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Abstract: MicroRNAs (miRNAs) are a recently discovered group of small noncoding 

RNAs that regulate gene expression post-transcriptionally. They are highly expressed in 

cells of the immune system, as well as in the central nervous system, and they are 

deregulated in various neurological disorders. Emerging evidence underlines an 

involvement of miRNAs in the pathogenesis of Multiple Sclerosis (MS). A number of 

miRNAs have been found to be dysregulated in blood cells from MS patients, in brain 

lesions, as well as in biological fluids such as serum and plasma. Despite miRNA altered 

expression likely showing a high tissue specificity, some profile similarities could be 

observed for certain miRNAs such as miR-326—such as upregulation in both active 

lesions and blood—though not for others such as miR-323, which demonstrated 

upregulation in whole blood, active brain lesions, and T-reg cells, but not in the serum of 

MS patients. In this review, the possible role of miRNAs in MS pathogenesis will be 

discussed according to all the available literature, with a particular emphasis on the 

possibility of considering extracellular miRNAs as a new source for both biomarker 

identification and therapeutic target discovery. 
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1. Introduction 

MicroRNAs (miRNAs) are a class of small noncoding RNAs which have recently been discovered 

to be regulatory modulators of gene expression post-transcriptionally, either by targeting mRNA 

degradation or by inhibition of protein translation [1]. miRNAs directly modulate the expression of 

regulatory proteins that are required for normal development and function of the immune system. 

miRNAs have been estimated to roughly target 33% of human genes, highlighting their importance in 

gene regulation. miRNAs are expressed as 21–23 nucleotide RNA molecules initially transcribed by 

RNA polymerase II and III as long primary miRNAs (pri-miRNAs). Pri-miRNAs are processed in the 

nucleus into one or more precursor miRNAs (pre-miRNAs) by the enzyme Drosha. Pre-miRNAs are 

exported in the cytoplasm by exportin-5 and further processed by another enzyme Dicer into mature 

miRNAs, which is double stranded (miRNA duplex). The miRNA duplex is unwound and a strand 

(guide strand) is incorporated into the RNA-induced silencing complex (RISC), which contains 

another core component, Argonaute protein, while the other strand is degraded. In this complex, 

miRNAs lead to gene expression downregulation through two mechanisms: translational inhibition and 

target mRNA cleavage [1,2] (Figure 1). It has been shown that an individual miRNA is able to control 

the expression of more than one target mRNA and that each mRNA may be regulated by  

multiple miRNAs. 

miRNAs play important roles in various biologic processes such as cell proliferation, development, 

differentiation, metabolism, apoptosis, angiogenesis, inflammation and immunity [3]. Aberrant 

miRNAs’ expression and function are associated with several human diseases, including cancer, 

neurodegeneration and autoimmunity [2,4,5]. 

Figure 1. Biogenesis of human miRNAs. miRNAs are transcribed by RNA polymerase II 

and III in pri-miRNAs. pri-miRNAs are processed into pre-miRNAs by Drosha in the 

nucleus. Exportin 5 transports pre-miRNAs in the cytoplasm, where they are further 

processed by Dicer into mature double stranded miRNAs. One strand is incorporated in  

the RISC complex and the other is degraded. In this complex, miRNAs regulate  

gene expression. 
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Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous  

system (CNS) among young adults. Its pathogenesis is only partly understood. It is believed that the 

disease process starts with increased migration of autoreactive lymphocytes across the blood–brain 

barrier (BBB), leading to axonal demyelination of neurons (lesions). Autoreactive T cell-mediated 

autoimmune response to myelin antigens causes inflammation, which in turn may lead to axonal 

degeneration contributing to the disability of patients with MS [6,7]. The cause of MS is not clear, but 

according to current data, the disease develops in genetically susceptible individuals with the 

contributions of environmental factors, such as infection, sunlight and vitamin D [8]. The clinical 

course of MS is extremely heterogeneous. The most common form is relapsing–remitting MS 

(RRMS), which affects more than 80% of MS patients. It is characterized by relapses of neurological 

dysfunction followed by periods of remission, in which symptoms improve or disappear. Over time, 

RRMS may develop into secondary progressive MS (SPMS) with slowly progressive neurological 

decline. Approximately, 15% of MS patients exhibit a more progressive disease without remission, 

namely, primary progressive MS (PPMS) [9]. 

The knowledge about how the immune system in MS patients is controlled differently than in 

unaffected individuals is still in its infancy. Thus, it is very useful to understand the functional 

significance of miRNAs with respect to MS pathogenesis. To this aim, this review, basing its 

proposals on the currently available data, will focus on the potential roles of miRNAs in MS, paying 

particular interest to the specific blood and brain lesions miRNA profiles and on their potential for the 

development of new drugs. 

2. miRNAs and the Immune System 

miRNAs, which control several aspects of immunity from the development and function of 

granulocytes, monocytes, macrophages, dendritic and natural killer cells [2], to the differentiation and 

activation of T and B cells [10], are also involved in MS pathogenesis. 

The pioneer study about the role of miRNAs and T cells in MS was described in the paper by the 

group of Du et al. [11]. They identified miR-326 to be associated with interleukin-17 (IL-17) 

producing T-helper CD4
+
 cells (Th-17 cells), which are a subset of the effector helper T cells 

necessary for clearing foreign pathogens and are involved in the pathogenesis of chronic autoimmune 

diseases, including MS [12]. They demonstrated that miR-326 was over-expressed in Th-17 cells of 

patients with RRMS and promoted Th-17 differentiation, inhibiting Ets-1, a negative regulator of  

Th-17 differentiation [12]. 

Lindberg et al. [13] analyzed the expression of 365 miRNAs in CD4
+
, CD8

+
 T cells and B cells of 

peripheral blood of RRMS patients compared with healthy volunteers. Among the miRNAs 

considered, miR-17-5p, miR-92, miR-193a and miR-497 were found to be dysregulated in MS 

patients. In particular, miR-17-5p was upregulated in CD4
+
 cells from MS patients. miR-17-5p belongs 

to the miR-17-92 cluster that have roles in the development of autoimmune and lymphoproliferative 

diseases in mice [13]. miR-92 itself was found to be downregulated in B cells of patients with MS. A 

possible pathway, regulated by miR-17-92 cluster, is PI3K/Akt pathway, which regulates different 

stages of lymphocyte development, activation and survival [14]. miR-193a, which controlled the 

activation of caspase cascade [15], was dysregulated in CD4
+
 T cells in MS patients. Moreover,  



Int. J. Mol. Sci. 2012, 13 13230 

 

miR-497 was upregulated in CD4
+
 T cells and B cells, but was found to be downregulated in CD8

+
 T 

cells from MS patients versus controls. Very little is known about the function of miR-497 in 

autoimmune diseases or the immune system. Possible target genes could be cadherins, T cell activation 

and Wnt pathway genes, but none of these was experimentally validated [16]. 

De Santis et al. [17] performed a genome-wide expression analysis of miRNAs in regulatory T 

(Treg) CD4
+
cells that lose their capacity to suppress the activation of the immune system and maintain 

homeostasis and tolerance to self-antigens in the course of MS [17]. Among the 723 human miRNAs 

tested, they found miR-106, miR-25, miR-19a and miR-19b significantly upregulated in Treg cells of 

MS patients versus controls. These miRNAs modulate the TGF-β signaling pathway, silencing the  

cell cycle inhibitor CDKN1A (p21) and the pro-apoptotic geneBCL2L11 (BIM) [18]. They speculated 

that the disruption of TGF-β pathway, involved in the maintenance of self-tolerance and T cell 

homeostasis, may be one way by which miRNA alteration promotes MS development [19]. 

In another study, miRNA profile of purified naive CD4
+
 T cells was analyzed. Authors focused 

their attention on this T cell subset in order to elucidate the mechanism by which CD4+ cell were 

induced to differentiate into pro-inflammatory phenotypes in MS patients. MiR-128 and miR-27b were 

increased in naive CD4
+
 T cells while miR-340 was increased in memory CD4

+
 T cells of patients 

with MS. Guerau-de-Arellano et al. [20] demonstrated that the dysregulated miRNAs could suppress 

the Th2 pathway through repression of BMI1 and IL-4 and their overexpression may mean a 

predisposition to the development of a Th1 response and autoimmunity in MS patients [20]. 

3. Blood and Brain Lesions miRNA Profile 

Several studies performed miRNA profiling in MS and non-MS control subjects using peripheral 

blood mononuclear cells (PBMC) [21–23], whole blood [24,25], and brain lesions [26]. All reports 

showed altered miRNA expression profiles in MS patients compared to control subjects. Some 

discrepancies, however, were observed between the miRNAs that were identified as dysregulated in 

these studies. This could be partly attributed to differences in the studied material, or to differences in 

the miRNA level quantification methods (mainly qRT-PCR or microarray). The number of miRNAs 

analyzed appears very different according to the different studies. Moreover, patients under different 

treatment conditions were often included, and this could have influenced the results. 

Otaegui et al. [21] examined the expression patterns of 364 miRNAs in PBMC from MS patients in 

the active phase of disease, in the remission phase, and in healthy controls. They found a specific 

miRNA signature of the relapse phase consisting in a strong dysregulation of miR-18b and miR-599, 

whereas a strong dysregulation of miR-96 levels was observed in the remission phase. Interestingly, 

the genes targeted by miR-96, are involved in immunological pathways such as the interleukin 

signaling pathway. 

Fenoglio et al. [22] focused on immunologically relevant miRNAs, such as miR-21, miR-146a  

and -b, miR-150 and miR-155, and investigated their respective levels in PBMC from untreated MS 

patients compared with controls. A statistically significant increased expression of miR-21, miR-146a 

and -b was observed in RRMS patients as compared with controls. In contrast, no differences were 

found in the expression levels of both miR-150 and miR-155, highlighting the possibility of defining 

different disease entities with specific miRNA profiles. 
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Martinelli-Boneschi and [23] collaborators investigated the expression profile of 1145 miRNAs in 

PBMC from MS patients, some of them under treatment, and control subjects, finding a total of 104 

dysregulated miRNAs in MS patients compared with controls. Best hits, let-7g and miR-150, were 

successfully replicated in a second independent population [23]. 

Keller et al. [24] investigated the expression levels of 866 miRNAs by using microarray analysis in 

peripheral blood samples of 20 patients with RRMS and 19 healthy controls. They identified  

165 miRNAs significantly dysregulated in patients compared with controls. Further, they identified 

miR-145 as the best miRNA marker since it allowed the discrimination of MS from controls with a 

specificity of 89.5%, a sensitivity of 90%, and an accuracy of 89.7%. This study was one of the first to 

explore miRNA expression profile in blood as a biomarker for MS. 

Cox et al. [25] performed a miRNA microarray analysis in peripheral blood samples of  

59 untreated patients and 37 controls and found in the entire MS population a specific downregulation 

of miR-17 and miR-20a. Moreover, the same authors demonstrated that these miRNAs modulate T cell 

activation genes in a knock-in and knock-down T cell model and that the same T cell activation genes 

are also upregulated in MS, highlighting new approaches for therapy. 

Specific miRNA profiles of both active and inactive MS lesions have been quantified in a seminal 

study performed by Junker et al. [26]. White matter lesions were obtained from human autopsy tissue 

and the expression levels of 365 miRNAs have been determined. 

These authors found a specific miRNA signature in active or inactive brain lesions. In particular, 

miR-155, miR-326 and miR-34a were found to be upregulated in active MS lesions in comparison 

with inactive lesions or normal brain white matter. Interestingly, these miRNAs all target CD47,  

a regulatory membrane protein found to be downregulated in phagocitically active MS brain  

lesions [26]. 

4. Extracellular miRNA Profile 

Cell-free miRNA can be detected in several human body fluids including plasma, serum, urine, and 

saliva [27,28]. Some miRNAs circulating in the blood have been identified as biomarkers in different 

human diseases such as cancer, cardiovascular diseases and brain injury [29,30] because they correlate 

with disease activity and prognosis, particularly in cancer [29,31]. Interestingly, circulating miRNAs 

are exceptionally stable in biological fluids, suggesting that miRNAs are released from cells in 

membrane-derived vesicles (exosomes) that protect them from blood RNase activity [29]. This 

evidence strongly suggests the utility of circulating miRNA as a potential clinical biomarker. 

Until now, only one recent report has attempted to investigate extracellular miRNA levels in plasma 

samples from a cohort of MS and control subjects [32]. In particular, the authors carried out a 

microarray analysis of over 900 known miRNA transcripts from plasma samples collected from four 

MS individuals and their healthy controls matched to them in terms of gender and ethnicity. 

Six out of 900 miRNAs tested were found to be significantly upregulated (miR-614, miR-572,  

miR-648, miR-1826, miR-422a and miR-22) and one plasma miRNA (miR-1979) significantly 

downregulated in MS patients.  

Interestingly, both miR-422a and miR-22 have previously been implicated in MS [16,19,24,26]. In 

these previous studies, miR-422 was found to be upregulated in whole blood from RRMS samples 
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compared to healthy controls [24] and downregulated in B-cell lymphocytes collected from RRMS 

patients compared to healthy controls [16]. Similarly, miR-22 expression was found to be increased in 

MS regulatory T cells, CD4 + CD25 + T cells, [19] and in MS active brain lesions, as well [26]. 

The reasons for these discrepancies could be related to the specific miRNA profile of the different 

tissues considered which could reflect the various biological effects for the transcripts in the cell type 

investigated [16].  

Preliminary results from our laboratory examined a panel of 84 well characterized miRNAs in a 

serum from a cohort of MS samples compared with healthy controls and found significantly decreased 

expression levels of miR-15b, miR-23a and miR-223 in PPMS samples compared with controls [33]. 

Target prediction based upon TargetScan 6.1 (Whitehead Institute for Biomedical Research—MIT: 

Cambridge, MA, USA, 2012), www.microRNA.org and www.pictar.org websites led to the 

identification of several target genes of possible relevance to MS pathology. Both miR-15b and  

miR-23a target the FGF-2 gene, a member of the fibroblast growth factor family. FGF-2 protein has 

been implicated in several biological processes, such as limb and nervous system development, wound 

healing, and tumor growth [34]. FGF-2 levels are reported to be elevated in the CSF of MS patients, 

particularly those with the active disease [35], and the gene was found to be differentially expressed in 

active and chronic MS lesions in post-mortem tissue [34], suggesting FGF-2 as a marker of 

inflammation in MS lesions. 

Another interesting target gene of miR-15b is KIF-1B (Kinesin family member 1B), which encodes 

a motor protein that transports mitochondria and synaptic vesicle precursors. The KIF-1B gene was 

extensively investigated in the context of MS as a possible gene influencing MS susceptibility, though 

results remain controversial [36–42]. Among the genes targeted by miR-223 is the transcription factor 

mef-2c (myocyte enhancer factor 2C). Mutations and deletions at this locus have been associated with 

severe mental retardation and epilepsy [43]. 

miR-223 plays a role in the regulation of granulopoiesis by targeting mef-2c [36] and modulates the 

NF-κb pathway. Thus its downregulation could modulate immune inflammatory responses [44].  

miR-223 was reported to be overexpressed in naive T cells of rheumatoid arthritis patients [45]. 

Several previous reports have shown a dysregulation of miR-223 in MS patients. Specifically,  

miR-223 was found to be upregulated in the blood [24], and in T regulatory cells from MS compared 

to healthy subjects and in active MS lesions compared to normal CNS areas in control subjects [26]. In 

contrast, in our preliminary study, we observed a downregulation of circulating miR-223 in the sera of 

MS subjects compared to controls. The reason for this discrepancy may be attributable to the  

cell-based versus circulating tissue tested. 

Current knowledge of the biological significance of cell-free miRNA, especially in respect to 

intracellular miRNA, is still very limited. However, our preliminary findings could suggest that 

cellular miRNAs and miRNAs isolated from serum could be inversely correlated. 

These are the very first investigations looking at the detection of miRNA levels in serum and 

plasma. These preliminary results suggest that circulating miRNAs could be of value in the research of 

novel biomarkers for MS. 
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5. miRNAs and Genetics 

Genetic factors have long been demonstrated to play a role in disease susceptibility of MS. To date, 

the human leukocyte antigen (HLA) locus shows the strongest and most convincing association with 

MS susceptibility. The HLA genes are located in the major histocompatibility complex (MHC) region 

on chromosome 6p21.3. These genes encode highly polymorphic cell surface glycoproteins, which 

play roles in the self and nonself antigen recognition by the immune system [46]. In recent years, 

genome-wide association studies (GWAS) have identified 52 other MS risk loci, which are not 

associated with the HLA region. Most of these MS-associated loci are located close or inside genes, 

which have immunological functions [47]. 

Recently, several reports have shown that genetic alterations could influence miRNAs functions. 

Since miRNA biogenesis and target selection is highly sequence dependent, germline sequence 

variations (such as single nucleotide polymorphisms, SNPs) and post-transcriptional base modifications 

in either miRNA or miRNA-target site, could have profound effects on miRNA activity. These  

effects could be direct or indirect: direct effects are due to the presence of SNPs in the pri-miRNA,  

pre-miRNA or mature miRNA sequences and could possibly result in the impairment or enhancement 

on miRNA processing or function. Conversely, indirect effects involve SNPs in miRNA promoter 

sequences that could influence transcription or SNPs in mRNA sequences that create or destroy a 

target site [48]. Little is known about how genetics influences miRNA genes and consequently their 

roles in the pathogenesis of MS. There have been at least two studies that investigated the genetic 

association between miRNAs and MS [22,49]. 

Fenoglio et al. tested rs2910164, in the miR-146a gene, for association with MS [22]. miR-146a 

levels were found to be increased in other autoimmune diseases such as rheumatoid arthritis and 

psoriasis [50]. Moreover, miR-146a was overexpressed in regulatory T (Treg) cells, involved in the 

control of self-reactive T cells [51], a process which appears to be impaired in MS. They did not detect 

any differences considering both allelic and genotypic frequencies in patients versus controls. In 

addition, no differences were seen after stratifying for gender or disease subtype, however, the study 

was insufficiently powered to be definitive. 

Paraboschi et al. [49] focused their attention on the role of miR-155 in MS susceptibility, 

genotyping four SNPs covering a genomic region of 19 kb located in close proximity to the miR-155 

gene and its precursor BIC (the B-cell Integration Cluster). miR-155 is a key regulator in the 

development, maturation and function of different immune cells, such as Th1, Th2, B and Treg  

cells [2]. Murugaiyan et al. [52] demonstrated that miR-155 conferred susceptibility to experimental 

autoimmune encephalomyelitis, influencing both Th1 and Th17 effector subsets and contributing to 

autoimmune pathology [51]. Allele and genotypic frequencies between MS patients and controls were 

tested, but no statistically significant associations were found. However, SNP rs2829806 showed a 

weak trend towards a significant association. They also analyzed the haplotype frequency distributions 

in MS cases and controls, considering three adjacent SNPs across the region at a time. The GTT 

haplotypewas over-represented in MS patients compared to controls, thus resulting associated with the 

disease status. This haplotype confers a 1.36 fold increased genetic risk of developing MS. Other two 

haplotypes, determined by the same polymorphisms, resulted significantly associated with the disease 

but they are quite rare in the analyzed population. However, the study did not reach the adequate 
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power to demonstrate effective associations. Although further studies are needed to understand the 

functional effect of these variants on MS pathogenesis, these preliminary data show that SNPs 

affecting the expression of miR-155 may directly contribute to MS susceptibility [49]. 

6. MiRNA Therapeutic Potential  

A novel and interesting approach in the development of a therapeutic strategy in the regulation of 

pathogenic gene expression is represented by the targeting of specific miRNAs. Recent findings 

suggest that it may eventually be possible to treat some neurological disorders by restoring or 

inhibiting miRNAs altered by disease pathology [52,53]. At present, one of the most promising 

methods of miRNA manipulation is represented by the use and delivery of modified oligonucleotides 

mimicking or inhibiting specific miRNA. Furthermore, the approach of using antisense oligonucleotides 

to bind and disrupt endogenous miRNAs, in some cases named “antagomirs” or “antiMirs”, has been 

used in vivo in several systems [54] for the repression of specific transcripts. A major issue in these 

efforts is to develop oligonucleotides able to be extremely efficient in vivo without significant toxicity. 

Locked nucleic acids (LNA) would be suitable to this purpose since they represent a family of 

conformationally locked nucleotide analogs that are relatively resistant to nuclease activity [55]. A 

relevant issue, however, remains the effective delivery of these molecules to the living organism, 

articularly when neurological disorders are considered, due to the relative difficulty in delivery 

modified oligonucleotides across the BBB. Recent efforts have also been directed toward developing 

small-molecule drugs able to influence miRNAs biogenesis or function [56]. Compounds able to 

disrupt miRNA biogenesis have recently been identified [57]. 

However, there is little evidence so far for the effects of the selective modulation of specific 

miRNAs in MS pathology [12,26]. 

As previously discussed, miR-326 levels have been found abundant in blood cells [12] and active 

lesions in patients with MS [26], promoting also the differentiation of Th17 cells that exert a pivotal 

role in antimicrobial defense at epithelial barriers and are also thought to be involved in MS 

pathogenesis [58,59]. Du et al. [12] recently observed that in vivo silencing of this miRNA in EAE 

resulted in a reduction in the number of Th17 cells and a less severe form of disease. Conversely, the 

same authors found that the overexpression of miR-326 led to an increase in the number of the Th17 

cells and more severe EAE. Another interesting study by Murugaiyan et al. [26] focused on miR-155, 

which is induced in macrophages and dendritic cells after exposure to a variety of inflammatory 

cytokines such as INF-β, INF-γ and TNF-α and was already found to be elevated in MS brain  

lesions [26]. In this study Murugaiyan showed that miR-155 expression was increased in CD4
+
T cells 

in EAE and that miR-155
−/−

 mice had a delayed course and less severe disease with less inflammation 

in the CNS. 

These authors underlined in their conclusion that the reduction of clinical severity in EAE by the 

administration of anti-miR 155 treatment was specifically observed early, before and after the 

observation of clinical symptoms, thus suggesting miR-155 as a new therapeutic target for intervention 

in MS. However, whether silencing of both miR-326 and miR-155 can be translated into humans for 

the treatment of MS still remains to be verified. 
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7. Treatment Effects on miRNA Profile 

Some evidence recently arose about the influence of some common drugs used in MS on specific 

miRNA levels. In particular, two papers considered this interesting issue for the first time. The first 

study from Waschbisch et al. [60] analyzed the expression of selected miRNAs known to be involved 

in the regulation of the immune responses in 74 patients affected with RRMS and 32 healthy controls. 

Among patients, 36 subjects were treatment naive, the remaining treated with immunomodulatory 

drugs, 18 treated with INF-beta and 20 under Glatiramer Acetate (GA) treatment [60]. They found 

miR-326, miR-155, miR-146a and miR-142-3p expression levels dysregulated in PBMC from patients 

compared to controls and particularly decreased expression levels of miR-146a. miR-142-3p was 

observed in GA treated patients, whereas no difference was observed in INF-beta treated patients. 

Interestingly, the miRNAs found to be dysregulated in this study were already found to be involved in 

Th17 differentiation (miR-326 and miR-155), in the regulation of the immune tolerance (miR-142.3p 

and miR146a) and in the innate immunity (miR-146a). According to these results, GA treatment 

seemed to restore the levels of miR-142-3p and miR-146a. The second study was recently performed 

by Sieves et al. and compared the expression of 1059 miRNAs in B lympocytes from 10 untreated and 

10 natalizumab-treated RRMS patients and 10 healthy controls [61]. 

Forty-nine miRNAs appeared to be downregulated in untreated MS patients compared with 

controls. In particular, they found a distinct signature of 10 differentially expressed miRNAs in 

natalizumab-treated patients compared with untreated patients. The most dysregulated were two 

clusters: miR-106b-25 and miR-17-92. Further, miRNA-mRNA interaction analysis performed 

revealed B cell receptor, phosphatidyl-inositol-3-kinase (PI3K) and phosphatase and tensin homology 

(PTEN), signaling as the key affected pathways. 

8. Conclusions  

The recent discovery of an involvement of microRNAs in MS opens a new field in the research  

of new therapeutic targets. After an initial poor overlap between results from the very first studies, 

recent studies suggest a role for specific miRNA, such as miR-326, miR-155 and miR-223, in  

MS pathogenesis. 

Preliminary studies have started to analyze the possible genetic contribution of miRNA loci 

variability in MS, suggesting that the research on miRNAs has finally begun to be approached in a 

more comprehensive and definitive manner. 

Dysregulated miRNA levels in biological fluids, such as plasma, serum or blood, could represent a 

new source of biomarkers in MS that could be helpful for disease prognosis and for discrimination of 

clinical subtype, thereby aiding therapeutic decisions or the monitoring of therapeutic effects. The 

discovery of MS biomarkers should greatly improve the diagnosis and management of MS and, in this 

context, miRNAs could have great value for the research of new therapeutic targets. 
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