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A B S T R A C T   

Recently, studies have shown that immune checkpoint-related genes (ICGs) are instrumental in 
maintaining immune homeostasis and can be regarded as potential therapeutic targets. However, 
the prognostic applications of ICGs require further elucidation in low-grade glioma (LGG) cases. 
In the present study, a unique prognostic gene signature in LGG has been identified and validated 
as well based on ICGs as a means of facilitating clinical decision-making. The RNA-seq data as 
well as corresponding clinical data of LGG samples have been retrieved utilizing the Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ICG-defined non-negative 
matrix factorization (NMF) clustering was performed to categorize patients with LGG into two 
molecular subtypes with different prognoses, clinical traits, and immune microenvironments. In 
the TCGA database, a signature integrating 8 genes has been developed utilizing the LASSO Cox 
method and validated in the GEO database. The signature developed is superior to other well- 
recognized signatures in terms of predicting the survival probability of patients with LGG. This 
8-gene signature was then subsequently applied to categorize patients into high- and low-risk 
groups, and differences between them in terms of gene alteration frequency were observed. 
There were remarkable variations in IDH1 (91% and 64%) across low-as well as high-risk groups. 
Additionally, various analyses like function enrichment, tumor immune microenvironment, and 
chemotherapy drug sensitivity revealed significant variations across high- and low-risk pop-
ulations. Overall, this 8-gene signature may function as a useful tool for prognosis and immu-
notherapy outcome predictions among LGG patients.   

1. Introduction 

In children, gliomas are the most common primary solid tumor of the central nervous system, with a prevalence of around 6 per 
100,000 [1]. Based on the World Health Organization’s 2021 grading criteria, gliomas are classified into adult-type diffuse gliomas, 
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pediatric-type diffuse low- and high-grade gliomas, and circumscribed astrocytic gliomas [2]. In addition, 20% of all glioma cases are 
low-grade gliomas (LGGs), characterized by extensive invasion and a low rate of proliferation [3]. Although LGGs are distinguished by 
their milder biological behavior and better response to treatment [4], it is imperative to remember that they are precancerous tumors 
and carry a potential risk of progressing to high-grade gliomas (HGGs) [5]. The standard of care for LGGs is surgical resection; 
however, this treatment option is fraught with complications due to small and residual tumors, the existence of remaining tissue, and 
the high risk of recurrence [6]. Although patients may require chemotherapy or radiotherapy as part of their treatment strategy, these 
methods are associated with several adverse effects including vascular injury and cognitive impairment [6]. Therefore, finding reliable 
biomarkers for LGG is an urgent issue for prognosis prediction or applications as possible therapeutic targets. 

Over the last decade, immunotherapy has made dramatic strides in cancer treatment [7]. Tumors express immune checkpoint 
molecules to evade immune surveillance [8]. Treatments that involve blocking immune checkpoints can intercept this pathway [9], 
owing to which it is considered a promising strategy to achieve anticancer immunity. This strategy involves the use of antibodies 
generated against the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the programmed death receptor 1 (PD-1), or the PD-1 
ligand (PD-L1) [10]. Recently, immunotherapy has been considered a tremendous success in terms of treating patients with gli-
omas [11]. However, anti-PD-1/PD-L1 immune checkpoint therapies have not been widely utilized in LGG patients, partly owing to 
suboptimal response to immunotherapy [12]. As a result, it is crucial to identify accurate biomarkers for immunotherapy against LGG 
to stratify individuals who may benefit from immune checkpoint therapies. 

Currently, signatures focusing on immune checkpoint features have shown excellent predictive performance for the head as well as 
neck squamous cell carcinoma and lung adenocarcinoma [13,14]. It has not been revealed, however, whether or not immune 
checkpoint-related genes (ICGs) have a significant predictive role among LGG patients. To better evaluate prognosis and provide 
individualized therapy for patients with LGG, this research set out to discover ICGs associated with patient prognosis and construct a 
model. 

2. Materials and methods 

2.1. Data resources and processing 

RNA-seq data for LGG and relevant clinical datasheets were acquired utilizing the Cancer Genome Atlas (TCGA) Data Portal 
(https://portal.gdc.cancer.gov/) and 512 samples in total were included and considered for the training cohort. Additionally, 85 
samples (GSE4412) being extracted from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and 
443 samples (CGGA_693) being extracted from the Chinese Glioma Genome Atlas (CGGA) database have been set as the verification 
cohort. The transcription profiles were downloaded from GSE4412 as fragments per million kilobases (FPKM) to eliminate batch 
effects. In total, 282 ICGs as presented in Supplementary Table S1 have been identified by retrieving crucial genes of PD-1/PD-L1 as 
well as CTLA-4 signaling pathways utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway databases. 

2.2. Nonnegative matrix factorization (NMF) consensus clustering 

NMF has been applied to detect latent characteristics in gene expression patterns by decomposing the original matrix into two non- 
negative matrices [15]. The NMF R package has been utilized to perform cluster analysis on 512 TCGA data, revealing a correlation 
between the expression of 282 immune checkpoint-related genes in LGG and clinical characteristics. The optimal number of clusters 
was determined based on the co-occurrence, dispersion, and silhouette coefficient. In addition, overall survival (OS) and 
progression-free survival (PFS) were compared across groups using an R package called “survival”. Microenvironmental cell popu-
lation (MCP) differences were also evaluated with the use of the R packages limma, ggpubr, and MCPcounter [16]. 

2.3. Developing and validating an LGG prognostic model based on ICGs 

The first step was to perform a univariate Cox regression on the ICG data for identifying genes that showed considerable association 
with the prognosis where P-value <0.05 was considered the criterion for inclusion. The prognostic model has been constructed based 
on the training cohort. Eight genes are considerably linked to OS in LGG patients after a series of factors were filtered utilizing the least 
absolute shrinkage and selection operator (LASSO) analysis using the glmnet R package. Each LGG patient’s risk score (RS) was derived 
using the following formula: 

RS =
∑

Coefi × Xi (“Coefi” stands for coefficient and “Xi” is the corresponding ICG expression). Bounded by the median risk rating, 
the patients with LGG were categorized into the following two groups: low- and high-risk cohorts. The Kaplan–Meier (K–M) survival 
curves and receiver operating characteristic (ROC) curves were generated to validate model feasibility. The same procedure was 
applied to the GEO validation cohort for validating the power of the model. 

2.4. Development and assessment of the predictive nomogram 

Independent prognostic factors were screened through the implementation of univariate and multivariate Cox regression algo-
rithms. The rms R package was applied for developing a nomogram that incorporates the prognostic model as well as clinical features, 
such as the patient’s gender, age and grade of LGG. A calibration curve has been generated to evaluate nomogram deviations. Finally, 
the ROC curve has been utilized to verify the accuracy of the nomogram. 

Y. Guo et al.                                                                                                                                                                                                            

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/


Heliyon 9 (2023) e20178

3

Fig. 1. Consensus clustering utilizing immune checkpoint-related genes: (A) Rank for 2–10 clusters based on factorization. (B) Gene expression 
heatmap for two clusters. (C, D) The K-M curve of OS (p = 0.002) and PFS (p = 0.017) in different clusters. (E) A Sankey diagram connecting NMF 
clusters and immune subtypes. 
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2.5. Tumor immune microenvironment and immunity analysis 

Intergroup enrichment levels of cellular components or cellular immune responses based on the immune checkpoint-related 
signature were quantified using ESTIMATE [16], CIBESORT [17], QUANTISEQ [18], and TIMER [19]. Through a bubble plot, vari-
ations in immune responses under the algorithms were revealed. The intergroup comparisons of the immune checkpoint expression 
levels were performed utilizing packages like R, ggplot2, and reshape2. 

2.6. Gene set enrichment analysis (GSEA) and functional enrichment analysis (FEA) 

Gene ontology (GO) and KEGG analyses were conducted to assess the functions of differentially expressed genes between different 
risk groups determined utilizing the limma R package. The GSEA was performed between different risk subsets and the top 5 pathways 
were graphed [20]. Additionally, ssGSEA was performed and the enriched pathways for different risk groups were visualized using a 
heatmap. 

2.7. Prediction of drug sensitivity based on the prognostic model 

The Genomics of Cancer Drug Sensitivity database has been applied to make predictions about the sensitivity of patients with LGG 
to various chemotherapy drugs. The IC50 values (half of the maximum inhibition concentration) for 5-fluorouracil, AKT inhibitor VIII, 
bleomycin, crizotinib, dasatinib, gemcitabine, rapamycin, roscovitine, and salubrinal were calculated via pRRophetic algorithm with 
ridge regression. The results were visualized utilizing boxplots created with the R packages pRRophetic and ggplot2. 

2.8. Mutation status analysis 

The maftools R package has been applied to process somatic mutation profiles, whereas waterfall plots were generated to display 
genes with the highest mutation frequency. 

2.9. Validation of the genes involved in the risk model 

The HMO6 and U251 were cultured in DMEM and the U87 were cultured in MEM. All medium were supplemented with 10% fetal 
bovine serum (FBS) and 1% Penicillin/Streptomycin. Total RNA was isolated by TRIzol reagent (TaKaRa, Dalian, China). RNA integrity 
was detected by an Agilent 2100 bioanalyzer and the RNAs were sequenced on an Illumina platform. 

2.10. Cell viability and colony formation assay 

The sequence of MCC SiRNAs were shown in Supplementary Table S3. The SiRNAs were transiently transfected into U87 and U251 
glioma cells. For cell viability experiments, cells were seeded onto 96-well plates at a density of 2000 cells/well. Subsequently, 10 μL 
CCK-8 was introduced into all wells. After 30 min, the absorbance was recorded at 450 nm. For colony formation assay, glioma cells 
were seeded in 6-well plates at a density of 1000/well. When approximately 100 cells were observed in a clonal cluster, glioma cells 
were fixed with 4% paraformaldehyde and then stained with crystal violet for 15 min. 

2.11. Statistical analysis 

All statistical analyses and visualizations were performed using the R software. The Spearman correlation analysis has been applied 
for assessing the association between the two continuous variables. Chi-square or Fisher’s tests were utilized to examine categorical 
data, whereas Wilcoxon’s test was applied for analyzing continuous variables. The p-values (P < 0.05) indicated statistical 
significance. 

3. Results 

3.1. NMF clustering analysis 

The NMF algorithm was applied to cluster LGG cases in the total TCGA cohort based on the ICG expression, survival time, and 
survival status (Fig. 1A). Notably, the optimum number of clusters was found to be 2 (Fig. 1B). In order to have a clearer compre-
hension of the link between the two subtypes and prognosis, OS and PFS values have been subjected to comparison across the two 
clusters. The results indicated a poorer prognosis associated with cluster 1 in comparison to cluster 2 (Fig. 1C and D). 

3.2. Comparison of clinical phenotypes, immune subtypes, and immune cell infiltration between molecular subtypes 

A total of 33 cancers had been classified into the following six immune subtypes: C1 (wound healing), C2 (IFN-γdominant), C3 
(inflammation), C4 (lymphocyte depletion), C5 (immune silencing), and C6 (TGF-β dominant) in a previous study [21]. Therefore, a 
Sankey diagram was generated to connect NMF clusters and immune subtypes (Fig. 1E). The plot showed that the C1 cluster was 
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connected with immune C3, C4, and C5; of these, immune C4 was the leading one. Furthermore, the C2 cluster included immune C3, 
C4, C5, and C6, in which immune C5 was the bulk. Additionally, immune cells levels were evaluated between two clusters via the 
MCPcounter R package. Fig. 2 showed that the C1 cluster had high infiltration of these cells in the immune microenvironment, except 
for neutrophils. 

3.3. Mutation landscape of immune checkpoint-related genes 

The cBio-Portal database was utilized to investigate the pertinent genetic mutations as illustrated in Fig. 3A. A total of 523 LGG 
tumor samples were analyzed and the gene alteration frequency of these ICGs was 15.68%. Regarding the gene mutation frequency, 
EGFR (6%) and PTEN (5%) were the most strikingly altered genes and showed missense mutations. In addition, missense mutations 
accounted for the vast majority of all mutation types in LCC patients. To get a deeper understanding of the correlations among these 
genes, a spearman correlation analysis has been conducted as illustrated in Fig. 3B. As per the results, EGFR, as well as PTEN, were 
found to possess a significantly high correlation (P < 0.01). 

3.4. Development and verification of a prognostic gene model 

In the training set (TCGA-LGG cohort), the univariate cox regression analysis has been performed to analyze the prognostic value of 

Fig. 2. Analysis of infiltrating immune cells and stromal cells including (A) T cells, (B) CD8T cells, (C) Cytotoxic lymphocytes, (D) Endothelial cells, 
(E) Fibroblasts, (F) Monocytic lineage, (G) Myeloid dendritic cells, (H) Neutrophils and (I) NK cells between the two clusters. 
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all ICGs, which resulted in the identification of 58 prognostic-linked genes (Supplementary Table S2). Then, the LASSO Cox regression 
model has been utilized for the construction of a risk model. Finally, eight genes in total have been integrated as per the optimal λ value 
(Fig. 3C and D). The risk score has been derived as follows: 

risk score= − 0.028 × PPP2R5C(exp) + 0.054 × TNFRSF14(exp) + 0.005 × IFNGR2(exp) + 0.037 × MAP2K3(exp) + 0.003

× MCC(exp) + 0.060 × MYD88(exp) + 0.182 × NFATC3(exp) + 0.023 × PLCG1(exp).

Based on the median risk score, LGG patients have been classified into high- and low-risk groups (Fig. 3E). Low-risk patients possess 
higher survival rates and longer survival times than patients in the high-risk training cohort. Moreover, when combined with the 
outcomes of the heatmap, these 8 genes’ expression levels considerably varied across the two risk subgroups. In the high-risk group, 
PPP2R5C had low expression while others had a high expression, which is contrary to the low-risk group (Fig. 3F). Furthermore, the 
principal component analysis is revealing that patients with varied risks experienced a tendency to separate in two directions (Fig. 3G). 
The K-M curve revealed remarkably lowered survival probability and shorter OS in the high-risk group (P < 0.001, Fig. 3H). 
Assessment of the time-dependent ROC analysis revealed that the risk scores had high predictive accuracy. The areas under the ROC 
curve (AUC) were 0.874 for 1 year, 0.843 for 3 years, and 0.791 for 5 years (Fig. 3I). 

Prognostic model robustness was validated via the same coefficients as the training cohort in the validation cohort and similar 
results were observed (Fig. 4, Supplementary Fig. 1). 

Fig. 3. (A) The gene mutation waterfall plot of 523 LGG tumor samples. (B) Spearman correlation analysis of major mutant genes. (C, D) LASSO 
regression analysis screened 8 prognostic related genes. (E) Patients’ risk scores as well as survival status in the TCGA cohort. (F) A heatmap of the 
expression of 8 immune checkpoint-related genes in different risk groups. (G) The Principal Component Analysis (PCA) for the two risk groups. (H) 
Comparing OS across varied risk groups by K-M curves. (I) The 1-, 3-, and 5-year ROC curves of patients in the TCGA cohort. 
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3.5. Developing a nomogram 

A Univariate Cox regression analysis of OS based on the TCGA cohort demonstrated various clinical features including age, grade, 
and risk score which all were found as potential prognostic indicators for LGG patients (Fig. 5A). In addition, the risk score proved as an 
independent prognostic predictor for LGG patients, as per the multivariate Cox regression analysis (P < 0.001, Fig. 5B). The nomo-
gram, which takes into account several risk factors, can accurately predict a patient’s prognosis. Improvement of the predictive 
performance was performed by integrating the clinical features and risk scores into the nomogram (Fig. 5C). Based on the nomogram 
model, every patient was assigned a total score that predicted 1-, 3-, and 5-year OS. The calibration curves showed that the nomogram 
had excellent performance in predicting 1-, 3-, and 5-year OS, which was similar to the actual OS (Fig. 5D). Additionally, the 
nomogram had AUC values of 0.893, 0.870, and 0.819 in the prediction of 1-, 3-, and 5-year survival rates, respectively, indicating that 
the nomogram may improve the OS prediction in comparison to traditional prognostic markers. (Fig. 5E–G). 

3.6. Assessment of clinical phenotypes by risk score and prognostic analysis 

A total of 253 (high-risk) and 247 (low-risk) samples have been analyzed and, gene alteration frequencies of 93.68% and 98.38% 
were recorded, respectively (Fig. 6A). Regarding the gene mutation frequency, Low-risk individuals had a remarkably greater fre-
quency of altered genes such as IDH1 (91%) and TP53 (45%) compared to high-risk individuals (IDH1: 64% and TP53: 47%). The 

Fig. 4. The GSE4412 validation cohort confirms the performance of the eight-gene prognostic model. (A) The distribution of LGG patients’ survival 
status as well as risk scores in the verification cohort. (B) A heatmap visualization of the expression of 8 genes involved in the model in the 
validation cohort. (C) PCA analysis of the two risk groups. (D) Survival curves for different risk groups in the validation set. (E) ROC curve and AUC 
demonstrating survival predicted by the prognostic model. 
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missense mutation was the most prevalent type of mutation in both high-as well as low-risk groups. For establishing the clinical 
applicability of the prognostic model, the correlation of risk scores with clinicopathological features was investigated. Fig. 6B shows 
that age showed a significant correlation with the risk score. Moreover, subgroup survival analysis of the entire TCGA cohort has been 
conducted and its outcomes demonstrated that in the age >65 years, age ≤65 years, female, and male subgroups, patients in the high- 
risk group possess a poorer prognosis than those in the low-risk group (Fig. 6C–F). 

3.7. Assessment of tumor immune microenvironment 

The indicative role of prognostic models on the tumor immune microenvironment (TIME) was demonstrated by assessing immune 
scores, cells, and checkpoint expression levels in different risk groups. As anticipated, the high-risk group had higher values than the 
low-risk group in terms of the ESTIMATE, stroma, and immune scores (Fig. 7A). Next, a bubble and radar chart were generated to 

Fig. 5. Independence detection of the prognostic model and development of a predictive nomogram. (A, B) COX regression analysis for identifying 
independent prognostic variables. (C) Nomogram-predicted model for LGG. (D) Calibrations curves for predicting 1-, 3-, and 5-year OS. (E, F, G) 
ROC curves for the nomogram, clinical features, and risk scores. 
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demonstrate how the invasion of immune cells varies across the two risk groups (Fig. 7B and C). Moreover, as shown in Fig. 7D, 
eosinophils, monocytes, activated NK cells, and plasma cells had a negative correlation with the risk score, whereas macrophages (M0, 
M1, M2) as well as resting NK cells had a positive correlation with it. Considering the value of checkpoint inhibitor-based immuno-
therapy techniques, it has been evaluated how risk groups varied in the expression of immune-related genes (Fig. 8A–D). The vast 
majority of immune-related genes expression in the high-risk group was higher than that in the low-risk group. In addition, a cor-
relation study was carried out to investigate the link between risk scores and TMB, and it was shown that risk scores had a positive 
correlation with TMB (Fig. 8E and F). The K–M curve integrating risk score and TMB had a favorable predictive performance for 
prognosis (Fig. 8G). 

3.8. Function enrichment analysis 

GSEA has been utilized for conducting GO and KEGG pathway analyses to further investigate the probable roles of ICGs in high- and 
low-risk groups. Fig. 9A–D demonstrate the top five important GO and KEGG-enriched pathways in two distinct risk categories. In 
addition, clustering analysis performed based on the enrichment scores of the relevant KEGG pathways revealed that limonene and 
pinene degradation, butanoate metabolism, propanoate metabolism, long-term potentiation, long-term depression, proximal tubule 
bicarbonate reclamation, cardiac muscle contraction, and pyruvate metabolism pathway all were substantially enriched in the low-risk 
group (Fig. 9E). 

Fig. 6. Correlation analyses of the risk score and clinical phenotypes. (A) Gene mutation waterfall plot for high-risk and low-risk subgroups. (B) 
Comparison of the risk score between patients across varied age groups. (C–F) K-M curves showing subgroup analysis by age and gender. 
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3.9. Chemotherapy drug sensitivity analysis 

Chemotherapy is still one of the most prevalent treatment options for LGG. Therefore, the IC50 values of several chemotherapeutic 
agents in these two risk subgroups were further predicted by the pRRophetic algorithm. As shown in Fig. 10, higher predicted IC50s for 
two chemotherapy drugs (crizotinib and salubrinal) were observed in high-risk subgroups demonstrating beneficial effects to low-risk 
group patients from these drugs. Furthermore, patients in the high-risk groups showed a notably better response to 5-Fluorouracil, AKT 
inhibitor VIII, bleomycin, dasatinib, gemcitabine, rapamycin, and roscovitine. 

Fig. 7. Assessment of tumor immune microenvironment. (A) Comparisons of Immune Score, Stromal Score, and ESTIMATE Score in different risk 
groups. (B) A bubble chart of different immune cell infiltration algorithms. (C) A radar map of immune microenvironment cells across varied risk 
groups (D) Comparing immune cell infiltration across varied risk groups. 
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3.10. Validation of the eight genes involved in the risk model 

Next, we performed RNA-sequencing on the normal cell line HMO6 and tumor cell line U251 to further identify the expression 
levels of the eight genes involved in model construction. As shown in Fig. 11, MAP2K3, MCC, MYD88, NFATC3, PLCG1, TNFRSF14, 
IFNGR2 were remarkably up-regulated in the U251 cell line in comparison with the HMO6 cell line while PPP2R5C were down- 
regulated in the U251 cells. Therefore, eight genes were differentially expressed between tumor and normal cells, which may be 
biomarkers to predict the prognosis of LGG patients. In addition, the findings of CCK-8 and colony formation assays highlighted that 
MCC silencing inhibited cell proliferation in U87 and U251 cells (Fig. 12A–F). 

4. Discussion 

LGG has been identified as a universal primary malignant tumor of the central nervous system [22]. Although the current treatment 
strategy for LGG involves a combined administration of surgical resection, chemotherapy, and radiotherapy, which do improve clinical 
outcomes, still more than 50% of LGG patients progress to therapy-resistant high-grade aggressive glioma [23]. Owing to unclear 
pathogenesis and unsatisfied therapeutic effects, an in-depth analysis of the underlying mechanisms of LGG needs to be performed. 
Recent decades have seen significant advancements in the study of immune checkpoints, with multiple studies identifying key 

Fig. 8. (A–D) Boxplots representing immune checkpoints expression across varied risk groups. (E) Distribution of TMB across varied risk subgroups. 
(F) The correlation analysis of risk score with TMB. (G) K-M curves of TMB combined with the risk score. 
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molecules involved in the modulation of immune responses like certain immune checkpoint molecules (PD-1, PD-L1, CD28, Gal-9, and 
TIM-3) which are vital in the regulation of immune responses [24]. Nevertheless, cancer cells can escape surveillance and clearance 
from immune cells by excessively activating ICGs, which consequently accelerates tumor growth [25]. More research is needed to 
identify biomarkers and develop prognostic models based on ICGs that might aid in the prediction of survival in patients with LGG. 

In the present study, first, LGG cases in the entire TCGA cohort were clustered according to the NMF algorithm based on 282 ICGs, 
and two molecular subtypes with significantly varied prognoses, clinical traits, as well as tumor immune microenvironment (TIME) 
were obtained. The C1 LGG group had a worse OS and PFS than the other group. A Sankey diagram showed that the C1 cluster was 
mainly connected with immune C4 (lymphocyte depletion), whereas the C2 cluster was linked to immune C5 (immune silencing). 
Notably, the C1 cluster showed a high infiltration of immune cells including monocytes, the precursors of tumor-associated 

Fig. 9. Relationship between risk scores and pathways. (A–D) GSEA analysis in low- and high-risk LGG. (E) Heatmap of the ssGSEA scores of KEGG 
pathways in different risk groups. 
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macrophages (TAMs); these macrophages are strongly correlated with a poor prognosis in cancer [26]. However, only neutrophil 
infiltration appeared to be considerably low in the C1 cluster. Substantial evidence indicated that neutrophils have a conspicuous part 
in cancer progression by releasing factors affecting the TME, thereby directly eliminating cancer cells and producing reactive oxygen 
and nitrogen species [27]. The dismal prognosis observed in the C1 cluster may be due to the lack of these antitumor effects. 

Next, 58 ICGs with prognostic significance were extensively investigated using univariate Cox regression analysis so that a 
signature could be developed based on these results. The LASSO Cox regression analysis resulted in the selection of 8 genes (PPP2R5C, 
TNFRSF14, IFNGR2, MAP2K3, MCC, MYD88, NFATC3, and PLCG1) for constructing the prognostic model. The outcomes revealed 
PPP2R5C to be the only protective factor, whereas the others were risk factors for LGG. PPP2R5C, a regulatory subunit of PP2A, 
showed an increase or decrease in expression in various tumor types [28–31]. Several studies revealed its close contact with cancer 
development. One mechanism appeared to inhibit cell proliferation and anchorage-independent growth via dephosphorylation of p53 
on Thr55 [32–35]. PPP2R5C was shown to have a positive correlation with the prognosis of LGG patients in this study; nevertheless, 
further research is needed in this area. The TNF superfamily member TNFRSF14 is responsible for imparting complexity to the po-
tential targets and actions in vivo [36]. Shen et al. reported that PRDM1 is likely to be positively correlated with TNFRSF14 in LGG 
with an unfavorable prognosis [37]; this was in accord with the negative influence of TNFRSF14 in our model. NFATC3 is a tran-
scription factor of the NFAT family [38], and there are a variety of cellular settings in which it has a function in regulating cell 
proliferation and differentiation. To illustrate, NFATC3 increased the aggressiveness of angiosarcoma or active tumor development in 
oral/oropharyngeal squamous cell carcinomas [39–41]. However, other studies have reported that NFATC3 can act as a tumor 

Fig. 10. Therapeutic response analysis of (A) 5-Fluorouracil, (B) AKT inhibitor VIII, (C) Bleomycin, (D) Crizotinib, (E) Dasatinib, (F) Gemcitabine, 
(G) Rapamycin, (H) Roscovitine, (I) Salubrinal. 
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Fig. 11. The expression levels of the eight genes involved in the risk model in tumor cell line U251 and normal cells line HMO6 were detected by 
RNA-sequencing. (A) MAP2K3. (B) MCC. (C) MYD88. (D) NFATC3. (E) PLCG1. (F) PPP2R5C. (G) TNFRSF14. (H) IFNGR2. *P < 0.05. 

Fig. 12. Knockdown of MCC significantly suppressed proliferation in glioma cells. CCK-8 suggested that knockdown of MCC suppressed the pro-
liferation of U87 (A) and U251 (B) cell lines. (C–D) Knockdown of MCC inhibited colony formation of U87 cells. (E–F) Knockdown of MCC inhibited 
colony formation of U251 cells. ***P < 0.001, ****P < 0.0001. 

Y. Guo et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e20178

15

suppressor, as observed in cases of T-cell lymphoma and breast cancer [40,42,43]. MYD88 is the canonical adaptor for toll-like re-
ceptor and interleukin-1 signaling [44,45], which had been reported to be an adverse prognostic factor in ovarian cancer and a 
therapeutic target for inflammatory lung diseases [46,47]. However, the role of MYD88 in malignant tumors is largely unknown. Here 
we proved that PPP2R5C were remarkably downregulated in tumor cell lines while the other seven genes involved in the model were 
upregulated in tumor cells, which indicated that they were probably excellent biomarkers for prognosis prediction. The clinical role as 
well as underlying mechanisms of these genes in cancer are needed to explore in future. Based on the median risk score, patients with 
LGG were categorized into high- and low-risk groups. The high-risk group, in contrast with the low-risk group, has lower survival rates 
and shorter survival duration, along with low expression levels of PPP2R5C and high expression levels of the other genes. 

This research suggested that age, grade, and risk score were all useful prognostic markers, with the risk score standing on its own as 
a potentially useful prognostic indicator. A nomogram plot involving the abovementioned prognostic predictors was plotted for 
predicting the survival probability of LGG patients. The satisfied AUC values of the ROC suggested the presence of a remarkable 
prognostic ability of the nomogram. Given the superior performance of the nomogram, it enables physicians to create a more 
personalized monitoring plan for LGG, leading to improved outcomes. 

Gene alteration is considered a common phenomenon in tumor development. The outcomes of the present study demonstrated that 
IDH1 and TP53 were the most remarkably altered genes in patients with LGG. IDH1 mutations are rare in cases of cancer in humans; 
however, they are prevalent in gliomas [48–50]. The initial discovery revealed widespread IDH1 mutations at Arg132 [51,52]. Ac-
cording to the literature, TP53 is an independent predictor of OS in LGG [53]. Notably, the co-occurrence of IDH1 mutation and TP53 
alteration indicated a significant tissue-specific role in glioma [54]; thus, this phenomenon may be considered a predictor of patient 
outcomes in LGG. Furthermore, we assessed the indicative role of prognostic models on TIME. The immune cells within TIME perform 
a vital function in terms of tumor promotion or tumor antagonization. As anticipated, the high-risk group had higher values than the 
low-risk group in terms of the ESTIMATE, stroma, and immune scores. Besides, the infiltration level of macrophage M0, macrophage 
M1, macrophage M2, and resting NK cells were high, whereas eosinophils, monocytes, activated NK cells, and plasma cells were low. 
Metabolic alterations in macrophages play a predominant role in regulating their suppressive or activating roles in the TIME and may 
have great potential for immune-responsive cancer treatment [55]. The increased expression of ICGs and high tumor mutational 
burden are correlated with a poor survival prognosis, demonstrating the fact that these populations are more likely to benefit from 
treatment with immune checkpoint inhibitors. As for chemotherapy, the present study demonstrated that low-risk groups may benefit 
from crizotinib and salubrinal whereas high-risk groups had a better response to 5-fluorouracil, AKT inhibitor VIII, bleomycin, 
dasatinib, gemcitabine, rapamycin, and roscovitine. The aforementioned findings are intended to give some evidence and build the 
groundwork for future drug development research. 

There are some limitations to the current investigation, and additional clinical trials are needed to assess the effectiveness and 
feasibility of this paradigm. Second, more pathology samples of patients should be included to validate the expression of signature 
genes, and in vivo or in vitro functional experiments are needed to verify the roles of signature genes. Additionally, fundamental 
research investigations are required to elucidate the critical function of immune checkpoints and their inhibitors in the LGG process. 

Conclusion 

The immune checkpoint-related signatures may serve as a novel indicator in the prognosis and immunotherapy response of patients 
with LGG. 
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