
RESEARCH ARTICLE

Localization and functional characterization of

the pathogenesis-related proteins Rbe1p and

Rbt4p in Candida albicans

Yannick Bantel1, Rabih Darwiche2, Steffen Rupp3, Roger Schneiter4, Kai Sohn3*

1 Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart,

Germany, 2 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,

Boston, Massachusetts, United States of America, 3 Department of Molecular Biotechnology, Fraunhofer

IGB, Stuttgart, Germany, 4 Department of Biology, University of Fribourg, Fribourg, Switzerland

* kai.sohn@igb.fraunhofer.de

Abstract

Members of the Cysteine-rich secretory protein, Antigen 5 and Pathogenesis-related 1

(CAP) protein superfamily are important virulence factors in fungi but remain poorly charac-

terized on molecular level. Here, we investigate the cellular localization and molecular func-

tion of Rbe1p and Rbt4p, two CAP family members from the human pathogen Candida

albicans. We unexpectedly found that Rbe1p localizes to budding sites of yeast cells in a

disulfide bond-dependent manner. Furthermore, we show that Rbe1p and Rbt4p bind free

cholesterol in vitro and export cholesteryl acetate in vivo. These findings suggest a previ-

ously undescribed role for Rbe1p in cell wall-associated processes and a possible connec-

tion between the virulence attributes of fungal CAP proteins and sterol binding.

Introduction

Proteins of the CAP (Cysteine-rich secretory proteins, Antigen 5, Pathogenesis-related 1)

superfamily show high evolutionary conservation and are widespread throughout prokaryotic

and eukaryotic phyla [1]. CAP family members are associated with diverse biological pro-

cesses, including immune defense, venom toxicity, reproduction and cancer development [1].

Despite their functional and evolutionary diversity, their molecular mode of action remains

largely elusive. The characterizing feature of these proteins is the conserved 17- to 21-kDa

CAP domain, which adopts a unique α-β-α sandwich fold, stabilized by disulfide bonds [1, 2].

Additional N- and C-terminal extensions with low sequence similarity are common among

CAP family members and most proteins contain a signal peptide for protein secretion to the

extracellular space [1].

The human fungal pathogen Candida albicans encodes five CAP proteins and two of them,

Rbe1p and Rbt4p, have been shown to be important virulence factors [3–5]. In mass spectro-

metric analyses, Rbe1p peptides were exclusively found in the supernatant of yeast cells, while

Rbt4p peptides were enriched under hyphal growth conditions [3, 6]. Deletion of RBE1 and

RBT4 in a clinical C. albicans isolate leads to a virulence defect in a mouse model for
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disseminated candidiasis and fungal hypersensitivity towards the attack by human polymor-

phonuclear leucocytes [3]. Besides modulating host-pathogen interactions, RBE1 and RBT4
deletions do not have any obvious influence on morphological, metabolic or stress-related fea-

tures of C. albicans [3]. Therefore, biochemical and structural analysis of CAP proteins from

other organisms might help our understanding of Rbe1p and Rbt4p function.

Recent investigations identified lipid binding and export as a potential molecular function

of the CAP domain. The CAP superfamily members Pry1p and Pry2p from Saccharomyces cer-
evisiae have been shown to bind sterols and fatty acids in vitro and to export intracellularly

accumulated cholesteryl acetate and fatty acids in vivo [7–10]. Mutational analysis of S. cerevi-
siae Pry1p revealed that the caveolin-binding motif (CBM), a flexible loop containing aromatic

amino acid residues, is required for sterol binding [11].

Finding the link between the virulence phenotype and the molecular function of Rbe1p and

Rbt4p has remained a challenge, especially because no functional or structural data on protein

level is available yet. Here, we characterize Rbe1p and Rbt4p on molecular level and describe a

novel disulfide bond-dependent association of Rbe1p with the yeast cell wall. We furthermore

link Rbe1p and Rbt4p function to sterol binding and export.

Materials and methods

Media and growth conditions

C. albicans strains were routinely grown in YPD (1% yeast extract, 2% Bacto peptone, 2% glu-

cose) or SC medium (0.17% yeast nitrogen base, 0.5% ammonium sulfate, and 2% glucose,

supplemented with amino acids and adjusted to pH 6.6 with 10 mM NaOH). For protein isola-

tion or immunofluorescence experiments, YPD overnight cultures were diluted to an OD600 of

0.3 and grown in RPMI 1460 media (Gibco, Invitrogen) at 37˚C to induce hyphal growth or in

SC medium at 30˚C to maintain yeast growth. For all experiments cells were grown to expo-

nential phase.

S. cerevisiaemutant strains were cultivated in YPD media or minimal media (containing

0.67% yeast nitrogen base without amino acids, 0.73 g L-1 amino acids, and 2% glucose).

Media supplemented with sterols contained 0.05 mg ml-1 Tween 80 and 20 μg ml-1 cholesterol

(Sigma-Aldrich). To bypass heme deficiency, hem1Δmutant cells were supplemented with

10 μg ml-1 delta-aminolevulinic acid.

A complete list of all the strains used in this study is contained in the supplementary mate-

rial (S1 Table).

Construction of recombinant strains

Candida albicans. Epitope-tagging of RBE1 and RBT4 in the C. albicans clinical isolate

SC5314 [12] was done using the SAT1 flipping method previously described by Reuss et al
[13]. For this purpose, RBE1 and RBT4 open reading frames, excluding stop codons, were PCR

amplified with additional upstream flanking regions using the primers listed in the supple-

mentary material (S2 Table). Chromosomal integration of the constructs and excision of the

SAT1 cassette was done as previously described [3, 14].

S. cerevisiae. For recombinant expression of RBE1 and RBT4 in the S. cerevisiae
pry1Δpry2Δ strain, endogenous RBE1 and RBT4 open reading frames, excluding signal pep-

tides sequences, were PCR amplified using primers containing the pre-pro alpha factor signal

sequence. The PCR products were cloned into plasmid pRS416 by homologous recombination

and correct integration of the constructs was confirmed by colony PCR.

Escherichia coli. For heterologous expression of Rbe1p and Rbt4p in E. coli, RBE1 and

RBT4 gene sequences were codon optimized (S7 Fig), chemically synthesized with additional
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XhoI and BamHI restriction sites and cloned into vector pET-19b(+) (GenScript, Piscataway,

USA). Transformation of SHuffle1 T7 Competent E. coli cells (New England Biolabs) with

the plasmids was done using the method described by Chung et al. [15].

A list of all primer sequences and constructed plasmids is found in the supplementary

information (S2 and S3 Tables).

Protein isolation and purification

Candida albicans. To isolate proteins from the DTT-soluble cell wall fraction of C. albi-
cans, cell pellets were resuspended in lysis buffer (50 mM Tris-HCl pH 7.5, 1x EDTA-free pro-

tease inhibitor cocktail (Complete; Roche) 1mM phenylmethyl-sulfonylfluoride) and lysed

using bead beating or high-pressure homogenization (Emulsiflex B-15, Avestin). The remain-

ing cell debris was washed once with lysis buffer and then twice in SH-reducing buffer (50 mM

Tris-HCl pH 7.5, 100 mM DTT or alternatively 4% ß-mercaptoethanol). Wash fractions were

pooled and analyzed directly by SDS-PAGE/Western blotting.

Concentration of culture supernatant was achieved using Amicon Ultra-15 centrifugal filter

units, MWCO 10 kDa (Merck) or Centricon1 Plus-70 centrifugal filter units (Merck)

depending on the supernatant volume. Centrifugation speed and time were chosen according

to the specifications of the manufacturer.

Escherichia coli. Expression of polyhistidine-tagged fusion proteins in SHuffle1 T7

Competent E. coli cells was induced by lactose at 24˚C overnight. Cells were harvested, lysed,

and incubated with Ni-NTA beads (Qiagen) according to the manufacturer instructions;

beads were washed, and proteins were eluted with imidazole. Protein concentration was deter-

mined by Lowry assay using Folin reagent and BSA as standard.

SDS-PAGE and protein detection

Protein samples were separated on 6% SDS-PAGE according to the method of Laemmli [16].

For immundetection, proteins were transferred to a polyvinylidene difluoride membrane

(Immobilon-P; Millipore) using a semidry transfer unit (Hoefer TE77X semidry transfer unit).

Blocking of the membrane was carried out in PBS (pH 7.4) with 5% skim milk for 1 h at room

temperature or overnight at 4˚C. After a washing step of 10 min in PBS (pH 7.4) with 0.05%

Tween 20, membranes were incubated with mouse monoclonal anti-V5 antibody (1:5.000;

Clone SV5-PK1 Acris) in PBS (pH 7.4) with 0.05% Tween 20 and 0.5% BSA. Subsequent detec-

tion occurred via peroxidase-coupled sheep anti-mouse antibody (1:5.000; GE Healthcare) and

ECL Plus chemiluminescence substrate (Pierce) using a LAS-1000 CCD camera (Fuji Photo

Film).

Indirect immunofluorescence and wheat germ agglutinin staining

C. albicans yeast cells were fixed directly in suspension for 1 h at 30˚C by adding 37% formal-

dehyde solution to a final concentration of 3.7%. After fixation, cells were washed in phos-

phate-buffered saline (PBS; pH 7.4) and stained with 250 μg ml-1 FITC-conjugated wheat

germ agglutinin (Sigma-Aldrich) for 30 min at room temperature. After washing of unbound

FITC-WGA with PBS (pH 7.4), cells were immobilized on poly-L-lysine (0.1 mg ml-1, Sigma-

Alrich) coated glass slides for 20 min at room temperature. Blocking was carried out in PBS

(pH 7.4) with 2% bovine serum albumin for 1 h at room temperature or overnight at 4˚C. For

immunofluorescence, cells were stained with mouse monoclonal anti-V5 antibody (1:100;

Clone SV5-PK1, Acris) in Dako antibody diluent (Agilent) for 1 h at room temperature and

goat anti-mouse Alexa Fluor 555 antibody (1:400; Thermo Fisher) for 30 min at room
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temperature. Mowiol mounted slides were imaged using the 63x objective of a Zeiss Axio

Observer Z1 microscope and Axiovision software.

In vitro sterol-binding assay

The sterol-binding assay was performed as previously described by Im et al. [17]. For each

binding reaction 100 pmol purified protein was incubated with 100–500 pmol [3H]-cholesterol

in a final volume of 100 μl binding buffer (20 mM Tris, pH 7.5, 30 mM NaCl, 0.05% Triton X-

100). After incubation for 90 min at 30˚C, protein was separated from the unbound ligand by

adsorption to Q Sepharose anion-exchange beads (GE Healthcare). The beads were washed

with washing buffer (20 mM Tris, pH 7.5), proteins were eluted by the addition of 0.5 ml of

elution buffer (20 mM Tris, pH 7.5, 1 M NaCl) and the bound [3H]-cholesterol was quantified

by scintillation counting. For competition assays, 50 pmol or 500 pmol of unlabeled cholesterol

were included in the binding reaction, together with 50 pmol of [3H]-cholesterol. To deter-

mine nonspecific binding, the binding reaction was performed in the absence of added pro-

tein. Data were analyzed using PRISM software (GraphPad).

Yeast sterol export assay

Acetylation and export of sterols into the culture supernatant was examined as previously

described using heme-deficient yeast cells lacking the sterol deacetylase SAY1 [7, 18]. Mutant

cells with or without plasmid pRS416-RBE1 or pRS416-RBT4 were cultivated in the presence

of cholesterol/Tween-80-containing media and labeled with 0.025 μCi/ml [14C]-cholesterol

(American Radiolabeled Chemicals). Cells were harvested by centrifugation, washed twice

with synthetic complete media, diluted to an OD600 of 1 into fresh media containing non-

radiolabeled cholesterol, and grown overnight. Afterwards lipids were extracted from the cell

pellet and the culture supernatant using chloroform/methanol (1:1). Samples were dried and

separated by thin layer chromatography plate using silica gel 60 plates (Merck) and petroleum

ether/diethyl ether/acetic acid (70:30:2; per vol) as a solvent system. TLC plates were then

exposed to phosphorimager screens and radiolabeled lipids were visualized using a phosphori-

mager (GE Healthcare).

Sequence analysis and homology modelling

Multiple sequence alignments were generated using Clustal Omega [19] (www.ebi.ac.uk/

Tools/msa/clustalo) using default settings. 3D structure models of Rbe1p and Rbt4p were con-

structed using the web-based I-Tasser server (www.zhanglab.ccmb.med.umich.edu/

I-TASSER) [20]. For the homology modelling only the conserved CAP domain was used

(Rbe1p: residues F123 –L271; Rbt4p: residues F211 –Q358). The resulting models with the

highest C-scores, and therefore highest confidence, were used. PyMOL software was used to

visualize molecular protein structures.

Results

Localization of Rbe1p and Rbt4p in C. albicans
A striking feature of C. albicans is its ability to grow either as an unicellular budding yeast or in

filamentous pseudohyphal and hyphal forms. This morphological plasticity is an important

virulence determinant, as the hyphal form holds a key role in the infection process [21]. We

therefore analyzed the expression level and localization of Rbe1p and Rbt4p during yeast and

hyphae growth conditions. To facilitate immunological detection, a V5/His6-tag was fused to

the C-terminus of endogenous Rbe1p and Rbt4p.
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Western blotting of culture supernatant showed that both Rbe1p and Rbt4p migrated much

slower than deduced from their primary sequence (Rbe1p~ 32 kDa; Rbt4p~ 40 kDa) (Fig 1A).

Protein bands of varying molecular weight and intensity were detectable, which most likely

emerge due to glycosylation and/or protein complex formation. Using chemical and enzymatic

deglycosylation methods, we could indeed show that both Rbe1p and Rbt4p become O-glyco-

sylated, while Rbe1p is additionally N-glycosylated (S1 Fig).

In the supernatant of yeast cells three main signals were detected for Rbe1p, a very promi-

nent band at ~75 kDa and two weak and less defined bands at ~ 120 kDa and ~135 kDa (Fig

1A, lane 1), while only one faint band appeared for Rbt4p at ~120 kDa (Fig 1A, lane 5). In the

supernatant of hyphal cells only a weak ~75 kDa band for Rbe1p was detectable (Fig 1A, lane

3), while a more intense and smeary Rbt4p signal was visible between ~140 kDa– 240 kDa (Fig

1A, lane 7). These growth condition dependent patterns indicate that besides differential

expression, differential post-transcriptional modification seems to be an important feature of

Rbe1p and Rbt4p. In agreement with previous mass spectrometric data [3], higher levels of

Rbe1p were detected in the supernatant of yeast cells compared to hyphal cells, while Rbt4p

showed the opposite expression pattern. As expected for proteins with a secretion signal, the

levels of Rbe1p and Rbt4p in the cytoplasmic lysate were almost undetectable (S2 Fig).

Even though Rbe1p and Rbt4p lack potential GPI-anchor sites and transmembrane

domains, attachment to the cell wall by other means is conceivable [3, 22]. Therefore, in ad-

dition to analyzing the culture supernatant for the presence of tagged Rbe1p and Rbt4p, we

also included the disulfide-labile protein fraction of the cell wall in our analysis. Note that the

comparability between the different samples on the western blot is justified by taking equal

amounts of all fractions derived from the same number of cells cultured under identical con-

ditions, avoiding the use of unreliable loading controls for secreted or cell wall proteins.

Fig 1. Expression and localization of Rbe1p and Rbt4p in C. albicans. (A) Supernatant (S) and DTT-sensitive cell wall fraction (P) from C. albicans yeast

and hyphal cells were analyzed for the presence of V5-tagged Rbe1p and Rbt4p. An equal relative volume of each fraction was loaded in each lane and the

proteins were detected by immunoblotting with a mouse anti-V5 antibody. (B) Localization of V5-tagged Rbe1p in C. albicans yeast cells was assessed using

indirect immunofluorescence. Formaldehyde fixed cells were stained using a primary mouse anti-V5 antibody and a secondary Alexa Fluor 555 coupled goat

anti-mouse antibody (red). Additionally, N-acetyl-glucosamine was co-stained with FITC-conjugated wheat germ agglutinin (WGA, green). Scale bar: 5 μm.

https://doi.org/10.1371/journal.pone.0201932.g001
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Surprisingly, treatment of yeast cell debris with disulfide-reducing agents like beta-mercap-

toethanol or dithiothreitol (DTT) led to a strong release of tagged Rbe1p (Fig 1A, lane 2). This

disulfide bond-dependent localization of Rbe1p seemed to be very specific as it was absent in

hyphal cells (Fig 1A, lane 4) and not observed for tagged Rbt4p under identical growth condi-

tions (Fig 1A, lane 6, 8). The amount of Rbe1p solubilized by DTT was comparable or even

higher than the amount present in the supernatant. Furthermore, the band pattern correspond-

ing to tagged Rbe1p differed considerably from the supernatant fraction; an additional signal at

~90 kDa was detected and the band at ~135 kDa was more intense. As dimerization has been

observed for different CAP proteins [23–26], we wondered, whether the 135 kDa western blot

signal might be an Rbe1p homodimer. Using V5-tag affinity purification and mass spectrome-

try, we primarily detected peptides corresponding to Rbe1p in the 135 kDa band, confirming

that it is most likely an Rbe1p homodimer (S3 Fig and S4 Table). Remarkably, this dimerization

is unusually stable as it resists the stringent denaturating conditions of an SDS-PAGE.

To gain more precise insights into the localization of Rbe1p in C. albicans yeast cells, we

performed indirect immunofluorescence experiments. Fluorescence microscopy revealed a

polar localization of Rbe1p in the yeast cell wall (Fig 1B). In accordance with the results from

the western blot, no comparable fluorescence signal was present in hyphal cells or yeast cells

expressing V5/His6-tagged Rbt4p (S4 Fig). As Rbe1p seemed to be enriched at budding sites

(bud scars or birth scars) and these sites contain the N-acetyl-glucosamine polymer chitin, we

used fluorescein labeled wheat germ agglutinin (FITC-WGA) for co-localization. WGA binds

specifically to N-acetyl-glucosamine in bud scars but only weakly to chitin elsewhere in the cell

wall [27]. Rbe1p showed stable co-localization at sites of chitin deposition in yeast cells, con-

firming its enrichment at budding sites (Fig 1B). General chitin localization or deposition did

not seem to be influenced by Rbe1p, as an rbe1Δ deletion strain showed no difference in

FITC-WGA staining compared to its parental strain (S5 Fig).

Sterol binding and export function of Rbe1p and Rbt4p

The ability to bind and export sterols has been experimentally confirmed for different CAP

proteins [7, 9, 10]. Noteworthy, there are also examples of CAP proteins that do not show ste-

rol binding but have evolved other ligand binding specificities [8, 28]. As binding and seques-

tering of host sterols might influence virulence attributes by compromising host cell

membrane integrity or signal transduction, we wanted to investigate the ability of Rbe1p and

Rbt4p to bind sterols. To assess sterol binding, we expressed codon-optimized His-tagged ver-

sions of Rbe1p and Rbt4p in Escherichia coli and purified them via affinity chromatography on

nickel agarose beads. Purified protein was then used in an in vitro [3H]-cholesterol binding

assay with increasing amounts of radioligand [29]. For the assay cholesterol was chosen over

ergosterol, that represents the major sterol molecule in fungi, to enable the comparison with

previous sterol binding studies of CAP proteins. Measuring radioactivity showed saturable

binding of cholesterol by Rbe1p and Rbt4p with a dissociation constant KD of ~5,78 μM and

~3,3 μM, respectively (Fig 2A). Binding specificity was further validated in a competitive bind-

ing assay with unlabeled cholesterol. Including equimolar or excessive amounts of unlabeled

cholesterol in the binding reaction significantly decreased the amount of bound [3H]-choles-

terol for both proteins (Fig 2B), indicating successful competition of unlabeled cholesterol

with radioligand binding. Additionally, the extent of competition is comparable to the one pre-

viously observed for Pry1p from S. cerevisiae [11]. Hence, Rbe1p and Rbt4p are able to specifi-

cally bind cholesterol in vitro with micromolar affinity.

To test if Rbe1p and Rbt4p can also bind and export sterols in vivo, we expressed RBE1 and

RBT4 in heme-deficient S. cerevisiae cells lacking the sterol deacetylase Say1p, as well as the
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Fig 2. Rbe1p and Rbt4p bind cholesterol in vitro and rescue the sterol export defect of yeast cells lacking PRY1 and PRY2. (A) Purified Rbe1p and Rbt4p

bind cholesterol in vitro. Sterol binding was assessed using increasing amounts of [3H]-cholesterol (100–500 pmol) and 100 pmol of purified protein. Unbound

radioligand was separated from proteins, and the bound radioligand was quantified by scintillation counting. Data represent the mean ± SD of four

independent experiments. (B) Cholesterol binding specificity of Rbe1p and Rbt4p was assessed using 100 pmol purified protein incubated with 50 pmol of

[3H]-cholesterol in the presence of 50 pmol or 500 pmol unlabeled cholesterol. Competition results are plotted relative to the ligand binding of Rbe1p and

Rbt4p. Data represent the mean ± SD of three independent experiments. Statistical significance of data was analyzed by a multiple t-test. Asterisks denote

statistical significance (� P< 0.05; �� P< 0.001; ��� P< 0.0001). (C) Expression of RBE1 or RBT4 complements the sterol export defect of S. cerevisiae cells

lacking endogenous CAP proteins. pry1Δpry2Δsay1Δhem1Δ cells containing either an empty plasmid or a plasmid carrying RBE1 or RBT4 were radiolabeled
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CAP proteins Pry1p and Pry2p. These mutant cells are able to take up exogenous cholesterol

under aerobic conditions due to their heme deficiency, while the deletion of SAY1 and PRY1/

PRY2 leads to intracellular accumulation and blocked secretion of the acetylated cholesterol [7,

18]. Sterol export in the different strains can be quantified by labeling the cells with [14C]-cho-

lesterol and analyzing the ratio of intra- and extracellular cholesteryl acetate by thin layer chro-

matography [7]. Confirming the results of the in vitro binding assay, expression of either RBE1
or RBT4 in the S. cerevisiae pry1Δpry2Δmutant could rescue the block in cholesteryl acetate

export (Fig 2C). Quantification of export rates revealed that expression of RBE1 or RBT4
resulted in a significantly higher export index compared to the pry1Δ pry2Δmutant, indicating

that lipid export might be a conserved function of fungal CAP proteins (Fig 2D).

Despite this functional complementation, sequence similarity in the caveolin-binding motif

(CBM) is rather low between Rbe1p, Rbt4p and Pry1p. Some aromatic residues shown to be

important for sterol binding of Pry1p [11] are conserved in the Rbe1p primary sequence

(W202, F208), while none of the residues is conserved in Rbt4p (Fig 3B). Nevertheless, 3D

homology modeling of Rbe1p and Rbt4p showed that the CBM region of both proteins forms

surface accessible cavity structures, which are a prerequisite for sterol-binding [30] (Fig 3A).

Sterol binding and export function of S. cerevisiae Pry1p and Pry2p has been linked to lipid

proofreading and detoxification of small hydrophobic compounds like eugenol, a phenolic

compound present in plant essential oils [7]. However, in contrast to these findings, we could

not observe hypersensitivity of the C. albicans rbe1Δrbt4Δmutant in the presence of high euge-

nol concentrations (S6 Fig).

Discussion

Members of the CAP protein superfamily have emerged as novel virulence factors in fungi, but

remain a poorly characterized class of proteins [31, 32]. To expand this knowledge, we ana-

lyzed the localization and functional properties of the CAP proteins Rbe1p and Rbt4p from C.

albicans.
Our analysis revealed that Rbe1p can be attached to the yeast cell wall via disulfide bonds,

while Rbt4p is constitutively secreted under the experimental conditions used. This cell wall

association of Rbe1p was strongly dependent on yeast cell growth. In line with our results, dif-

ferent mass spectrometric analyses of the C. albicans yeast cell surface proteome have identified

peptides corresponding to Rbe1p [33, 34]. A study by Hernaez et al. used a combination of

trypsin and 5 mM DTT to extract and digest proteins located at the outer layer of the yeast cell

wall before doing mass spectrometry. Comparing the detected peptides after tryptic digest

with and without DTT, they interestingly only identified Rbe1 peptides in DTT-treated cells,

also indicating a disulfide-bond dependent localization of Rbe1p. Despite these results, Rbe1p

was mainly considered an extracellular protein and the observed cell wall association was

interpreted as an intermediate of the secretory pathway.

The precise mode of disulfide-dependent attachment is still unknown and could be medi-

ated by direct disulfide bond formation or protein-protein interaction. We also cannot fully

exclude the possibility that DTT-treatment might release non-covalently bound Rbe1p due to

increased cell wall permeability [35].

with [14C]-cholesterol and the extracted lipids from the cell pellet (P) and the culture supernatant (S) were separated by thin-layer chromatography. The

positions of free cholesterol (FC), cholesteryl acetate (CA) and steryl esters (STE) are indicated on the right. The asterisk marks the position of an unidentified

cholesterol derivative. (D) Export index indicating the relative fraction (exported CA/total CA) of cholesteryl acetate that is exported by the corresponding

mutant strains. Data represent the mean ± SD of two independent experiments. Statistical significance of data was analyzed by a multiple t-test. Asterisks

denote statistical significance (� P< 0.05; �� P< 0.001; ��� P< 0.0001).

https://doi.org/10.1371/journal.pone.0201932.g002
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As there are significant amounts of Rbe1p localized to the cell wall under yeast growth con-

ditions, it might be plausible to assume that this fraction is of physiological relevance. Rbe1p

might play a role in cell wall-associated processes, as Ene et al. found that a Δrbe1 strain grown

on lactate was more susceptible to cell wall-associated stresses like calcofluor white or high

osmolality [36]. However, there is no evidence for a direct function of Rbe1p during cell wall

construction or remodeling [3]. The exclusive localization of Rbe1p at chitin-rich budding

sites of C. albicans yeast cells might also indicate a role in immune evasion, as the exposure β-

1-3 glucan and chitin at these sites activates host pattern recognition receptors [37, 38]. In

agreement with enhanced killing of the Δrbe1Δrbt4 strain by neutrophils [3], Rbe1p might be

involved in masking PAMPs, affecting fungal recognition by phagocytes, but this needs to be

validated in the future.

A key finding of our work is that Rbe1p and Rbt4p can bind cholesterol in vitro and func-

tionally complement the sterol export defect observed in the S. cerevisiae pry1Δpry2Δmutant

in vivo. The affinity for cholesterol (Kd Rbe1~5.78 μM; Kd Rbt4 ~3.3 μM) is lower than the one

observed for Pry proteins in S. cerevisiae (Kd Pry1 ~ 0.7 μM; Kd Pry2 ~ 0.6 μM), but still in the

micromolar range, as reported for other cholesterol-binding proteins [30, 39, 40]. In agree-

ment with the observation that cholesterol-binding sites in soluble proteins always adopt cavity

or pocket-like structures to minimize solvent exposure [30], in silico homology modeling

showed that the CBM regions of Rbe1p and Rbt4p are able to form surface accessible cavities.

Based on our observations, we hypothesize that the sterol binding and export properties of

Rbe1p and Rbt4p primarily affect the extracellular milieu of C. albicans, rather than, intracellu-

lar sterol homeostasis or sterol detoxification processes. Proper sterol distribution is required

Fig 3. Sequential and structural comparison between different sterol binding domains. (A) 3D model showing the C-terminus of Rbe1p, Rbt4p and

Pry1p. Homology models for Rbe1p and Rbt4p were created using the web-based I-Tasser server, while the Pry1p structure represents PBD entry 5ete.

Residues forming the cholesterol binding cavity are shown as sticks and CBM residues are additionally colored in red. (B) Multiple sequence alignment

containing the C-terminal residues, including the CBM and CAP1/CAP2 motifs, of Rbe1p (C. albicans), Rbt4p (C. albicans), Pry1p (S. cerevisiae) and

Pry2p (S. cerevisiae). Residues of the CBM are shown in red.

https://doi.org/10.1371/journal.pone.0201932.g003
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for hyphal formation in C. albicans [41], but as the deletion of RBE1 and RBT4 has no influence

on morphology [3], both genes seem to be negligible in this context. In a competitive growth

assay using a collection of barcoded heterozygous C. albicans deletion mutants, RBT4 was

shown to affect the resistance against a synthetic ergosterol derivative [42]. This finding might

be in line with the observed sterol binding and export properties of Rbt4p, but this phenotype

has not been sufficiently validated using a homozygous mutant or the appropriate revertant

strain to draw a conclusion at this point. Binding or sequestering of host sterols might there-

fore be a better aspect trying to explain the virulence phenotype associated with RBE1 and

RBT4 deletion. In accordance with our hypothesis, cholesterol binding has been described as

an important feature of microbial virulence factors [43] and phagocytic neutrophils, which are

linked to the virulence phenotype of Rbe1p and Rbt4p, depend on a proper distribution of

cholesterol for adhesion, polarization and NADPH oxidase activation [44].

Supporting information

S1 Fig. Glycosylation of Rbe1p and Rbt4p. Supernatant (S) or DTT-sensitive cell wall fraction

(P) wa analyzed for the presence of V5-tagged Rbe1p and Rbt4p after enzymatic removal of N-

glycan with PNGase F or chemical removal of O-glycan using β-elimination. Before deglycosy-

lation, samples were dialysed against H2O to remove interfering components, and then treated

either with 2,000 units PNGase F (New England Biolabs) for 1 h at 37˚C or with the GlycoPro-
file™ ß-Elimination Kit (Sigma-Aldrich) for 14 h at 4˚C. After deglycosylation, samples were

directly separated by SDS-PAGE and detected by immunoblotting with a mouse anti-V5 anti-

body.

(TIF)

S2 Fig. Comparison between intra- and extracellular levels of Rbe1p and Rbt4p in C. albi-
cans. Supernatant (S) and cytoplasmic lysate (L) from C. albicans yeast and hyphal cells were

analyzed for the presence of V5-tagged Rbe1p or Rbt4p. The corresponding strains were

grown in SC-medium at 30˚C (yeast) or RPMI-medium at 37˚C (hyphae) for 5 h, the superna-

tant was concentrated using ultracentrifugation and the cells were lysed using bead beating.

An equal relative volume of each fraction was loaded in each lane of an SDS-PAGE and the

proteins were detected by immunoblotting with a mouse anti-V5 antibody.

(TIF)

S3 Fig. Purification and identification of the Rbe1p homodimer. (A) Enrichment of the

V5-tagged Rbe1p monomer and dimer after V5 affinity purification using the DTT-sensitive

cell wall fraction extracted from the V5-tagged C. albicans strain and the untagged control

strain. Elution fractions were separated by SDS-PAGE, stained with Coomassie Brilliant Blue

G-250 and the indicated bands at ~ 75 kDa (monomer) and ~ 135 kDa (dimer), including the

corresponding bands from the control, were excised from the gel and subsequently analyzed

by Nano-LC-MS/MS. (B) Comparison of the proteins identified by mass spectrometry in the

135 kDa band (dimer) of the Rbe1-V5 sample versus the corresponding band of the control

sample. Only proteins having a unique peptide count> 1 in either sample are shown. For the

complete list see S4 Table.

(TIF)

S4 Fig. Localization of Rbe1p and Rbt4p in C. albicans yeast and hyphal cells. Wild type C.

albicans (WT, SC5314) and strains expressing V5-tagged Rbe1p or Rbt4p were stained against

the V5-epitope using indirect immunofluorescence. To induce hyphal growth, an overnight

culture or the corresponding strains was inoculated in fresh RPMI-medium and grown for 5 h

at 37˚C. For yeast growth, cells were diluted in SC-medium and grown for 5 h at 30˚C.
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Formaldehyde fixed cells were stained using a primary mouse anti-V5 antibody and a second-

ary Alexa Fluor 555 coupled goat anti-mouse antibody (orange). Note that laser exposure

times were adjusted according to the strength of the fluorescence signal; 200 ms for yeast

Rbe1-V5, all other images 1.500 ms. Scale bar: 20 μm.

(TIF)

S5 Fig. Comparison of N-acetyl-glucosamine localization and deposition in C. albicans
wild type cells and Δrbe1 cells. Live C. albicans wild type cells or Δrbe1 cells grown in SC

medium at 30˚C were stained with FITC-conjugated wheat germ agglutinin (green) as

described in the Methods section and imaged by fluorescence microscopy. Scale bar: 20 μm.

(TIF)

S6 Fig. Influence of RBE1 and RBT4 deletion on the growth of C. albicans in the presence

of the plant oil eugenol. Cells of the indicated genotype were serially diluted 10-fold and spot-

ted onto YPD plates containing or lacking eugenol. Plates were incubated at 30˚C overnight.

(TIF)

S7 Fig. Original and codon optimized RBE1 (A) and RBT4 (B) sequences used for heterolo-

gous expression in E. coli. Modified codons are shown in red.

(PDF)

S1 Table. Strains used in this study. Name, genotype, parental strain and source of the strains

used in this study.

(PDF)

S2 Table. Primers used in this study. Restriction sites are underlined.

(PDF)

S3 Table. Plasmids created in this study.

(PDF)

S4 Table. Proteins identified by mass spectrometry. Peptide counts for the proteins identi-

fied in the monomer and dimer gel band of the Rbe1p-V5 sample and the control sample.

(PDF)
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