ments were strongly correlated r=0.733 (95%CI: 0.730, 0.735),
regression classified bottom-quintile pseudo-hospitals with
100% accuracy compared with 80.3% for template matching.
When pseudo-hospital case volume varied (5), the correlation

between template matching and regression assessments was weak
(r=0.225 [95%CI: 0.220, 0.230]), but slightly stronger than the
correlation in the baseline scenario (r=0.192 [95% CI: 0187,
0.198]). Likewise, template matching agreed with regression
classifications of bottom-quintile pseudo-hospitals 29.8% of the
time—slightly more than the 29.1% in the baseline scenario.
When case-mix by age and pseudo-hospital case volume varied

(6a), the 2methods identified the same pseudo-hospitals as lowest
quintile 30.2% of the time. Template matching and regression
adjustments were weakly correlated (r=0.242 [95% CI:
0.236,0.247]) slightly higher than with case-mix by age alone
(2a) (r=0.212 [95% CI: 0.207, 0.218]) or pseudo-hospital
volume alone (5) (r=0.225 [95% CI: 0.220, 0.230]). However,
when both case-mix by illness severity and pseudo-hospital
volume varied (6b), the correlation was weaker (r=0.335 [95%
CI: 0.350, 0.360]) than when case-mix by illness severity only
varied (2b) (r=0.415 [95% CI: 0.410, 0.240]), suggesting
potential confounding due to pseudo-hospital case volume.
Template matching classifications agreed for 36.0% of pseudo-
hospitals classified as bottom quintile by regression.
In the scenario when pseudo-hospital case volume and

mortality varied (7), the correlation between template matching
and regression classifications was strong r=0.745 (95% CI:
0.742, 0.748) with 82.0% agreement of lowest-quintile pseudo-
hospitals between both methods. Again, regression classified the
lowest quintiles pseudo-hospitals accurately 100% of the time.
When pseudo-hospital case-mix by age, pseudo-hospital case

volume, and pseudo-hospital mortality varied (8a), the correlation
between the2methodswas slightlyweaker thanwhencase-mixdid
5

not vary (7) (r=0.737 [95% CI: 0.734, 0.740]), with an 80.5%
agreement and 100% accuracy for regression. When pseudo-
hospital case-mix varied instead by predicted morality (8b), the
correlations and agreementswere nearly identical (r=0.738 [95%
CI: 0.735, 0.741]), and 80.8%.This suggests that case-mix slightly
biased the template matching identification when there were true
differences in mortality. We display the complete results of each
scenario in the supplement (Online Supplement, Appendix 5,
http://links.lww.com/MD/C994).
3.2. Comparison of template matching and regression
with post-match adjustment

In our post hoc analysis where we performed a post-match
adjustment for predicted mortality on the matched patients in
scenario 8b (case volume, case-mix, and performance variation),
the template matching classification agreed with regression
classification of bottom quintile pseudo-hospitals 87.1% of the
time, compared with 81.8% without the post-match adjustment.
The correlation between template matching and regression was
r=0.746 (95%CI: 0.744, 0.749) compared with r=0.738 (95%
CI: 0.736, 0.741), suggesting that the post-match adjustment
improved case-mix variation that occurred at random.
3.3. Comparison of template matching and regression in
real data

When we compared template matching to regression using the
real hospital data, there was moderate correlation between the 2
methods, with r=0.420 (95% CI: 0.250, 0.562). Of the 22
hospitals classified as lowest quintile by regression, template
matching identified 8 (36.4%) as also lowest-quintile (Fig. 1A).
After performing a post-match adjustment for predicted
mortality, the correlation and agreement increased slightly r=
0.482 (95% CI: 0.325, 0.613), and template matching identified
10 (45.5%) of the 22 bottom quintile hospitals classified by
regression (Fig. 1B). Figure 1A depicts the 111 VA hospitals risk-
adjusted 30-day mortality and 95% confidence intervals (CIs)
from the regression model, arranged from lowest to highest rates.
Hospitals ranked in the lowest and highest quintiles by template
matching are highlighted. Figure 1B depicts these results after
performing a post-match adjustment for predicted mortality in
template matching.

3.4. Assessment of the selected templates and matching
quality

In our post hoc examination of templates, we found that
the selected template—while optimal based on the multivariate
distance measure—had mean values outside the interquartile
range (IQR) for several variables. In Fig. 2, we display the box
plots of 3 demonstrative variables for the 500 potential templates
and highlight the selected template in the first 20 iterations. For
each of the 3 variables, there were several iterations where the
selected template had a value outside of the IQR. For example, in
iteration 1, the selected template closely resembled the VA
population on 30-day mortality rate and age but had an
emergency department admission rate that was in the lowest
quartile compared with the all potential templates. Iteration 5
had 30-day mortality and emergency department admission rates
among the 25% highest compared with all potential templates
and age among the 25% lowest.
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Figure 1. A and B: Caterpillar plots showing regression versus TM rankings in 2015 real data (original, post-match adjustment). TM= template matching.
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In our second post hoc assessment of balance, we found that
across the 111 pseudo-hospitals, the median standardized mean
difference was 0 for most of the covariates. However, there was a
wide range across pseudo-hospitals. One of the comorbidities
Figure 2. A–C: Plots showing variable distributions in the templa

6

was imbalanced at one pseudo hospital and white blood cell was
imbalanced at 2 pseudo-hospitals. The remaining covariates had
a standardized mean difference <0.25. We display the box-and-
whisker plots of the distribution of standardized mean difference
te (30-day mortality, age, emergency department admission).
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across the 111 pseudo-hospitals in the supplement (Online
Supplement, Appendix 6, http://links.lww.com/MD/C994).
4. Discussion

In this study, we have implemented a simplified template
matching algorithm in a diverse healthcare system. We find
that, with this simplified approach, template matching was
inferior to the current regression approach used with the VA.
When there were systematic differences in mortality, regression
identified the lowest quintile hospitals with 100% accuracy,
compared with 80.3% to 82.0% for our template matching
implementation. However, as described below, we think this may
be a limitation of our specific implementation rather than the
approach in general. There were several limitations of our
template matching method that may have resulted in lower
performance relative to regression.
First, our template was not perfectly representative of the

overall hospitalized population. We selected our template from a
pool of 500 potential templates based on Mahalanobis distance
to the overall population means, similar to Silber et al.[7]

However, in contrast to prior studies,[7,9] we did not set
additional requirements to ensure that the template contained
particular proportions of diagnoses or patient demographics. In
our post hoc analyses, we found that the selected template was
not representative on all variables used in the matching process,
although the specific variables that were unbalanced varied from
iteration to iteration across the simulations. Furthermore, since
the Mahalanobis distance weighs each variable equally, impor-
tant variables (e.g., predicted mortality) were just as likely to be
unrepresentative as less important variables.
Second, we created scenarios that likely did not capture the

complexity of the multivariate relationships between the
variables included in our algorithm, as evidenced by regression’s
100% classification accuracy. Third, the number of profiles in
our template may have been too small (i.e., under-powered) to
identify the lowest quintile hospitals accurately, although a larger
template would limit the ability to findmatches at smaller-volume
hospitals. Third, we included hospitalization with rare diagnoses,
potentially impacting our match quality. Fourth, we included all
hospitals in the assessment, even those with a lower quality match
to the template. When we performed a post-match adjustment on
the most important matching variable (predicted mortality), the
performance of template matching improved only modestly. We
elected to include all hospitals since benchmarking only a subset
would have limited utility for real-world implementation;
nonetheless, this likely impacted our results. Fifth, the simplistic
algorithm that we used for matching, including many variables
with equal weighting, may not be sufficient to ensure good
balance on the factors that are most predictive of 30-day
mortality.
There are a variety of ways the template matching procedure

could be modified to improve its accuracy, and also the relevance
of the benchmarking assessments. First, we will likely need to
refine the inclusion and exclusion of hospitalizations in our
template matching procedure. Prior studies of template matching
have focused on common surgical procedures or common
medical diagnoses (e.g., asthma, congestive heart failure,
pneumonia).[8,9,20] We were interested in using template
matching for overall hospital assessment, but still may have
been too liberal with our hospital inclusions. In future work, we
will consider excluding hospitalizations for uncommon diagnoses
7

(i.e., hospitalizations for organ transplantation, or those with
principal diagnoses occurring in<1/300 hospitalizations). On the
other hand, we excluded hospitalizations for a primary
psychiatric diagnosis from this study due to their low probability
of mortality. However, as suicide prevention and mental health
services are a priority in the VA, we plan include them in future
work. Secondly, a larger template (n=300) may be needed to
increase power. Third, to improve matching on the most
important variables, it may be better to select the optimal
template based on a subset of variables of highest importance, or
alternatively, ensure that proportions of particular diagnoses or
demographic groups match the overall population via a stratified
sampling approach. Finally, we used a simple matching
procedure because it is more computationally efficient, simpler
to explain to end-users, and, if successful, would be much easier
to implement within the VA computing infrastructure. However,
given our results, we believe that more sophisticated matching
algorithms will be necessary (e.g., the RCBalance, design-match,
or MIPMATCH packages in R). Near-exact matching on
important variables (e.g., operative/nonoperative status and
decile of predicted mortality) can also be used to improve match
quality.
Another potential explanation for the better performance of

regression relative to template matching is the strength of the
VA’s predicted mortality model. In contrast to benchmarking by
Center for Medicare and Medicaid services, the VA incorporates
physiological data into risk-adjustment. The predicted mortality
model typically achieves a c-statistic around 0.85,[13,14] indicat-
ing a strong ability to account for differences in case-mix across
hospitals. It is possible that template matching may perform
similarly or better than regression in scenarios where only
administrative data are available for benchmarking. However,
we elected to include physiologic data as this is the current
standard practice within in the VA system. Likewise, we included
all hospitalizations in the regression assessment (but only a subset
for the template matching assessment) because our primary goal
was to understand how template matching performs relative to
current benchmarking practices within the VA.
5. Conclusion

We evaluated a simple template matching algorithm for
benchmarking hospital performance in the VA healthcare system.
However, the current standard practice of risk-adjusted regres-
sion incorporating patient-level physiological data was better
able to identify lower-performing hospitals than this simplistic
template matching algorithm. Thus, our current algorithm needs
additional refinement before it could be used for hospital
profiling by the VA.
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