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Abstract: Sea environment complexity and underwater acoustic channels make it hard to extract
features of ship-radiated noise signals. This paper presents a novel feature extraction method
using the advantages of variational mode decomposition (VMD), fluctuation-based dispersion
entropy (FDE) and self-organizing feature map (SOM). Firstly, VMD decomposition of the
original signal is used to get a group of bandwidth-limited intrinsic mode functions (IMFs).
Then, the difference between the FDE of each IMF and the original signal is calculated, respectively;
the IMF with the smallest difference (SIMF) is selected to calculate the FDE as the feature vector.
Finally, the characteristic vectors are sent to the SOM classifier to categorize the original signal.
The proposed method is applied to feature extraction of real ship-radiated noise signals. The results
show that this method is more precise for ship-radiated noise signals feature extraction.

Keywords: variational mode decomposition; fluctuation-based dispersion entropy; ship-radiated
noise; feature extraction

1. Introduction

Feature extraction is a key link of target classification. Sea environment complexity and
underwater acoustic channels make it hard to extract features of ship-radiated noise signals that reflects
the essential characteristics of the target and meet the requirements of underwater long-distance
detection [1]. The generation and propagation mechanism of ship-radiated noise is complicated.
Propeller cavitation is the main component of high-frequency ship-radiated noise with a high frequency
continuous spectrum. At the same time, propeller beat has an obvious amplitude modulation
effect on the cavitation noise of the propeller, and modulation depth is related to propeller rotation
speed, number of blades, and speed. Using this feature, several inherent characteristics of the ship,
such as propeller shaft frequency, blade frequency and number of blades can be effectively calculated;
these radiated noise characteristics are important bases for target detection and identification [2,3].
In fact, due to the complexity and multi-path effects of underwater acoustic signals, ship-radiated noise
signals tend to exhibit non-Gaussian and non-stationary properties [4]. Traditional signal processing
methods assume that signals and noise are linear and stationary Gaussian random processes, such as
noise envelope modulation detection (DEMOD). In the case of low signal-to-noise ratio of remote weak
signals, the signal processing method based on the conventional Fourier transform finds it difficult to
accurately extract the characteristics of the ship-radiated noise [5–7]. The Second Generation Wavelet
Transform (SGWT) is a time domain transform method based on lifting strategy. This method is no
longer dependent on the frequency domain and easily implements fast algorithms; at the same time,
it has a good ability to suppress noise components in non-stationary signals. However, it is still affected
by the wavelet basis function and decomposition level [8].
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Empirical Mode Decomposition (EMD) is a new method to analyze non-stationary and non-linear
signals in the signal processing field. It is a self-adaptive complete orthogonal decomposition according
to the characteristics of the signal itself and can extract the eigenmode component of the dynamic
signal [9,10]. Ensemble Empirical Mode Decomposition (EEMD) is a noise-assisted data analysis
method based on EMD. This method improves the mode mixing of EMD, but does not have sufficient
theoretical support [11,12]. In 2014, Dragomiretskiy et al. [13] proposed a new adaptive signal
processing method, Variational Mode Decomposition (VMD). This method improves the disadvantages
of mode mixing in the decomposition process of the EMD; compared with EEMD, VMD has enough
theoretical basis. [14–16]. In fact, VMD is a group of multiple adaptive Wiener filters, and therefore has
better robustness [17]. In recent years, with deep research on acoustic signal processing, the application
of modal decomposition in underwater acoustic signals has become more mature. In [18], it is
proposed to use EMD to decompose ship-radiated noise and use the characteristics of the intrinsic
modal functions (IMFs) to realize feature extraction. In [19], on the basis of EMD, ship-radiated noise
was classified using the center frequency of the strongest IMF of EEMD. VMD was used in [20] to
diagnose wind turbine faults. Most of the above documents show that VMD is better than EMD and
EEMD decomposition and can be applied to feature extraction.

Entropy is a measure of uncertainty or irregularity, first introduced by Shannon in 1948 [21].
Sample Entropy (SE) is based on Shannon entropy and is widely used in signal processing and image
processing [22,23]. SE is unreliable for short time series and slow for long time sequences. Permutation
Entropy (PE) is based on conditional entropy, which represents the permutation pattern or order
relationship between time series amplitudes. PE is faster than SE, but considering only the order of
amplitude, amplitude information may be ignored [24,25]. In order to solve the disadvantages of SE
and PE, in [26], the dispersive entropy (DE) based on Shannon entropy was developed to quantify the
uncertainty of time series. Since DE is a symbol-based dynamic dispersion model based on amplitude,
it is also called amplitude dispersion entropy [26]. In [27], the fluctuation of the signal is used to
develop Fluctuation-Based Dispersion Entropy (FDE), and to compare FDE, DE, SE, and PE, indicating
that FDE and DE are superior in all aspects. In [28], PE and EMD were used to extract the characteristics
of ship-radiated noise. In [29], an improved decomposition method, VMD and PE are used for fault
extraction. In [30], VMD, Multi-Scale Permutation Entropy (MPE) and Support Vector Machine (SVM)
were used to extract the characteristics of underwater acoustic signals. The study found that although
the above method continuously improves the signal decomposition effect, it does not solve the problem
that PE may lose amplitude information.

Based on the above analysis, this paper uses the advantages of VMD, FDE and SOM to propose
a new method to extract ship-radiated noise characteristics. The other main contents of this paper
are as follows: Section 2 describes the fundamental theories of VMD and FDE. In Section 3, the steps
of the new method are briefly introduced. In Section 4, a method to analyze analog signals is used.
In Section 5, the presented method is used to extract ship-radiated noise. Section 6 summarizes the
full text.

2. Method

2.1. VMD Method

VMD is a new method of modal decomposition, which introduces signal decomposition into the
variational model to achieve adaptive decomposition of the signal by looking for the optimal solution
of the constrained variational model, and decomposes the input signal into a series of IMF in different
frequency bands [31]. VMD defined IMF as amplitude modulated frequency modulated(AM-FM)
signal, such that:

uk(t) = Ak(t) cos(φk(t)) (1)

where t and Ak(t) represent time and the envelope, φk(t) and uk(t) denote the phase and the IMFs.
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Each IMF has a center frequency and limited bandwidth. The variational problem of VMD
is to find K modal functions uk(t), so that the sum of all IMF estimated bandwidths is the smallest.
The constraint is that the sum of the modal functions uk(t) is the input signal f (t). The center frequency
and bandwidth of the modal function are estimated by:

(1) Performing Hilbert transform on each modal function uk(t) to get the analytical signal of each
modal function: [

δ(t) +
j

πt

]
uk(t) (2)

(2) Using the correction index e−jωkt to modulate the spectrum of each modal function to its
respective baseband: [(

δ(t) +
j

πt

)
uk(t)

]
e−jωkt (3)

(3) Calculating the squared norm L2 of the gradient of the demodulation signal in (3),
and estimating the bandwidth of each modal function. The corresponding constraint variation
problem is:

min
(uk)(ωk)

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(4)

where, s represents the processed signal, K is the number of IMFs, ∗ represent convolution. uk is the
decomposed mono-component. ωk is the center frequency for each decomposed component. ∂t is the
inverse of the function with respect to t, δ(t) and j stand for impulse response and imaginary unit.

In order to solve the variational problem with the constraint condition in (4) into an unconstrained
variational problem, the augmented Lagrangian function L is introduced as follows:

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωt

∥∥∥2

2

+‖ f (t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
λ(t),

K
∑

k=1
uk(t)

〉 (5)

where λ and α are the Lagrangian multiplier and balancing parameter.
Solve the extended Lagrangian function in (4) using the alternating direction multiplier algorithm.

The specific steps are as follows:

(1) Initialization
{

û1
k
}

,
{

ω1
k
}

, λ̂1, n;
(2) Execution loop n = n + 1;
(3) For ω ≥ 0, update the fan functions ûk and ωk:

ûn+1
k ←

f̂ (ω)−
K
∑

i=1,i<k
ûn+1

i (ω)−
K
∑

i=1,i>k
ûn

i (ω)+
λ̂(ω)

2

1+2α(ω−ωn
k )

2

k ∈ {1, K}
(6)

ωk+1
k ←

∫ ∞
0 ω

∣∣∣ûn+1
k (w)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (w)

∣∣∣2dω

, k ∈ {1, K} (7)

(4) Update λ:

λ̂n+1(ω)← λ̂n(ω) + τ

[
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

]
(8)

where ∧ and τ indicate Fourier transform and time step.



Entropy 2019, 21, 235 4 of 15

(5) Repeat steps (3)–(5) until the iteration constraint condition is satisfied:

K

∑
k=1

(∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/‖ûn

k ‖
2
2

)
< ε (9)

where ε is the accuracy for convergence. The iteration is ended, and K IMF components with the
smallest sum of bandwidths are obtained.

2.2. FDE Method

FDE is susceptible to changes in the synchronization frequency, amplitude value, and time-series
bandwidth, and does not require the ordering of the amplitude values of each embedded vector,
nor the distance between adjacent embedding dimensions; thus, it is very fast [27], and also solves the
problem that PE will lose amplitude information. Given a set of time series x = x1, x2, · · · xN with a
sequence length of N, the FDE method is introduced as follows:

(1) First, xj(j = 1, 2, . . . , N) are mapped to classes 2c− 1 with integer indices from 1 to 2c− 1
using the normal cumulative distribution function (NCDF). The classified signal is zj(j = 1, 2, . . . , N).

(2) Time series zm,c
i is created based on zm,c

i =
{

zc
i , zc

i+d, · · · , zc
i+(m−1)d

}
, i = 1, 2, · · ·N− (m− 1)d,

where m is the embedded dimension, d is the time delay. Each time series zm,c
i is mapped to a dispersion

patter πv0v1···vm−1 , where zc
i = v0, zc

i+d = v1, · · · , zc
i+(m−1)d = vm−1. The number of possible dispersion

patterns assigned to each vector zm,c
i is equal to (2c− 1)m−1. since the signal zm,c

i has m elements and
each can be one of the integers from −c + 1 to c− 1.

(3) For each potential dispersion mode (2c− 1)m−1, the relative frequency is:

p(πv0v1···vm−1) =
#
{

i
∣∣i ≤ N − (m− 1)d, zm,c

i has type πv0v1···vm−1

}
N − (m− 1)d

(10)

where, # means cardinality, in fact, p(πv0v1···vm−1) reveals that the number of distribution models
πv0v1···vm−1 allocated to zm,c

i , divided by the gross number of embedded signals, embedded dimension
of which is m.

(4) Lastly, according to the calculation methods of entropy, the FDE is calculated as follows:

FDE(x, m, c, d) = −
(2c−1)m−1

∑
π=1

p(πv0v1···vm−1) · ln(p(πv0v1···vm−1)) (11)

where m is the embedded dimension, d is the time delay, and c is the class number.
As an example, let us have a signal x = {1.2, 5.5, 3.9, 5.8, 4.1, 6.5, 2.2, 4.9, 5.6, 7.8}. We set

d = 1, m = 3, c = 2, leading to 32 = 9 potential fluctuation-based dispersion patterns,
({(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}). Then, xj(j = 1, 2, . . . , 10) are
linearly mapped into two classes with integer indices from 1 to 2 ({1, 1, 2, 2, 1, 1, 1, 2, 2, 2}). Afterwards,
a window with length 3 moves along the time series and the differences between adjacent elements
are calculated x = {(0, 1), (1, 0), (0,−1), (−1, 0), (0, 0), (0, 1), (1, 0), (0, 0)}. Afterwards, the number of
each fluctuation-based dispersion pattern is counted. Finally, using Equation (11), the DispEn value of
x is −

(
3
8 ln
( 3

8
)
+ 3

8 ln
( 3

8
)
+ 1

8 ln
(

1
8

)
+ 1

8 ln
(

1
8

))
= 1.2555.

In order to test the advantages of FDE, the PE, MPE, and FDE of simulation signal cos(10πt) were
calculated. The data lengths are 1000/2000/3000, respectively; the results are shown in Table 1. The PE,
MPE, and FDE of simulation signal cos(2π f t) were calculated—the data length is 1000, the frequency
f is 10/50/80, respectively; the results are shown in Table 2. The sampling frequency is set as 1000 Hz.
In Table 1, the signal frequency is unchanged, and the corresponding entropy changes with the change
of the signal length; the change of FDE value is the smallest. In Table 1, the signal length remains
unchanged, and the PE MPE and FDE values change with the change of signal frequency. In Table 2,
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the signal length remains unchanged, and the PE MPE and FDE values change with the change of
signal frequency. As seen in Tables 1 and 2, the change of FDE value is the smallest and stability of
FDE is the best. In summary, FDE is more stable and more suitable for feature extraction.

Table 1. PE, MPE and FDE with different lengths and same frequency.

Data Length 1000 2000 5000

PE 0.8065 0.8114 0.8135
MPE 0.8738 0.8814 0.8859
FDE 0.1958 0.1957 0.1957

Table 2. PE, MPE and FDE with same length and different frequencies.

Frequency 10 50 80

PE 0.8065 1.1692 1.5538
MPE 0.8738 1.3263 1.7834
FDE 0.1958 0.5394 0.8491

2.3. Test with the Analog Signals Using VMD and FDE

To further illustrate the advantages of VMD algorithm, the analog signal is decomposed by EMD,
EEMD, and VMD in this section. The analog signal is as follows:

y1 = cos(10πt)
y2 = cos(50πt)
y3 = cos(80πt)
y = y1 + y2 + y3

(12)

where y1, y2, y3 are the three components of y, and the sampling frequency of the analog signal
is 1 kHz. The original signal is shown in Figure 1a. The EMD decomposition result is shown in
Figure 1b. The white noise added during EEMD decomposition is 0.2, and the number of iterations is
200; the decomposition result is shown in Figure 1c. The optimal number of VMD decompositions
is 3, the step size is 0.03, the tolerance is 1e−7, the penalty parameter is 2000, and the decomposition
result is shown in Figure 1d. As seen in Figure 1b, there is a serious mode mixing phenomenon in the
IMF1. In Figure 1c, the mode mixing is improved, but the added white noise has a great influence
on the original signal. In Figure 1d, there is no mode mixing and there is no noise effect. In order to
further compare the three modal decompositions, the error between the components of the analog
signal and the corresponding IMF is calculated. Table 3 shows that y1, y2, and y3 correspond to IMF1,
IMF2, and IMF3 after the VMD decomposition. At this time, error is the smallest and decomposition
effect is the best.

In order to highlight the differences between PE, MPE, and FDE, the analog signal formula
(12) is analyzed to calculate the components of the analog signal and the corresponding IMF’s PE,
MPE, and FDE; the results are show in Table 4. As observed, the difference between the FDE and
analog signal components under VMD decomposition is the smallest, which can better reflect the
characteristics of the original signal.
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Figure 1. Original signal and decomposition results of EMD, EEMD, and VMD. (a) Original signal;
(b) EMD result; (c) EEMD result; and (d) VMD result.

Table 3. Errors between the components of the analog signal and the corresponding IMF.

EMD EEMD VMD

y1 IMF3 0.0219 IMF6 0.2272 IMF1 0.0027
y2 IMF2 0.2527 IMF5 0.2939 IMF2 0.0031
y3 IMF1 0.2512 IMF4 0.0819 IMF3 0.0033

Table 4. PE, MPE, FDE of each component of the analog signal and the corresponding IMF.

Analog Signal EMD EEMD VMD

PE 0.8065 0.8082 0.8072 0.8027
y1 MPE 0.8738 0.8838 0.9012 0.8738

FDE 0.1958 0.1958 0.1958 0.1958

PE 1.1492 1.1662 1.1631 1.1476
y2 MPE 1.3263 1.4126 1.4569 1.3263

FDE 0.6394 0.6394 0.6394 0.6394

PE 1.3538 1.3560 1.3556 1.3492
y3 MPE 1.7834 1.7573 1.7511 1.7591

FDE 0.8491 0.8231 0.8099 0.8491
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3. Feature Extraction Technique Using VMD and FDE

The basic theory of VMD and FDE and their respective advantages were introduced in Section 2.
In recent years, VMD has been more widely used in feature extraction. However, as a newly proposed
algorithm, FDE has few practical applications and is not used in feature extraction. Therefore, a new
feature extraction technique using VMD and FDE is proposed. Specific steps are as follows:

(1) Determine the optimal decomposition number of VMD
(2) The signal is decomposed by VMD, and the intrinsic mode functions are obtained
(3) Calculate the FDE of the original signal and IMF, respectively
(4) Calculate the FDE difference between the IMF and the original signal
(5) The IMF with the smallest FDE difference is selected as the optimal IMF, denoted as SIMF
(6) The FDE of the SIMF is entered into the SOM to observe the classification results

4. Simulation

In order to verify the effectiveness of the proposed method in Section 3, feature extraction is
performed on three typical chaotic signals—Lorenz chaotic system, Rossler chaotic system and Duffing
chaotic system. When given appropriate parameters, three systems have chaotic characteristics.

The Lorenz system can be expressed as:

.
x = −σ(x− y)
.
y = −xz + rx− y
.
z = xy− bz

(13)

where σ = 10, b = 8/3, r = 28,
[

x(0) y(0) z(0)
]
=
[

0 0 0
]
.

The Rossler system can be expressed as:

.
x = −y− z
.
y = x + ay
.
z = xz− cz + b

(14)

where a = 0.2, b = 0.2, c = 5.7,
[

x(0) y(0) z(0)
]
=
[

0 0 0
]
.

The Duffing system can be expressed as:

.
x = y
.
y = −bx + ay− y3 (15)

where a = 0.82, b = −0.5,
[

x(0) y(0) z(0)
]
=
[

0 0 0
]
.

These equations are integrated by using a fourth-order Runge-Kutta method with a fixed step
size of 0.01. The x component signal with a length of 2048 points is selected as a chaotic signal.
These time-domain waveforms for Lorenz, Logistic and Duffing are shown in Figure 2. Analyze
chaotic signals according to the steps described in Section 3. The decomposition results of the VMD for
chaotic signals are presented in Figure 3. The difference between the chaotic signal and their IMF’s
FDE is as shown in Table 5. From Table 5, we can see that the SIMF of Lorenz, Logistic and Duffing are
IMF5, IMF1 and IMF5, respectively. Select 50 sampling points randomly in the SIMF and calculate
FDE as the feature vector. The FDE values of the three chaotic signals are shown in Figure 4. It can be
clearly seen that the three kinds of signals are clearly distinguished, which verifies the reliability of the
proposed method. The ship-radiated noise signal is a chaotic signal; this method can be used to extract
its features.
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Table 5. Difference between the chaotic signals and their IMF’s FDE.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Lorenz 0.4338 0.2261 0.3391 0.0764 0 0.5135
Logistic 0.0026 0.2383 0.1780 0.1035 0.3320 0.4517
Duffing 0.0440 0.1519 0.3197 0.4372 0.0246 0.0424

Entropy 2019, 21, x  

 

These equations are integrated by using a fourth-order Runge-Kutta method with a fixed step 

size of 0.01. The x  component signal with a length of 2048 points is selected as a chaotic signal. 

These time-domain waveforms for Lorenz, Logistic and Duffing are shown in Figure 2. Analyze 

chaotic signals according to the steps described in Section 3. The decomposition results of the VMD 

for chaotic signals are presented in Figure 3. The difference between the chaotic signal and their 

IMF's FDE is as shown in Table 5. From Table 5, we can see that the SIMF of Lorenz, Logistic and 

Duffing are IMF5, IMF1 and IMF5, respectively. Select 50 sampling points randomly in the SIMF 

and calculate FDE as the feature vector. The FDE values of the three chaotic signals are shown in 

Figure 4. It can be clearly seen that the three kinds of signals are clearly distinguished, which verifies 

the reliability of the proposed method. The ship-radiated noise signal is a chaotic signal; this 

method can be used to extract its features.  

Table 5. Difference between the chaotic signals and their IMF’s FDE. 

 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 
Lorenz 0.4338 0.2261 0.3391 0.0764 0 0.5135 
Logistic 0.0026 0.2383 0.1780 0.1035 0.3320 0.4517 
Duffing 0.0440 0.1519 0.3197 0.4372 0.0246 0.0424 

 

0 500 1000 1500 2000
-20

-15

-10

-5

0

5

10

15

20

Sampling point

x
(n

)

 
(a) 

0 500 1000 1500 2000
-10

-5

0

5

10

Sampling point
x
(n

)

 
(b) 

 

0 500 1000 1500 2000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Sampling point

x
(n

)

 

(c) 

Figure 2. Timing diagrams of (a) Lorenz, (b) Logistic, and (c) Duffing. Figure 2. Timing diagrams of (a) Lorenz, (b) Logistic, and (c) Duffing.



Entropy 2019, 21, 235 9 of 15Entropy 2019, 21, x  

 

-10
0

10
im

f 
1

-10
0

10

im
f 

2

-10
0

10

im
f 

3

-5
0
5

im
f 

4

-5
0
5

im
f 

5

0 500 1000 1500 2000
-10

0
10

Sampling

im
f6

 
(a) 

-10
0

10

im
f 

1

-2
0
2

im
f 

2

-5
0
5

im
f 

3

-2
0
2

im
f 

4

-1
0
1

im
f 

5

0 500 1000 1500 2000
-1
0
1

Sampling/n

im
f6

 
(b) 

 

-2
0
2

im
f 

1

-1
0
1

im
f 

2

-0.5
0

0.5

im
f 

3

-0.2
0

0.2

im
f 

4

-1
0
1

im
f 

5

0 500 1000 1500 2000
-1
0
1

Sampling/n

im
f6

 
(c) 

Figure 3. Results of VMD for (a) Lorenz, (b) Logistic, and (c) Duffing. 

0 10 20 30 40 50
0

0.5

1

1.5

2

Sample

F
D

E

 

 

Lorenz

Logistic

Duffing

 

Figure 4. FDEs of Lorenz, Logistic and Duffing. 

5. Feature Extraction of Ship-Radiated Noise Using VMD and FDE 

5.1. Analysis of Ship-Radiated Noise Using VMD 

Figure 3. Results of VMD for (a) Lorenz, (b) Logistic, and (c) Duffing.

Entropy 2019, 21, x  

 

-10
0

10

im
f 

1

-10
0

10
im

f 
2

-10
0

10

im
f 

3

-5
0
5

im
f 

4

-5
0
5

im
f 

5

0 500 1000 1500 2000
-10

0
10

Sampling

im
f6

 
(a) 

-10
0

10

im
f 

1

-2
0
2

im
f 

2

-5
0
5

im
f 

3

-2
0
2

im
f 

4

-1
0
1

im
f 

5

0 500 1000 1500 2000
-1
0
1

Sampling/n

im
f6

 
(b) 

 

-2
0
2

im
f 

1

-1
0
1

im
f 

2

-0.5
0

0.5

im
f 

3

-0.2
0

0.2

im
f 

4

-1
0
1

im
f 

5

0 500 1000 1500 2000
-1
0
1

Sampling/n

im
f6

 
(c) 

Figure 3. Results of VMD for (a) Lorenz, (b) Logistic, and (c) Duffing. 

0 10 20 30 40 50
0

0.5

1

1.5

2

Sample

F
D

E

 

 

Lorenz

Logistic

Duffing

 

Figure 4. FDEs of Lorenz, Logistic and Duffing. 

5. Feature Extraction of Ship-Radiated Noise Using VMD and FDE 

5.1. Analysis of Ship-Radiated Noise Using VMD 

Figure 4. FDEs of Lorenz, Logistic and Duffing.

5. Feature Extraction of Ship-Radiated Noise Using VMD and FDE

5.1. Analysis of Ship-Radiated Noise Using VMD

The data used in this paper are four different kinds of actual ship-radiated noise measured in a sea area
of South China Sea and under the same conditions. Each type of ship-radiated noise has a certain amount
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of sample data, with a sample length of 2048 points and a sampling frequency of 20 kHz. The ship-radiated
noise is normalized, as shown in Figure 5. The normalized ship-radiated noise is decomposed into IMF
using VMD. After continuous testing, it can be seen that when the optimal decomposition number K > 8,
the subsequent IMF tends to be similar, so the optimal decomposition number K is 8, the step length is
0.03, the tolerance is 1e−7, and the penalty parameter is 2000, as shown in Figure 6.
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Table 6. IMFs with the smallest FDE difference between the four types of ship-radiated noises.

First Type Second Type Third Type Fourth Type

IMF4 0.1085 IMF5 0.0542 IMF4 0.075 IMF3 0.1111
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5.3. Classification of Ship-radiated Noise

Section 5.2 proves the effectiveness of the proposed technique by observing the distribution of
FDE. The results of Section 5.2 are sent into the SOM classifier for classification and identification.
The first 25 data are selected as training samples and the last 25 as test samples. The classification
results are shown in Table 7. As seen in Table 7, the error rate of the EMD-SIMF-FDE method is the
highest; it is more than 44%. The proposed method in this paper is only 2.5%; the error rate of the
fourth type of ship-radiated noises is zero. This results show that the method proposed in this paper is
the best.

Table 7. The classification results of different methods.

Method
Numbers of Errors Error

First Type Second Type Third Type Fourth Type Ratio (%)

EMD-SIMF-FDE 18 24 28 18 44
EEMD-SIMF-FDE 24 1 22 0 23.5
VMD-CC-FDE 16 1 30 16 31.5
VMD-SIMF-PE 5 4 0 50 29.5
VMD-SIMF-FDE 1 1 3 0 2.5

6. Conclusions

In order to achieve feature extraction of ship-radiated noises, a new method combining VMD and
FDE is proposed to distinguish different types of ship-radiated noises. The four types of ship-radiated
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noises are decomposed by using VMD, and the IMF with the smallest FDE difference is obtained.
Then, the FDE of the IMF with the smallest FDE difference is calculated, and the FDE sent into a SOM
classifier to classify the four types of ships.

(1) The VMD algorithm is a new adaptive signal processing method, which solves the mode mixing
and end effects of EMD and EEMD. The simulation results show that VMD decomposition is
better and more conducive to feature extraction of signals.

(2) FDE is a new type of entropy, which solves the disadvantage that PE only considers the sequence
of amplitude and may lose the message of amplitude. The simulation results in Section 2.3 show
that FDE is more stable than PE and MPE and is more suitable for feature extraction.

(3) In this paper, VMD, FDE and SOM are combined for feature extraction at the first time.
The method proposed in this paper is compared with the IMF with the highest correlation
coefficient after VMD decomposition and SIMF after EMD and EEMD decomposition. The results
show that the presented technique has better separation effect and higher discrimination.
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