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ABSTRACT

Some popular methods for polymorphism and muta-
tion discovery involve ascertainment of novel bands
by the examination of electrophoretic gel images.
Although existing strategies for mapping bands
work well for specific applications, such as DNA
sequencing, these strategies are not well suited for
novel band detection. Here, we describe a general
strategy for band mapping that uses background
banding patterns to facilitate lane calling and size
calibration. We have implemented this strategy in
GelBuddy, a user-friendly Java-based program for
PC and Macintosh computers, which includes several
utilities to assist discovery of mutations and poly-
morphisms. We demonstrate the use of GelBuddy
in applications based on single-base mismatch cleav-
age of heteroduplexed PCR products. Use of software
designed to facilitate novel band detection can
significantly shorten the time needed for image
analysis and data entry in a high-throughput setting.
Furthermore, the interactive strategy implemented
in GelBuddy has been successfully applied to DNA
fingerprinting applications, such as AFLP. GelBuddy
promises to make electrophoretic gel analysis a
viable alternative to DNA resequencing for discovery
of mutations and polymorphisms.

INTRODUCTION

The present genomic era was made possible by the automated
determination of nucleotide sequences and restriction digest
fingerprints from electrophoretic gel images. Systems to per-
form these tasks were developed soon after the introduction of
large-format film scanners in the 1980s (1,2) and continue to
facilitate what would otherwise be a rate-limiting step in
sequence determination and assembly. Now a major challenge
of genomics is the discovery of single-nucleotide differences,

such as naturally occurring single-nucleotide polymorphisms
(SNPs) and induced point mutations (3–5). Many methods to
discover such differences are in use, among which are those
that compare differences in physical characteristics of DNA
fragments recognizable in images produced by gel electro-
phoresis and other technologies. However, recognition of
subtle differences between otherwise identical patterns is
potentially rate-limiting for these methods.

A popular strategy for SNP and mutation discovery is to
observe novel fragments produced by cleavage of a mismatch
between annealed DNA strands (6). Mismatch cleavage of
heteroduplexed DNA allows discovery of single-base differ-
ences in pooled samples (7). This is an especially valuable
feature for discovery of rare SNPs and induced mutations,
which are difficult and costly to detect by sequencing (5).
Software specifically designed for mapping novel fragments
found in electrophoretic gel images should greatly increase the
efficiency of mismatch cleavage analysis, making such a strat-
egy more generally applicable.

Here, we describe a software tool that is designed for mis-
match cleavage detection of single-nucleotide changes. Gel-
Buddy is an interactive system that automates the most tedious
aspects of the analysis. We introduce the use of background
bands to track lanes and to compensate for differences in
mobility between lanes. This information is used to map
novel bands identified by the user, calculate fragment lengths
and identify co-migrating bands for genotype characterization.
GelBuddy can generate text reports or post results over the
World Wide Web, and can be used as a stand-alone tool or as
an adjunct to an integrated server-based workflow manage-
ment system. The strategy used by GelBuddy is generally
applicable to other types of electrophoretic images, such as
those produced for DNA fingerprinting applications.

ALGORITHM AND METHODS

Lane tracking algorithm

Lane tracks are generated by detecting local maxima of
intensity profiles formed by vertically integrating pixel values
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over either a set of horizontal sectors or the entire image.
These data may be used to generate either segmented or
straight lane tracks. To construct segmented lane tracks, the
image is divided into horizontal sectors, features correspond-
ing to lanes are detected in each sector, features in neighboring
sectors are connected to form lane tracks, and incomplete lane
tracks are extended to the bottom and top of the image by
interpolation. To construct straight lane tracks, the entire
image is treated as a single sector, using the detected peaks
to determine the x-coordinate of each lane. In either case,
missing lanes are added to fill in gaps, and artifactual lanes
on the left and right sides of the image are eliminated to obtain
the number of lanes specified by the user.

After forming each intensity profile, a sharp cutoff low-pass
filter is applied to the intensity profile and local maxima are
recorded. The cutoff frequency is proportional to the number
of lanes specified by the user. Because this technique does
not require the determination of an intensity threshold, it is
relatively insensitive to variation in signal intensity between
images and between lanes in a single image. However, this
technique is sensitive to noise and filtration artifacts, which
result in the detection of artifactual features at the left and right
sides of the image. The lane tracks resulting from these
features are removed at the end of the lane-tracking process.

GelBuddy uses a simple heuristic to construct segmented
lane tracks from the peaks detected in each sector. Each lane
track begins as a peak in the center sector. The track is extended
toward the bottom of the image by adding a peak in the next
sector, only if there exists a peak, that is the mutual nearest
neighbor of the current lane endpoint. Thus, peak A in sector
k is connected to peak B in sector k + 1, only if B is the peak in
sector k + 1 closest to A and A is the peak in sector k closest
to B. The lane track is truncated if no mutual nearest neighbor
exists. This process is repeated until the bottom of the image is
reached and begins again at the center of the image to extend
each lane track toward the top of the image. Truncated lanes
are then extended one sector at a time using the positions of
adjacent non-truncated lanes until the top and bottom of the
image are reached.

At this point, the set of lane tracks constructed by the above
procedure may contain gaps (caused by missing lanes in the
source image) and artifactual lanes (caused by the detection of
spurious peaks). Missing lanes are filled in by computing the
mean distance between each pair of adjacent lanes and insert-
ing new lane tracks between each pair of lanes, whose distance
exceeds the overall mean lane separation by a factor of 3/4. A
two-channel electropherogram is constructed for each lane by
integrating intensity values within a 5-pixel wide horizontal
window centered on the lane track, and the total intensity of
each lane is calculated. Artifactual lanes at the left and right
sides of the image are removed by repeatedly pruning either
the leftmost or the rightmost lane (whichever is fainter) until
the desired number of lanes is reached.

Algorithm for calibration curve construction

In its simplest form, the calibration algorithm constructs
curves of equal fragment length by aligning signal patterns
in adjacent lanes. The algorithm takes as input the previously
constructed electropherogram for each lane and an initial
position y0. To calculate yk+1 from yk, intensity values from

a 128-pixel window centered on yk are extracted from the
electropherograms for lanes k and k + 1. Each array is nor-
malized to mean 0 and SD 1 to form the functions fk( y) and
fk+1( y), and the cross-correlation function

Corr f k‚ fkþ1ð Þ Dyð Þ ¼
X

�128<y<128

f k yk þ yð Þ f kþ1 yk þ yð Þ þ Dyð Þ

is computed for each lag Dy. The lag at which the cross-
correlation function is maximized is the amount by which
the signal of lane k + 1 must be shifted to best match the signal
of lane k (Figure 1).

Spurious correlation may be caused by reaction failure,
detector saturation or by the presence of bands in lane
k + 1 not present in lane k (or vice versa). We employ two
techniques to reduce the effect of such events. First, a limit L is
placed on the acceptable lag Dy. The cross-correlation is com-
puted for each lag |Dy| < L, and if the cross-correlation is
greatest at either endpoint (–L), the alignment for lane k + 1 is
discarded. Second, the procedure described above is repeated
to compute optimal lag Dy0 (|Dy0| < 2L), and cross-correlation
between lanes k and k + 2. The alignment for lane k + 1 is
discarded if the maximal cross-correlation between lanes k and
k + 1 is less than half the maximal cross-correlation between
lanes k and k + 2.

Optionally, successive points of the calibration curve may
be calculated by comparing each lane with a single template
lane [typically the leftmost signal lane, f0(y)] instead of the
signal from the previous lane [ fk(y)]. The calculation proceeds
as above, using the cross-correlation function

Corr f 0‚ f kþ1

� �
Dyð Þ¼

X

�128<y<128

f 0 y0 þ yð Þ f kþ1 yk þ yð ÞþDyð Þ:

Figure 1. Determination of the cross-correlation function from raw image data
for size calibration. The lag Dy maximizing the cross-correlation function
determines the offset between lanes. (A) Raw image data, rotated 90� right.
(B) Normalized intensity values for each lane. (C) Cross-correlation function.
Image is from the Seattle TILLING Project.
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We found that by using the leftmost lane as a template to
calculate all the offsets for each calibration curve, GelBuddy
was usually able to construct calibration curves accurate to
within the resolution of the gel. Using a single template across
the entire width of the gel allows for greater precision but is
sensitive to differences between the template lane and other
sample lanes of the image.

Determining fragment length of novel bands

The locations of two size standards (typically 200 and 700 bp)
at the left margin of the image are provided by the user. The
number of calibration curves, and the initial position y0 of each
calibration curve, is application-dependent (see Results). For
each calibration curve, the two size standards are used to
calculate a ‘virtual’ size standard (w, y0) for the leftmost
lane, using an exponential formula empirically derived for
use in the Perl program squint [(7); J. Henikoff, personal
communication]. The remainder of the calibration curve is
used to construct size standards (w, yk) for the remaining lanes.

To compute the fragment length of each novel band,
GelBuddy first locates the nearest lane and the two virtual
size standards in that lane closest to the y-coordinate of the
novel band. From this information, the fragment length is
computed using the formula described above.

GelBuddy implementation

GelBuddy was implemented using Java v1.4.2 and the Java
Advanced Imaging Library v1.1.2 (Sun Microsystems, Santa
Clara, CA), and has been successfully used in a production
environment on computers running Windows (Microsoft,
Redmond, WA) and Macintosh OS X (Apple, Cupertino,
CA) operating systems. The TiledImage and DisplayJAI
classes and ‘affine’ and ‘lookup’ operators provided by the
Java Advanced Imaging Library were used to implement
image display, magnification and dynamic range adjustment
tools comparable in performance with those implemented in
commercially available image editing software. GelBuddy
may be downloaded from http://www.gelbuddy.org.

RESULTS

Image acquisition and inspection

GelBuddy allows the simultaneous analysis of two images of
arbitrary size, limited by the amount of available virtual mem-
ory. We have applied GelBuddy to the LI-COR DNA analysis
system, which produces images of differentially end-labeled,
electrophoretically separated DNA molecules (8). The LI-COR
analyzer is a vertical slab-gel system, that generates two
16-bit grayscale TIFF images, typically 1632 pixels wide
and 4716 pixels tall, representing signals produced by
IRDye 700 and IRDye 800 fluorophores. GelBuddy can
read raw TIFF images or compressed 8-bit grayscale JPEG
images compiled by an image archiving system (7).

The user begins an analysis session by selecting two image
files. The aspect ratio of each image is adjusted to fit the
display, and the IRDye 700 image is presented in black-on-
white format with lowest-mobility fragments at the top of the
image (Figure 2). Toolbar buttons allow the user to choose
black-on-white or white-on-black display, alternate between

the two images, adjust the dynamic range of a single image or
synchronously adjust the magnification and aspect ratio of
both images. Analysis of single-channel data may be accomp-
lished by loading the same image into both channels.

Tracking, verification and correction of lanes

Lane tracks are generated when the user clicks on the ‘Show
Lanes’ button, specifies the number of lanes in the image
(typically 96), whether straight or segmented lane tracks are
to be constructed, and whether a single-channel image or a
summed composite image is to be used. Within a few seconds,
GelBuddy superimposes a set of lane tracks on the gel image
(colored vertical lines in Figure 2).

Our strategy for visual identification of lane-tracking errors
relies on a 200 bp DNA marker added to the sample in every
eighth lane. The tracks of lanes expected to contain the marker
are colored blue; other lane tracks are alternately colored red
and magenta. Missing and superfluous lane tracks (the most
common lane-tracking errors) are easily detected by failure of
the blue lane tracks to coincide with the 200 bp markers.

Several interactive tools are provided to allow correction of
lane-tracking errors. Most errors can be corrected by deleting
incorrect lane tracks and interpolating new lanes from the
remaining correct lane tracks. GelBuddy also allows the
user to drag and drop individual lane-tracking points or entire
lane tracks if necessary.

Size calibration

The user clicks on the ‘Show Calibration Information’ button
to immediately display the calibration ladder (Figure 3). At the
left margin of the image, two adjustable calibration points (200
and 700 bp) are displayed in blue and a 100–2000 bp calib-
ration ladder is displayed in green. The adjustable calibration
points are initialized to fixed positions relative to the top and
bottom of the image, and the positions of the remaining cal-
ibration points are interpolated from the two adjustable points.
The user drags the 200 and 700 bp markers to match DNA
ladder bands or other image features. As the user adjusts
the markers, GelBuddy rapidly recalculates and updates the
calibration ladder and superimposed calibration curves.
Mobility limit points may be adjusted by the user in a similar
manner.

Recording and grouping novel bands

The user records visually identified novel bands corresponding
to cleavage fragments by clicking on the image. GelBuddy
records the channel number, lane number, and inferred frag-
ment length of the band and groups co-migrating bands.
Because correct grouping is critical for genotype character-
ization applications, GelBuddy provides an ‘edit groups’ mode
to permit the user to override automatic signal grouping.

Reporting and posting results

GelBuddy can present results in an XML-based machine-
readable format or as text. The text report contains the
names of the source images, lane tracks, the list of recorded
signals, a list of grouped signals (corresponding to co-
migrating bands) and a list of genotypes (sets of lanes with
identical co-migrating bands). The machine-readable report
omits the list of genotypes but includes lane-tracking data
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and option settings, and may be saved locally and subseq-
uently reloaded to resume an analysis session or posted dir-
ectly to a web server for further analysis and archival storage.

Application to mutation detection for reverse genetics

We first applied GelBuddy to a reverse-genetic strategy called
TILLING (7). TILLING combines genome-wide chemical
mutagenesis with efficient SNP discovery to generate an
allelic series of point mutations. High-throughput TILLING
consists of a series of steps, beginning with PCR amplification
of pooled DNAs using end-labeled primers. PCR products are
heated and cooled to form heteroduplexes and novel fragments
are generated by cleavage with CEL I or other mismatch-
sensitive endonucleases (9). Fragments are separated by
electrophoresis, allowing visualization of labeled bands that
differ in mobility (Figure 2).

The generality of chemical mutagenesis makes TILLING
applicable to a wide variety of organisms. However, because
chemically induced mutations are relatively rare [1 in
105–106 bp (10)], thousands of individuals must be tested
in order to find an allelic series of mutations for a single
gene. Mutation discovery by heteroduplex mismatch cleavage
of pooled samples is remarkably efficient: using 8-fold pool-
ing, a 96-lane slab gel can detect single-base changes in a
1.5 kb region of the genomic DNA of 768 individuals, inter-
rogating over one million base pairs of sequence in a single
pass. Each mutation in the amplified region of the sample
results in a novel band whose mobility indicates the position
of the polymorphism. Faint signals may be visually distin-
guished from background bands by comparing adjacent lanes.

Sporadic mispriming products and other artifacts result in
bands that may be mistaken for cleavage products. To reduce
false positives, TILLING employs differentially labeled

Figure 2. Using GelBuddy to detect polymorphisms in 8-fold pooled Arabidopsis DNA. (A) Mode selection tools (zoom in, zoom out, edit signals, edit groups and
edit lanes). (B) Detail selection tools (show calibration curves, show lanes, show signals and select channel). (C) Window tools (resize image to fit window and view
log window). (D) Image adjustment tools (invert image, adjust black level, adjust gamma and adjust white level). (E) Adjustable upper limit marker. (F) Adjustable
700 bp calibration marker. (G) Recorded signals (foreground channel signals in red, background channel signals in blue). (H) Lane tracks. Blue lanes coincide with
200 bp marker DNA added to every eighth lane. (I) Adjustable 200 bp calibration marker. (J) Adjustable lower limit marker. Image is from the Seattle TILLING
Project.
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forward and reverse primers, which result in differentially
labeled cleavage fragments: one fragment appears as a band
in the IRDye 700 image and the other as a band in the IRDye
800 image. Analyzing both images during a single session
allows the user to distinguish true signals from artifacts by
flipping between the two images: the pattern of true cleavage
fragments is inverted in the IRDye 800 image. GelBuddy
automatically pairs the two fragments produced by mismatch
cleavage and calculates the sum of their lengths in base pairs
during report generation.

Once the user identifies novel bands corresponding to a
mutation, these bands must be mapped to a lane number and
inferred fragment length in order to determine the location of
the mutation and the sample (or pool) in which the mutation
was found. Prior to implementation of GelBuddy, TILLING
laboratories used the Perl program squint to record manually
compiled mutation data (7). To automate the data entry
process, this program was adapted to accept data posted by
GelBuddy, using the Perl module XML::Simple to parse

GelBuddy’s output (S. Kwong, personal communication).
The remainder of the database system, which compiles cus-
tomer orders, coordinates activity in the TILLING laboratory
and records experimental results, required no modification.

Application to SNP detection

We havealsousedGelBuddy tocharacterize naturallyoccurring
variation. EcoTilling uses the single-base mismatch discovery
method developed for TILLING, but instead of being pooled,
samples are combined with reference DNA from a standard
accession (11). Because naturally occurring polymorphisms
are more frequent than those produced by a single round of
chemical mutagenesis, EcoTilling generates many more cleav-
age fragments: typically a hundred or more per gel (Figure 3)
versus 1–10 for the mutation discovery gels described above.

Once such naturally occurring polymorphisms are found, it
is desirable to group individuals by genotype and sequence one
individual of each genotype. This does not require that the size

Figure 3. Identifying co-migrating bands to determine genotypes of unpooled DNA. Calibration curves are displayed in green and blue. Five sets of co-migrating
bands are indicated by connected boxes of various colors and one rare polymorphism is marked in red. Image is from the Seattle TILLING Project.
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of each cleavage fragment be determined precisely—indeed,
in genotyping applications calculating molecular length from
mobility can be avoided entirely (12). However, to identify
individuals with identical genotypes, it is necessary to cor-
rectly match co-migrating bands. We have found that smiling
and other gel imperfections in our gel images cause
co-migrating bands to appear at somewhat different vertical
positions in the gel image; as a result, automatically classify-
ing bands by vertical position alone is unreliable. Using the
pattern of background bands present in each lane to construct
per-lane calibration information allows GelBuddy to accur-
ately identify co-migrating bands, eliminating what was once a
tedious and error-prone step. We have used this strategy to
infer common haplotypes among different Arabidopsis acces-
sions (11).

Several implementation details facilitate the analysis of
TILLING and EcoTilling gel images. Segmented lane tracks
are constructed by default, as we have found that the lanes of a
TILLING image typically converge toward the top of the
image, and segmented lane tracks are necessary for accurate
band mapping. GelBuddy allows construction of calibration
curves only at the position of the lower (200 bp) and upper
(700 bp) size standards. This simplification is feasible because
TILLING applications do not require highly accurate fragment
length calculation and because TILLING images contain a
consistent, primer-specific pattern of background bands in
each lane. Calculating lane offsets using adjacent lanes
instead of a single template lane allows us to analyze images
in which the leftmost and rightmost lanes are poorly defined.

Also, percentage mobility is reported for compatibility
with squint. The range of percentage mobility is determined
by two mobility limit points (‘0%’, initially set to 1500 bp
and ‘100%’ initially set to 50 bp), which can be adjusted by
the user by dragging red markers at the left margin of the
image.

Analysis of DNA fingerprinting images

Although we developed GelBuddy for TILLING and Eco-
Tilling applications, the basic algorithms should be applicable
to lane calling and calibration of AFLP (13) and other elec-
trophoretic DNA fingerprinting images. Because these images
lack the consistent pattern of background bands present in
TILLING images, constructing de-smiling curves at the posi-
tions of the lower and upper size standards usually fails. To
remedy this problem, we added the ability to create several
calibration curves and to manually adjust the initial position of
each curve by dragging markers at the left margin of the
image. By interactively adjusting the vertical position of
these markers and inspecting the alignment of the superim-
posed calibration ladder with the image, a user can rapidly line
up co-migrating bands across the gel image. In this manner, we
were able to generate useful calibration curves for the 12 AFLP
images that we tested. These images cover a wide range of
signal strengths, lane counts and running conditions.

We also found that in 11 of the 12 images analyzed, using the
‘straight lanes’ option provided more accurate lane-tracking
results than the ‘segmented lanes’ option, a result we attribute

Figure 4. GelBuddy lane calling and calibration of a typical AFLP gel image. Red ‘X’ marks indicate four calibration curves constructed by GelBuddy. Red, green
and blue curves across width of gel indicate positions of equal mobility, interpolated from the calibration curves. Left: gel image of the full region of interest across all
56 lanes, where the straight lanes option was chosen. Right: an expansion of the boxed region of the left image displayed at a 1:1 pixel aspect ratio shows accurate
calibration of two highly polymorphic fragments that are two bases apart in the 250–300 bp range. The AFLP LI-COR gel analyzer image of sorghum DNA was kindly
provided by Patricia Klein (Texas A&M University).
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to the lack of lane curvature, lack of background bands and
scarcity of signal bands near the top of these images. We also
found that the exponential formula used for inferring fragment
length from relative mobility often led to increasing calib-
ration inaccuracies with increasing fragment length.

A typical example of an AFLP gel image after GelBuddy
lane calling and interactive calibration is shown in Figure 4.
Despite the complexity of the AFLP fingerprint pattern, where
most bands are represented in different sets of lanes, GelBuddy
is nevertheless able to draw curves of equal fragment length
throughout the gel (Figure 4, left). A closeup view of the same
gel at 1:1 pixel aspect ratio shows that calibration curves are
drawn with sufficient accuracy to allow base pair resolution
(Figure 4, right). Thus, the interactive features of GelBuddy
can be generally applied to fingerprinting applications, even
those that generate complex banding patterns.

DISCUSSION

We have described a strategy for the characterization of novel
bands in electrophoretic images that combines automated lane
detection, calibration and band mapping with visual identifica-
tion of image features. By using the information present in the
background bands of these images, lane tracks and calibration
curves can be constructed rapidly by relatively simple
algorithms, without the detection of individual background
bands and without requiring the presence of dedicated marker
lanes. We have also shown the applicability of this strategy to
general fingerprinting applications, such as AFLP. Further-
more, we have presented a tool implementing this strategy
and demonstrated its utility in the discovery of induced
mutations and naturally occurring polymorphisms.

GelBuddy is a practical PC and Macintosh tool used on a
daily basis in high-throughput TILLING laboratories. Further
applications for the detection of mismatch cleavage products
are envisioned. For example, there is a growing demand for
technologies that can economically discover rare SNPs, which
have been implicated in common human diseases (14). Mis-
match cleavage is a highly suitable strategy for the discovery
of rare heterozygous SNPs in individual and pooled DNA
samples. Used as a prescreening method, it can greatly reduce
the amount of resequencing that needs to be done. As mis-
match cleavage strategies are further developed and applied to
different gel and capillary platforms, GelBuddy can be adapted
to serve as a general tool for SNP and mutation discovery.

GelBuddy takes advantage of the visual pattern recognition
abilities of experienced users to identify novel bands and
calibration standards. In principle, these tasks could also be
automated, but the user would still need to visually review and
possibly correct the results. Since only two calibration points
must be adjusted and only a few signals must be recorded, little
time would be saved by automated detection of these features
in a TILLING image. However, if EcoTilling becomes widely
used for the detection of rare polymorphisms, a fully auto-
mated gel reading tool will be desirable. The algorithms and
user interface elements described in this paper provide much
of the functionality such a tool will require.
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