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Coronary artery calcium (CAC) is a great risk predictor of the atherosclerotic cardiovascular disease and
CAC scores can be used to stratify the risk of heart disease. Current clinical analysis of CAC is performed
using onsite semiautomated software. This semiautomated CAC analysis requires experienced radiolo-
gists and radiologic technologists and is both demanding and time-consuming. The purpose of this study
is to develop a fully automated CAC detection model that can quantify CAC scores. A total of 1,811 cases
of cardiac examinations involving contrast-free multidetector computed tomography were retrospec-
tively collected. We divided the database into the Training Data Set, Validation Data Set, Testing Data
Set 1, and Testing Data Set 2. The Training, Validation, and Testing Data Set 1 contained cases with clin-
ically detected CAC; Testing Data Set 2 contained those without detected calcium. The intraclass correla-
tion coefficients between the overall standard and model-predicted scores were 1.00 for both the
Training Data Set and Testing Data Set 1. In Testing Data Set 2, the model was able to detect clinically
undetected cases of mild calcium. The results suggested that the proposed model’s automated detection
of CAC was highly consistent with clinical semiautomated CAC analysis. The proposed model demon-
strated potential for clinical applications that can improve the quality of CAC risk stratification.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 2019, cardiovascular diseases accounted for one-third of all
deaths worldwide, and nearly 90% of these deaths were due to
heart attack and stroke [1,2]. Atherosclerosis is one of the leading
causes of cardiovascular disease, and the presence of coronary
artery calcium (CAC) indicates its progressive risk. Therefore,
screening is crucial for early detection and risk stratification of
potential atherosclerotic cardiovascular disease. Computed tomog-
raphy (CT) is the clinical standard modality for the non-invasive
screening of CAC. Assessment of CAC is performed by
electrocardiogram-gated CT without using contrast medium. Due
to the characteristics of calcified plaques on CT images, a standard-
ized quantitative calcium score, known as the Agatston score, was
proposed and is now widely used in clinical practice to assess the
risk of cardiovascular disease [3]. The calcification area on CT
images has been proven to correlate with the pathological lesion
size [4], and the calcium score is sensitive in detecting vascular
stenosis [5]. Because the calcium score is closely associated with
the overall levels of atherosclerotic plaques, it is used to assess
the risk of coronary events [6–10]. Studies have demonstrated
the importance of the calcium score as an indicator in cardiovascu-
lar disease risk stratification.

Currently, clinical analysis of calcium scores is performed in a
semiautomated manner by radiologists and radiologic technolo-
gists, who use CAC analysis software to manually outline possible
calcium locations on images. The software uses a threshold of 130
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Hounsfield units (HU) to segment possible calcium locations from
areas that have been manually framed. However, this approach
requires a complete review of all cardiac CT images, which is
labor-intensive and time-consuming. Therefore, the purpose of this
study is to establish an automated CAC detection model to reduce
the burden of manual quantification and thus improve the quality
of risk management in healthcare.

The application of artificial intelligence in the automated seg-
mentation of medical images has matured markedly. Among them,
U-Net is a well-known deep learning framework based on the con-
volution neural network [11]. Convolution neural network is a type
of artificial neural network in deep learning, and it is powerful in
tasks for image processing. It uses convolution and backpropaga-
tion to learn features and update model parameters automatically
from the data. U-Net has been applied for the automated segmen-
tation of medical images, demonstrating favorable performance.
There have been studies using U-Net-based deep learning models
for automatic detection of CAC. Gogin et al. used a three-
dimensional (3D) architecture–based U-Net model to detect the
CAC [12], and Zhang et al. used a multiview input architecture to
train the U-Net-based model [13]. U-Net is based on encoder and
decoder architecture composed of convolution neural networks.
The encoder captures the features, and the image dimension
reduces after passing the encoder. The direct skip connection that
concatenates feature maps from the encoder to decoder in U-Net
helps the decoder recover the target objects’ fine-grained details
to restore spatial information. However, the direct fast-forward
concatenation connects semantically dissimilar feature maps,
degrading segmentation performance. U-Net++ is an improved ver-
sion of U-Net that can fully capture the extracted features at differ-
ent scales using a dense skip connection [14]. The dense skip
connection can enrich the feature maps from the encoder, making
it semantically similar to the corresponding feature maps of the
decoder. The performance of U-Net++ in various medical image
segmentation tasks has been compared with that of U-Net, with
results verifying that U-Net++ outperforms U-Net. In addition,
although not using a U-Net-based model, Zhao et al. used the med-
ical prior knowledge to increase the channels of the input images
[15]. They binarized the CT images by a clinical threshold of 130
HU used to determine CAC. The binary image became an aug-
mented input, allowing the deep learning model to detect CAC
with improved accuracy.

The voxel number of CAC on a CT image is substantially smaller
than the non-CAC voxel number. This results in a severe positive
and negative sample imbalance, which renders effective learning
of the positive classes challenging for deep learning models. Focal
loss is the modification from cross entropy loss [16], which allows
the model to focus more on learning difficult samples by reducing
the weight of easy-to-classify samples. Thus, the inefficient learn-
ing problem caused by the unbalanced positive and negative sam-
ples can be alleviated. In this study, we used the focal loss to train
the model. We tested whether U-Net++ was better than U-Net in
the segmentation of CAC. To the best of our knowledge, no study
has been conducted to model the segmentation task of CAC using
U-Net++. We retrospectively collected clinical routine cases of
coronary calcium scans, including CT and manually segmented
Table 1
Demographics of the CAC scans in the training and testing data sets.

Total Training

Number of Scans 1,811 754
Mean Age at Acquisition 58.1 (18–96) 62.5 (32–96)
Gender (Male/Female) 1,132/679 (63/37) 519/235 (69/31)

Values in brackets are the minimum and maximum values for age and percentages for
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CAC images. The balanced sampling with focal loss was applied
to optimize the model during training. The aim of this study was
to develop an automated model for detecting and segmenting
CAC in CT images. Eventually, the performance of the model was
verified by comparing the CAC scores obtained by semiautomated
clinical software with those obtained by the proposed model.
2. Materials and methods

2.1. Subjects and data collection

This study involved the retrospective collection of clinical rou-
tine images and was approved by the institutional review board
of Cheng Hsin General Hospital ([807] 109A-46). A total of 1,811
CAC scans (from between November 2015 and January 2021) were
retrieved from the hospital database. A total of 1,067 scans had a
nonzero CAC score, and 744 scans had a CAC score of zero. An expe-
rienced radiologic technologist checked the data with nonzero CAC
scores to ensure the accuracy of the data set. The 1,067 scans were
divided into Training, Validation, and Testing Data Sets, with 754,
98, and 215 scans, respectively. Those 215 scans were termed Test-
ing Data Set 1. Approximately 70% of the data was used to train the
model, 10% was used to validate the optimal model, and the
remaining 20% was used to test the model’s performance in detec-
tion and segmentation of the unknown data. That series of 744
scans, which was denoted as Testing Data Set 2, with a CAC score
of zero, was used to examine the sensitivity of the trained model
in detecting CAC. Table 1 is the demographics of the data sets.
Fig. 1 is a simple flowchart describing the mode of data separation.

2.2. Cardiac CT and semiautomated calcium analysis

All images were acquired using a dual-source 128-slice multi-
detector CT scanner (Somatom Definition FLASH, Siemens Health-
ineers, Erlangen, Germany). Clinical routine multidetector CT
scans were performed with electrocardiogram gating and covered
the entire heart region. Automated tube current modulation (CARE
Dose4D, Siemens Healthineers) was conducted with a voltage of
120 kVp at the reference of 80 mAs. The rotation time was 0.28 s
with the collimation of 128 � 0.6 mm and 2-mm slice thickness.
The scan direction was craniocaudal and the pitch depended on
the heart rate. For heart rates above 75 bpm and below 65 bpm,
the phase was 40% and 70%, respectively, for electrocardiogram
reconstruction. The semiautomated CAC scores obtained manually
in clinical practice were recorded as per standard practice in hos-
pital onsite software (syngo.CT CaScoring, Siemens Healthineers).

2.3. Quantitative calcium scores and CAC risk stratification

To calculate calcium scores, we first located the connected cal-
cium voxels in three dimensions in the binarized calcium image.
Voxels connected in six directions (anterior, posterior, left, right,
superior, and inferior) were considered as a single calcified lesion.
A total lesion area of <1 mm2 was considered as noise and
removed. After segmenting the calcified lesions, three quantitative
Validation Testing 1 Testing 2

98 215 744
61.6 (40–82) 61.5 (29–85) 52.1 (18–81)
67/31 (68/32) 158/57 (73/27) 388/356 (52/48)

gender.



Fig. 1. Data separation flowchart.
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scores were calculated, namely, the Agatston score, volume score,
and mass score [3,17,18].

Fig. 2 shows an example of quantitative calcium score calcula-
tion. The equation of each score is as follows:

Agatston Score ¼ W � Pixels � Pixel Size ð1Þ
Volume Score ¼ Pixels� Pixel Size� Slice Thickness; and ð2Þ
Table 2
Summary of CAC risk stratification based on Agatston score.

Class Agatston score Plaque Burden

C1 0 None
C2 1–10 Minimal
C3 10–100 Mild
C4 100–400 Moderate
C5 >400 Extensive
Mass Score ¼ C�HUmean � Pixels� Pixel Size

� Slice Thickness:

The Agatston score is calculated by multiplying the calcified
area by a weighting factor W. W in Eq. (1) is derived from the max-
imum intensity within a calcified lesion; W is 1, 2, 3, and 4 when
the HU value is 130–199, 200–299, 300–399, and � 400, respec-
tively. To calculate the volume score, the number of image pixels
is multiplied by the pixel size and then by the slice thickness. Eq.
(2) provides the total volume of the calcified lesion. The mass score
is calculated by multiplying the calibration coefficient C by the
mean HU value within the calcified lesion and then by the total
volume. In Eq. 3, the calibration coefficient C is obtained clinically
through a calibration phantom.

The scores for all calcified lesions were eventually summarized
to produce an overall quantitative calcium score for the risk strat-
ification of CAC. The overall Agatston score was divided into five
categories according to the score values [19,20], as displayed in
Fig. 2. Example of the calculation of quantitative calcium scores. In calculating the mass
unit of calibration coefficient is (mg CaHA)/(HU�cm3).
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Table 2. The first category (C1) contained cases with a score of 0
(i.e., no calcium observed). As the score increased, the more severe
the calcium area and the higher the degree of coronary atheroscle-
rosis and risk of cardiovascular disease. The highest-risk category
was that defined by an Agathon score of over 400 (C5).
2.4. Experimental setup and deep learning framework

All experiments were conducted on a computer with an Intel i7-
9700 central processing unit and a NVIDIA GeForce RTX 3090 24
gigabyte graphics processing unit. The deep learning model was
constructed based on PyTorch (version 1.7.1 + cu110), which uses
the Python 3.8.5 programming language. Image processing was
performed on the MATLAB R2020a programming platform (Math-
Works; Natick, MA, USA). Statistical analysis was performed using
SPSS Statistics 24 (IBM; Armonk, NY, USA).
score, it was divided by 1000 to convert the volume from mm3 to cm3 because the
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The model training workflow is depicted in Fig. 3a. The Training
Data Set was sampled using the Imbalanced Dataset Sampler for
balancing positive and negative data [21]. The sampler made the
positive and negative samples 1:1 ratio for each training batch by
oversampling. Images without the calcified lesion were considered
the negative, and those with the calcified lesion were considered
the positive. After the data were passed through the sampler, the
number of positive and negative samples that entered into the
model was the same. Training of the model ceased when the differ-
ence between the focal loss of themodel for Validation Data Set and
the Training Data Set was greater than a certain value. We evalu-
ated the Agatston scores of the Training Data Set and Validation
Data Set during training. Among all trained weights, the one with
the smallest difference in the Agatston score between the standard
and the model-predicted scores (for Validation Data Set) was
selected as the final model. Thereafter, Testing Data Set 1 and Test-
ing Data Set 2 was inputted to the final model for the evaluation.

In addition to the original CT images as the model input, the
binarized images with HU values greater than 130 as threshold
served as the second channel for training input [15], as illustrated
in Fig. 3b. As observed in the figure, the binarized image contained
calcified lesions and bone tissue. The deep learning model, known
as U-Net++, is illustrated in Fig. 3c, where xi,j is the convolution
block of row i and column j. Each convolution block contained
two modules, and each module consisted of a convolution layer
followed by a batch normalization layer followed by the ReLU acti-
vation function. The number of channels in the convolution block
was 32, 64, 128, 256, and 512 from top to bottom (i = 0,1,2,3,4).
The loss function for optimization was the focal loss [16], formu-
lated as follows:
FocalLoss ¼ �atð1� ptÞc log pt; and pt ¼
p

1� p

�
y ¼ 1

otherwise
: ð4Þ

In Eq. (4), p is the probability of each category after softmax,
rated between 0 and 1. y = 1 represents a pixel belonging to a cer-
tain category. at and c are the scale and weighted control parame-
ters, respectively. In our experiment, at = 0.5 and c = 3 were
applied. These parameters affect the overall loss function, making
the loss tend toward the difficult-to-classify data.

The model was designed for semantic segmentation to segment
and determine the location of the lesion at the same time. As
Fig. 3. Experimental flowchart and model architecture. (a) Model training workflow. (b)
binary image, to the model. (c) Schematic of U-Net++ architecture. (d) Schematic of out
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depicted in Fig. 3d, the final model output was five channels corre-
sponding to the non-CAC area, CAC on the left main coronary artery
(LM), left anterior descending (LAD), left circumflex artery (CX),
and right coronary artery (RCA). The output was then passed
through the softmax activation function and became the value
between 0 and 1. The argmax was used to determine the channel
with the largest value for each voxel (i.e., the classification result).
For instance, if a pixel has the maximum value in the second chan-
nel, it belongs to a CAC at LM. The output that belonged to the cal-
cification then passed through the process for CAC score
calculation as described in Section 2.3, in which the calcium smal-
ler than 1 mm2 was considered the noise and removed. The U-Net
with the same structure but without the dense skip connection
(x0,1-3, x1,1-2, and x2,1) was trained for comparison. Five metrics
were used to compare the performance between the U-Net and
U-Net++, as shown in Fig. 4. During model training, the batch size
was set to four images at a time, the optimizer selected was Adam,
the initial learning rate was set to 0.0001, and the learning rate was
reduced by 5% (using a scheduler) after each epoch. The models
were finally trained for 11 and 26 epochs for the U-Net and U-
Net++, respectively, over approximately two days.
2.5. Statistical analysis for the standard and model-predicted CAC
scores

After the model outputted the predicted CAC locations, three
quantitative calcium scores were calculated for each lesion-based
and vessel-specific case, as described in Section 2.3. The results
were compared and presented for the overall and vessel-specific
CAC scores. The intraclass correlation coefficient (ICC) was used
to examine the consistency between the standard and model-
predicted CAC scores. For the risk stratification category, Cohen’s
kappa was applied for the comparison between the standard and
model-predicted CAC scores.
3. Results

3.1. Comparison for the model performance of U-Net and U-Net++

Table 3 presents the mean metrics for the U-Net and U-Net++.
The CAC error in U-Net was between 5 and 7, and it was between
Schematic of the input images, including the original CT image and the thresholded
put from the model.



Fig. 4. Example for calculating the five metrics used to compare the U-Net with U-Net++.

Table 3
Mean metrics for the U-Net and U-Net++ in CAC detection.

CAC Error Precision Recall Dice IoU

U-Net
Training 6.27 0.53 0.53 0.53 0.53
Validation 7.42 0.54 0.54 0.54 0.54
Testing 5.48 0.54 0.54 0.54 0.54

U-Net++
Training 0.12 0.91 0.92 0.91 0.90
Validation 1.57 0.87 0.86 0.85 0.83
Testing 0.48 0.88 0.87 0.86 0.84
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0.1 and 1.5 in U-Net++. In the performance of the U-Net, the preci-
sion, recall, Dice, and IoU were between 0.5 and 0.6. In contrast,
these metrics ranged from 0.8 to 1.0 for the performance of the
U-Net++. The overall metrics indicated that the U-Net++ performed
better than the U-Net.

3.2. Model performance for overall and vessel-specific calcium
detection

Table 4 presents the case-based confusion matrix for calcium
detection, where lesions smaller than 1 mm2 were removed as
noise, and few cases with CAC became cases without CAC after
noise removal. Most of the CAC cases were correctly identified in
both the Training Data Set and Testing Data Set 1. A sensitivity of
99% was achieved in both the Training Data Set and Testing Data
Set 1, and specificity was 85% in the Training Data Set and 100%
in Testing Data Set 1. In the Training Data Set and Testing Data
Set 1, three and two cases with CAC, respectively, were determined
in the standardized analysis but were not detected by the model. In
the Training Data Set, five cases were identified as lacking CAC in
standardized analysis but were detected as having so by the model.

Table 5 presents the confusion matrix for the model in vessel-
specific calcified lesion detection. As long as the predicted voxels
were included in the standard lesion (i.e., a lesion identified by
standardized analysis), the lesion was considered as detected. Pre-
dicted voxels that were not included in any of the standard lesions
Table 4
Confusion matrix of the model in the overall calcium detection.

Standard

Predicted Training Data Set

No CAC

No CAC 29
CAC 5
Sensitivity (%) 99.58%
Specificity (%) 85.30%

1685
were denoted as ‘‘not CAC.” Standard lesions that were not
included in any of the predicted voxels were denoted as ‘‘not
detected.” The results indicated that most of lesions were detected,
with detection rates of 98.3%, 99.2%, 98.9%, and 95.7% in the Train-
ing Data Set and 80.0%, 96.6%, 88.7%, and 93.6% in the Testing Data
Set 1 for LM, LAD, CX and RCA, respectively. The proportion of over-
all lesions not detected by the model was 1.9% and 5.1% in the
Training Data Set and Testing Data Set 1, respectively. The addi-
tional lesions detected (not CAC) by the model was 3.9% and 5.7%
in the Training Data Set and Testing Data Set 1, respectively.
3.3. Model performance on quantitative calcium scores

Table 6 shows the statistical analysis between the standardized
results and model predictions for the three quantitative calcium
score variables. In the Training Data Set, all ICCs approached 1 with
statistical significance, both for the overall and vessel-specific
scores. In Testing Data Set 1, all ICCs were greater than 0.95 with
statistical significance, except for LM, where the ICC was 0.88.

Fig. 5 illustrates the overall Bland–Altman plots for the stan-
dardized analysis and model-based prediction of each score. The
data were more concentrated at the zero baseline in the Training
Data Set than in Testing Data Set 1. Points were generally close
to the interval of the 1.96-times standard deviation in both the
Training Data Set and Testing Data Set 1.
Testing Data Set 1

CAC No CAC CAC

3 10 2
717 0 203

99.02%
100%



Table 5
Confusion matrix of the model in vessel-specific calcium detection.

Standard

Predicted Training Data Set Testing Data Set 1

LM LAD CX RCA Not CAC LM LAD CX RCA Not CAC

LM 290 6 0 0 10 76 3 0 0 18
LAD 0 1993 2 0 52 4 602 2 0 23
CX 0 2 1059 3 55 3 2 260 3 21
RCA 0 0 0 1721 86 0 0 11 483 25
Not Detected 5 9 10 75 – 12 16 20 30 –

Table 6
Statistical analysis of the quantitative calcium scores identified by standardized analysis versus predicted by the model.

Agatston score Volume Score (mm3) Mass Score (mg CaHA)

Location Standard Predicted ICC P value Standard Predicted ICC P value Standard Predicted ICC P value

Training Data Set
LM 0 (11) 0 (12) 1.00 <0.001* 0 (9) 0 (9) 1.00 <0.001* 0.0 (1.3) 0.0 (1.4) 1.00 <0.001*
LAD 73 (230) 73 (232) 1.00 <0.001* 43 (115) 43 (116) 1.00 <0.001* 8.0 (27.0) 8.0 (26.9) 1.00 <0.001*
CX 0 (50) 1 (50) 1.00 <0.001* 0 (32) 3 (33) 1.00 <0.001* 0.0 (5.3) 0.3 (5.4) 1.00 <0.001*
RCA 8 (97) 7 (94) 0.99 <0.001* 8 (61) 8 (58) 0.99 <0.001* 1.1 (10.3) 1.1 (9.4) 0.99 <0.001*
Overall 136 (432) 133 (434) 1.00 <0.001* 80 (227) 80 (230) 1.00 <0.001* 15.0 (50.0) 14.9 (49.9) 1.00 <0.001*

Testing Data Set 1
LM 0 (12) 0 (9) 0.88 <0.001* 0 (9) 0 (7) 0.88 <0.001* 0.0 (1.5) 0.0 (1.1) 0.88 <0.001*
LAD 64 (224) 65 (233) 0.98 <0.001* 36 (121) 37 (121) 0.98 <0.001* 6.4 (24.3) 7.0 (25.3) 0.98 <0.001*
CX 0 (34) 0 (35) 0.96 <0.001* 0 (23) 0 (22) 0.96 <0.001* 0.0 (3.8) 0.0 (3.8) 0.96 <0.001*
RCA 5 (89) 6 (81) 0.99 <0.001* 7 (58) 7 (51) 0.99 <0.001* 0.9 (9.2) 0.9 (8.3) 0.99 <0.001*
Overall 93 (416) 95 (399) 1.00 <0.001* 53 (234) 55 (213) 1.00 <0.001* 10.2 (50.4) 10.6 (46.9) 1.00 <0.001*

‘‘*” represents that the p value is<0.05. The median of each score is presented, and the value in the bracket is the interquartile range.

Fig. 5. Bland–Altman plots of the overall three quantitative calcification score variables in the Training Data Set [(a), (b), and (c)] and in Testing Data Set 1 [(d), (e), and (f)].
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3.4. Performance of model prediction in calcium risk stratification

Table 7 presents the confusion matrix of the standard and
model-predicted Agatston scores, divided into five categories for
1686
CAC risk stratification. The Cohen’s kappa for the Training Data
Set was 0.957 with statistical significance and a confidence interval
of 0.940–0.974. The kappa for Testing Data Set 1 was 0.931 with
statistical significance and a confidence interval of 0.891–0.971.



Table 7
Confusion matrix of the model performance in the overall calcium detection.

Standard

Predicted Training Data Set Testing Data Set 1

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 29 2 1 0 0 10 1 1 0 0
C2 3 70 2 0 0 0 20 1 0 0
C3 2 2 214 3 0 0 3 71 1 0
C4 0 0 4 214 2 0 0 2 46 2
C5 0 0 0 3 203 0 0 0 0 57

Table 8
Comparison with results of similar studies in terms of model performance on the CAC
risk stratification.

ICC Kappa

de Vos et al. [26] 0.98 0.95
Gogin et al. [12] 0.97 0.894
Stanstedt et al. [27] 0.996 0.919
Wang et al. [28] 0.94 0.77
Zhang et al. [13] 0.988 –
Proposed Model 1.00 0.931
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3.5. Model prediction performance in Testing Data Set 2

Testing Data Set 2 contained a total of 744 cases with a calcium
score of zero. After parsing the images in Testing Data Set 2, the
model detected that 78 of them have calcium. Examination by
the experienced radiologic technologist indicated that 26 of the
Fig. 6. Cases with calcium predicted by the model in Testing Dataset 2. The original CT im
and the color superimposed images (c, f) of the location of the detected calcium. The re
references to color in this figure legend, the reader is referred to the web version of thi
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78 were actual CAC cases. Two example cases for model prediction
in Testing Data Set 2 are presented in Fig. 6. The model detected
the suspected calcium at the CX and RCA locations, and the mask
with HU values greater than 130 verified the detection by the
model (Fig. 6b, e). In Fig. 6a, b, and c, an intravascular stent was
mistakenly predicted as CAC; in Fig. 6d, e, and f, a confirmed CAC
case was detected.
5. Discussion

The deep learning method proposed in this study was effective
for detecting CAC. For the three quantitative CAC score variables,
the model achieved an ICC of 1.00 with statistical significance in
relation to the LM, LAD, CX, and RCA areas in the Training Data
Set. In Testing Data Set 1, the ICC of all vessels was higher than
0.95, except for in LM, where an ICC of 0.88 was recorded, and
all of the ICCs were statistically significant. The ICC for the overall
score was 1.00 in relation to both the Training Data Set and Testing
ages of the case (a, d), the binarized images with CT values greater than 130 HU (b, e)
d arrow is the location where the calcium was detected. (For interpretation of the
s article.)
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Data Set 1, indicating that the model was successful in detecting
the overall CAC. In Testing Data Set 2, the model detected possible
locations of CACs that were overlooked in clinical practice. For the
risk stratification of CAC, the kappa values were above 0.93 with
statistical significance for both the Training Data Set and Testing
Data Set 1. The performance of the proposed model was highly
consistent with that of the semiautomated standard CAC analysis
used in clinical practice. In a clinical scenario, the physician can
use the proposed model to predict and analyze the CAC and then
confirm the results based on the model predictions. This has the
following advantages. First, compared to the time-consuming
semiautomated analysis by the physician, the model predicts a
case in 50 ms. Second, the deep learning model is not affected by
factors that can happen to humans, such as fatigue. Finally, the
model does not have the problem of intraobserver and interob-
server variability. The proposed model can be used as a clinical
aid for automated CAC detection to reduce the clinical manpower
burden and thus improve the quality of CAC diagnosis.

In the three cases where the model did not detect CAC in the
Training Data Set, CAC was actually detected in one of them but
was removed in the noise removal step (because the segmentation
area was smaller than 1 mm2). In the case where the model
detected CAC in the Training Data Set but the standard semiauto-
mated analysis did not, the model did find the correct CAC location,
but the calcium area was removed as noise because the area
was<1 mm2. The two cases not detected in Testing Data Set 1 were
CAC lesions located at LM. In Testing Data Set 2, we assessed
whether the proposed model could detect CAC cases that were
missed in standard clinical practice, discovering that the proposed
model did detect such cases. Furthermore, the model performed
well in the Training Data Set regarding the vessel-specific level.
In Testing Data Set 1, compared with its performance on classifying
LAD and RCA, the model exhibited poorer prediction outcomes in
the LM and CX regions because of the classification imbalance
problem caused by the relatively small number of LM and CX cases.

Clinical semiautomated CAC analysis is not only time-
consuming but also observer dependent. By contrast, automated
CAC detection is fast and objective. Studies on automated CAC
detection have used traditional image processing, machine learn-
ing–based methods [22–25], and, more recently, deep learning–
based methods [12,13,15,26–28]. Traditional image processing
methods essentially use mapping and rule-based approaches to
define possible lesions using information such as calcium patterns
and their characteristics and to then identify candidate lesions
using classifiers. In recent years, deep learning methods have been
rapidly developed, especially the models based on the convolution
neural network, which is particularly effective in image object
detection. The advantage of deep learning is that the computation
speed is ultra-fast, and that the model can learn the image process-
ing task efficiently provided the data set is sufficiently large. In our
proposed model, the speed of CAC detection from a CT image was
approximately 50 ms. The common guideline for obtaining CAC
scores involves CAC risk classification based on a contrast-free car-
diac CT scan [29]; thus, we compared our model’s prediction
results with those of similar studies in terms of the ICC and kappa
coefficients between clinical semiautomated and fully automated
CAC scores for the risk stratification (Table 8). In similar studies
that used deep learning to model the automated detection of cal-
cium, the final kappa values ranged from 0.77 to 0.95 in their Test-
ing Data Sets, and the final ICCs of overall Agatston scores ranged
from 0.94 to 0.988 in their Testing Data Sets. In the Testing Data
Set 1, our model was able to achieve a kappa value of 0.931 for
the CAC risk stratification and an ICC of 1.0 for the overall Agatston
score. This only indicates that our model achieved comparable per-
formance to other studies in detecting CAC because we did not use
our data to build the models from these studies for comparison.
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Wang et al. and Gogin et al. have used a 3D approach for model
building, whereas Zhang et al. used three projections of two-
dimensional (2D) images (coronal, sagittal, and axial) for model
building [12,13,28]. In addition to CAC detection, Zhang et al.
added a regression model to calculate quantitative calcium scores
[13]. de Vos et al. used a two-stage model, with the first stage
aligning the 3D cardiac structure and the second stage detecting
CAC [26]. In our study, we used only the axial 2D images as the
input. Besides, Zhao et al. added empirical definition features to
the model input, such as a 130-HU threshold for defining the sus-
pected CAC, in addition to the original CT images [15]. They com-
pared different deep learning models and discovered that a
model with the empirical feature image as input outperformed a
model without it. We followed their approach in our model input
by including binarized images (with 130-HU threshold) as the sec-
ond channel of input. Additionally, because the proportion of the
CAC voxels was several orders less than that of the non-CAC voxels,
we introduced the imbalance data sampler to balance the propor-
tion of 2D images with and without CAC [21], and then applied
focal loss to further increase the ability of the model to learn
difficult-to-classify voxels [16]. Finally, we used an improved U-
Net architecture, namely U-Net++ [14]. In U-Net, images are down-
sampled four times before being upsampled. During each down-
sampling, image dimensions is reduced, which results in the loss
of the fine feature information. Therefore, how many levels of
downsampling should be selected for optimal model performance
is unclear. Unlike traditional U-Net framework, U-Net++ imple-
ments upsampling after each downsampling, and this makes full
use of the information obtained from each downsampling. Thus,
although the U-Net++ model involves more parameters, it outper-
forms U-Net in many medical image segmentation tasks [14]. Our
results demonstrated that the U-Net++ outperformed the U-Net
architecture in the task for semantic segmentation of CAC.

CAC scoring is reliable, and its reproducibility has been exten-
sively studied across different CT imaging modalities [18,30–33].
Numerous studies have found that the CAC score is meaningful
and recommended for consideration in the risk stratification for
coronary heart disease and atherosclerotic cardiovascular disease
[6–9,20,34–37]. In addition, the presence or absence of CAC is a
powerful indicator and can be used as a negative risk factor. Stud-
ies have shown that even in populations classified as at high risk
(e.g., with high levels of hs-CRP and high-risk factors such as dys-
lipidemia and smoking), those with the zero CAC score have a
lower risk of atherosclerotic cardiovascular disease [34]. According
to the updated guideline [35], these patients could be reclassified
to the low-risk group if CAC is not detected, and preventive inter-
ventions (e.g., statins) could be reasonably postponed. Conversely,
if a CAC is detected, it should be noticed. The results of our exper-
iment enabled physicians to review cases in which CAC was not
diagnosed but was detected by the proposed model. Besides, in
current clinical settings, risk stratification of CAC to cardiac disease
is undertaken based on the overall CAC score, without considering
the distribution of calcium in different vessels. Calcified lesions
may be either concentrated in a single vessel or dispersed across
many vessels for cases with the same CAC score. As such, identical
overall CAC scores could result in completely different levels of
coronary heart disease risk [8,10]. Vessel-specific risk stratification
is superior to risk stratification by the overall CAC score in predict-
ing coronary heart disease [36]. In addition, studies have shown
that patients with LM calcium without symptoms have a higher
risk of total cardiovascular mortality [37]. Therefore, analyzing
vessel-specific CAC scores is crucial. The model proposed in this
study is in excellent agreement with the standard semiautomated
CAC analysis, both in detecting the overall CAC and vessel-specific
CAC. Our proposed model can thus provide a comprehensive
assessment of calcium for the totality of and across specific vessels.
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This study demonstrated some limitations. First, in our retro-
spectively collected data set, clinical CAC analyses were not per-
formed by the one individual. Therefore, we could not ensure
that the criteria for assessing CAC were absolutely identical across
all cases. In other words, the model learned from the subjective
perceptions of different individuals to become more objective. Sec-
ond, we did not exclude the cases that had intravascular stents in
our experiment. The stents were not included in the clinical CAC
evaluation. The HU values of stents are similar to those of calcium
and are located in the coronary artery. In our experiment, the
model sporadically misidentified stents as calcium. Third, because
an image can contain different vessel types, we only considered the
image sampling balance with and without CAC and did not balance
the sampling for different vessel types. This is why our model per-
formed less effectively in the LM and CX regions than in LAD and
RCA. Finally, our model was constructed based on images scanned
using the same machine and was not evaluated for images
obtained from other scanning machines. Images scanned using dif-
ferent machines can vary. Therefore, if the proposed model is to be
applied to the scanned images from other machines, either retrain-
ing the model or using transfer learning [38] to speed up the model
training and enhance its performance is recommended.

6. Conclusion

In this study, a fully automated CAC detection model was devel-
oped using U-Net++ in conjunction with focal loss to effectively
detect the location of calcium in different coronary arteries. Our
model could detect mild CAC cases that are not identified in clinical
practice. The proposed fully automated CAC detection model is
highly consistent with standard clinical semiautomated CAC anal-
ysis, both in terms of overall and vessel-specific quantitative CAC
score determination. The proposed model can effectively assist
CAC analysis in clinical settings, thereby facilitating overall CAC
risk assessment.
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