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ABSTRACT Bacteriophage (phage) are both predators and evolutionary drivers for bac-
teria, notably contributing to the spread of antimicrobial resistance (AMR) genes by gen-
eralized transduction. Our current understanding of this complex relationship is limited.
We used an interdisciplinary approach to quantify how these interacting dynamics can
lead to the evolution of multidrug-resistant bacteria. We cocultured two strains of methi-
cillin-resistant Staphylococcus aureus, each harboring a different antibiotic resistance gene,
with generalized transducing phage. After a growth phase of 8 h, bacteria and phage sur-
prisingly coexisted at a stable equilibrium in our culture, the level of which was depend-
ent on the starting concentration of phage. We detected double-resistant bacteria as early
as 7 h, indicating that transduction of AMR genes had occurred. We developed multiple
mathematical models of the bacteria and phage relationship and found that phage-bacte-
ria dynamics were best captured by a model in which phage burst size decreases as the
bacteria population reaches stationary phase and where phage predation is frequency-de-
pendent. We estimated that one in every 108 new phage generated was a transducing
phage carrying an AMR gene and that double-resistant bacteria were always predomi-
nantly generated by transduction rather than by growth. Our results suggest a shift in
how we understand and model phage-bacteria dynamics. Although rates of generalized
transduction could be interpreted as too rare to be significant, they are sufficient in our
system to consistently lead to the evolution of multidrug-resistant bacteria. Currently, the
potential of phage to contribute to the growing burden of AMR is likely underestimated.

IMPORTANCE Bacteriophage (phage), viruses that can infect and kill bacteria, are being
investigated through phage therapy as a potential solution to the threat of antimicrobial re-
sistance (AMR). In reality, however, phage are also natural drivers of bacterial evolution by
transduction when they accidentally carry nonphage DNA between bacteria. Using labora-
tory work and mathematical models, we show that transduction leads to evolution of multi-
drug-resistant bacteria in less than 8 h and that phage production decreases when bacterial
growth decreases, allowing bacteria and phage to coexist at stable equilibria. The joint dy-
namics of phage predation and transduction lead to complex interactions with bacteria,
which must be clarified to prevent phage from contributing to the spread of AMR.

KEYWORDS antimicrobial resistance, bacteriophages, horizontal gene transfer,
mathematical modelling, microbiology, Staphylococcus aureus, transduction

Bacteriophage (or phage) are major bacterial predators and the most abundant biologi-
cal entities on the planet (1). However, phage are also natural drivers of bacterial evolu-

tion through horizontal gene transfer by transduction (2, 3). Antimicrobial resistance (AMR)
genes can be transferred by transduction at high rates both in vitro and in vivo (4–6), mean-
ing that phage may be substantially contributing to the rapidly increasing global public
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health threat of AMR (7). However, our understanding of these joint dynamics of predation
and transduction and how to best represent them is limited.

There are two main types of transduction; here, we focus on generalized transduction,
which occurs during the phage lytic cycle when nonphage genome DNA is mistakenly
packaged in a new phage particle (Fig. 1). The resulting transducing phage released upon
lysis can then inject this genetic material into another bacterium. The second type of trans-
duction, specialized transduction, relies on lysogeny, during which sections of bacterial
DNA adjacent to the prophage integration site may be transferred upon excision of the
prophage (8, 9). Generalized transduction is currently often dismissed as too rare to be sig-
nificant, yet it is likely a substantial contributor to AMR spread, as it is a common mecha-
nism for the transfer of plasmids, major vectors of AMR genes (2). There are currently no
estimates or work quantifying rates of transduction of AMR genes under various condi-
tions. Previous reviews have highlighted the necessity to further investigate the potential
impact of transduction in the context of phage therapy, where phage are used as antimi-
crobial agents against bacteria (10–13).

Mathematical models have been used to gain insights into phage predation dy-
namics that cannot be obtained solely with experimental work, such as rates of preda-
tion and optimal conditions for phage to clear bacteria (14). Such models typically
assume a density-dependent interaction, with new phage infections calculated as the
number of susceptible bacteria multiplied by the number of phage and an adsorption
constant (14–16). This approach has limitations, as density-dependent models have
failed to predict equilibria observed under some in vitro conditions between phage
and Escherichia coli (17). Moreover, phage and bacterial replication are likely linked, as
they both rely on the bacterial machinery; phage predation may slow as bacteria reach
stationary phase (14, 17–23). However, this is a feature that is not commonly included
in mathematical models of phage-bacteria dynamics (14). Finally, models often only

FIG 1 Phage lytic cycle and generalized transduction. In this environment, only some bacteria carry
an antimicrobial resistance (AMR) gene (shown in green). The lytic cycle starts when a lytic phage
infects a bacterium by binding and injecting its DNA (1). Phage molecules degrade bacterial DNA and
utilize bacterial resources to create new phage components and replicate (2). These components are
then assembled to form new phage particles (3). At this stage, bacterial DNA left in the cell can be
packaged by mistake instead of phage DNA, which creates a transducing phage and starts the
process of generalized transduction. In our example, the transducing phage carries the AMR gene.
After a latent period of typically several minutes, the phage trigger lysis of the bacterium, bursting it
and releasing the phage (4). The transducing phage can infect another bacterium, binding and
injecting the AMR gene it is carrying (5). If this gene is successfully integrated into the bacterial
chromosome (6), this creates a new transductant bacterium carrying this AMR gene (7). Note that the
transduced bacterial DNA could also be a plasmid, in which case it would circularize instead of
integrating into the chromosome of the transductant bacterium. The figure is not to scale.
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rely on data of phage-bacteria interactions measured once per day or for a few hours
(17–19, 24). A current lack of detailed data means that capturing these underlying dy-
namics, which occur in less than an hour, has not yet been possible.

To the best of our knowledge, only three modeling studies have included transduc-
tion of AMR genes (25–27). All three modeled complex environments, including resist-
ance to phage, antibiotics, and both lytic and lysogenic cycles. This complexity, com-
bined with the fact that these studies were not paired with complementary in vitro or
in vivo data, means that they relied on assumptions and previously published estimates
instead of parameter values derived from a single environment and set of conditions.
This limits the wider reliability of conclusions made using these models (12).

In this article, we investigate the dual nature of phage dynamics using the clinically
relevant bacteria methicillin-resistant Staphylococcus aureus (MRSA) (28). Transduction
is the main mechanism of horizontal gene transfer driving evolution for these bacteria
(29), and phage therapy is currently being investigated to treat MRSA infections (30,
31). We aim to clarify the joint dynamics of predation and generalized transduction
between MRSA and phage by generating novel in vitro data, identifying biologically
plausible hypotheses that may explain the dynamics seen, and developing mathemati-
cal models to test the validity of these hypotheses in our system.

RESULTS
Transduction and phage predation dynamics in vitro. We focused on two labora-

tory strains of Staphylococcus aureus, each resistant to either erythromycin (referred to as BE)
or tetracycline (BT). Under our experimental conditions, the antimicrobial resistance (AMR)
genes can only be transferred between bacteria by generalized transduction mediated by
exogenous phage. Transduction of either AMR gene to the other strain will result in the for-
mation of double-resistant progeny (DRP; also referred to as BET).

We conducted a coculture with only the two single-resistant strains and exogenous
phage (PL) capable of generalized transduction. We detected DRP (BET) as early as 7 h
in our cocultures, indicating that transfer of AMR genes by generalized transduction
had occurred (Fig. 2). BET numbers remained below 100 CFU/ml after 24 h but were
consistently generated in each of our experimental replicates. Colonies of DRP were
screened using PCR to confirm that they contained both resistance genes erm(B) and
tet(K) and had not instead gained resistance to either antibiotic by mutation (see
Fig. S1 in the supplemental material).

The starting concentration of exogenous phage affected whether phage and bacteria
were able to reach an equilibrium and coexist without increasing or decreasing in our cocul-
tures (Fig. 2). With a starting concentration of either 103 or 104 PFU/mL (equivalent to multi-
plicities of infection [MOI] of 0.1 or 1, defined as a starting ratio of phage to bacteria [32]),
lytic phage reached a steady state after 8 h (at approximately 105 PFU/mL for a starting con-
centration of 103 and 107 PFU/mL for 104). In both cases, bacteria replicated for 8 h before
reaching a steady state around 109 CFU/mL, similar to what was seen in the absence of ex-
ogenous phage (Fig. S2). With a starting phage concentration of 105 PFU/mL (MOI of 10),
we did not see an equilibrium between phage and bacteria, as phage numbers kept increas-
ing to 1010 PFU/mL by 24 h, and bacterial numbers started decreasing after 20 h. The data
sets are shown overlaid in Fig. S3.

Absence of lysogeny in our coculture. The phage we used in our experiments is
80a, a well-known generalized transducing phage. It has also been reported as a tem-
perate phage, which means that it may undergo lysogeny and integrate in the bacte-
rial chromosome as a prophage (33). This would grant lysogenic immunity to the bac-
teria, preventing further lytic infection by 80a and potentially explaining why bacterial
and phage densities reached steady states in our experiments (Fig. 2).

To investigate whether this was a potential mechanism, we initiated cocultures ei-
ther with stock bacteria or bacteria exposed to phage during a previous coculture. We
did not see any difference in phage and bacterial numbers after 24 h regardless of
whether or not the bacteria had been previously exposed to phage, suggesting that ly-
sogenic immunity has not been substantially gained by bacteria over 24 h (Fig. 3a).
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In addition, we extracted DNA from 1 mL of cocultures after 24 h and conducted
PCRs targeting the prophage junctions (attL and attR) and bacterial insertion site (attB)
with a positive control of a strain lysogenic for 80a. Our DNA extraction and PCR proto-
col mean that the detection limit for our protocol is a frequency of at least 3.3 � 1028

lysogenic per nonlysogenic bacteria after 24 h of coculture (see Materials and Methods
for details). Only the intact bacterial insertion site was detected in our samples, indicat-
ing an absence of prophage in our bacteria above this detection limit (Fig. 3b).

Another concern linked to lysogeny we must address is that, if lysogeny did occur,
the movement of the resistance genes tet(K) and erm(B) could have occurred by speci-
alized instead of generalized transduction. However, this is unlikely to be the case in
our system, since specialized transduction can only lead to transfer of genes adjacent
to the integrated prophage (8, 9). This adjacency limitation also applies to lateral trans-
duction, a type of specialized transduction reported for 80a leading to higher rates of
transfer for DNA located downstream of the insertion site (34). This condition of prox-
imity to the insertion site is not met in our system. The tetracycline resistance marker
tet(K) is located on a plasmid where 80a cannot integrate, preventing specialized and
lateral transduction. As for the erythromycin resistance marker erm(B), the distance
between the location of this gene on the chromosome (bp position 2126759 [35]) and
the 80a integration site (next to the rpmF gene [33], bp position 1122198 [35]) sug-
gests specialized and lateral transduction are unlikely.

Overall, these results suggest that after 24 h the frequency of lysogenic per nonlysogenic
bacteria is less than 3.3 � 1028 in our coculture; hence, it is reasonable to exclude any dy-
namics relating to lysogeny and specialized or lateral transduction in our analysis and model
below. Therefore, phage lysis and generalized transduction are likely the main mechanisms
shaping phage-bacteria interactions in our coculture.

Bacterial growth estimates in the absence of exogenous phage.When grown to-
gether in the absence of exogenous phage, single- and double-resistant bacteria repli-
cated exponentially and reached stationary phase after 8 h at 109 CFU per mL (Fig. S2).

BE did not show a significant fitness cost relative to BT over 24 h of growth (mean
relative fitness, 1.02; standard deviations [SD], 0.03). The DRP BET did not show a

FIG 2 Starting concentration of exogenous phage 80a affected the equilibrium values of phage and
bacteria in our cocultures. The starting concentration of both single-resistant S. aureus parent strains
(BE for erythromycin and BT for tetracycline) was 10

4 CFU per mL. Each panel shows the results with a
different starting concentration of exogenous phage (PL): either 10

3, 104, or 105 plaque-forming units
(PFU) per mL. We detected double-resistant progeny (BET) as early as 7 h, indicating that transduction
occurred rapidly. Error bars indicate means 6 standard errors from 3 experimental replicates. There
are no data for the time period of 9 h to 15 h.
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significant fitness cost relative to either single-resistant parent strain (mean relative fit-
ness to BE, 0.96; SD 0.06; mean relative fitness to BT, 0.98; SD 0.03).

We obtained maximum growth rate estimates by fitting a logistic growth model to
the in vitro data.

FIG 3 80a lysogeny does not occur at a detectable level in our coculture. (a) Cocultures with
bacteria not exposed or previously exposed to phage. The starting concentration of both single-
resistant S. aureus parent strains (BE for erythromycin and BT for tetracycline) was 104 CFU per mL,
and the starting concentration of exogenous phage 80a (PL) was 104 PFU per mL. double-resistant
progeny (BET) are generated by transduction. The initial coculture was diluted in fresh media after
24 h to form a new coculture with bacteria previously exposed to phage. Phage were added in the
new coculture to reach a concentration of 104 PFU/mL. Error bars indicate means 6 standard
errors, from 3 experimental replicates. (b) Confirmation of absence of detectable lysogeny by
polymerase chain reaction. DNA was extracted from the cocultures after 24 h. S. aureus RN4220
strains lysogenic and nonlysogenic for 80a were used as positive and negative controls. L, ladder;
attL, left prophage junction; attR, right prophage junction; attB, bacterial insertion site. Detection of
attL and attR indicates that prophage are present in the DNA, while detection of attB indicates the
presence of bacteria not lysogenic for 80a.
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The median estimated maximum growth rates were 1.61 for BE (95% credible inter-
val, 1.59 to 1.63), 1.51 for BT (1.49 to 1.53), and 1.44 for BET (1.42 to 1.47), with a total
carrying capacity of 2.76 � 109 CFU/mL (2.61 � 109 to 2.98 � 109).

Investigation of possible phage-bacteria interactions using a flexible modeling
framework. (i) Model structure. We designed a mathematical model to reproduce the
in vitro phage-bacteria dynamics, including generalized transduction of resistance
genes. During our experiment, our coculture contained up to three strains of bacteria:
the two single-resistant parents (BE and BT) and the DRP (BET). Although we were only
able to count lytic phage (PL), based on the biology of generalized transduction (Fig. 1)
we know that there were also transducing phage carrying either the erythromycin re-
sistance gene (PE) or the tetracycline resistance gene (PT). Since we did not detect any
evidence of 80a lysogeny in our coculture after 24 h, we did not include this feature in
the model. The corresponding model diagram is shown in Fig. 4a. The complete model
equations can be found in Materials and Methods.

Using this modeling framework, we explored a combination of different phage-bac-
teria interactions, described below (Fig. 4b and c). By fitting the models to our experi-
mental data, we could rule out certain interactions and suggest the best model to
reproduce the phage-bacteria dynamics seen in vitro.

(ii) First phage-bacteria interaction: density versus frequency-dependent
phage predation. The most common approach to model phage-bacteria dynamics is
to assume that phage predation is density-dependent (14). This means that, over one
time step, the number of phage infecting bacteria and the number of bacteria infected
by phage are both equal to the product of the number of bacteria (B), phage (P), and
phage adsorption rate (b), as shown in equation 1.

B � P � b (1)

The density-dependent interaction implies that the number of new infections scales
linearly with the number of phage and bacteria (Fig. 4b). Therefore, even if we keep a
constant number of phage, increasing bacteria numbers always leads to a linear
increase in the estimated number of new infections. Although this simplification is use-
ful and holds for a range of values, it has been suggested that it is not biologically real-
istic for small numbers of phage or bacteria, since in reality one phage can only infect
one bacterium over one time step (17).

To overcome these issues, we consider an alternative interaction, where phage preda-
tion is frequency-dependent (36). This accounts for the fact that one phage does not nec-
essarily always lead to one infection. For example, phage may sometimes fail to bind to
bacteria, or multiple phage may bind to the same bacterium (32) (Fig. 4b). Importantly, this
mathematical interaction guarantees that, at any given time point, the number of phage
infecting bacteria and the number of bacteria infected by phage can never be greater than
the total number of phage or bacteria in the system. Over one time step, the proportion of
phage infecting any bacteria (l) is defined by equation 2.

l ¼ ½12exp 2b � Bð Þ� (2)

Similarly, the proportion of bacteria being infected by at least one phage (w ) is cal-
culated with equation 3.

w ¼ 12exp 2
l � P
B

� �� �
(3)

(iii) Equilibrium analyses for the density- and frequency-dependent models.
Despite these being common methods to represent phage-bacteria interactions in
mathematical models, previous analyses have suggested that the density- and fre-
quency-dependent interactions alone cannot capture the equilibrium levels we and
others have seen (18, 37). We explore this in the context of our own in vitro data using
equilibrium analyses.
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FIG 4 Phage predation and generalized transduction model diagram and different phage-bacteria interactions considered. (a) Model
diagram. Each bacteria strain (BE, resistant to erythromycin; BT, resistant to tetracycline; BET, resistant to both) can replicate

(Continued on next page)
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Assuming that transduction and the phage latent period are negligible, a simplified
model representing phage predation as a density-dependent process is shown in
equations 4 and 5.

dB
dt

¼ mmax � B � ð12 B
Bmax

Þ2B � P � b (4)

dP
dt

¼ B � P � b � d 92g � P (5)

Where mmax is the maximum bacterial growth rate, Bmax is the carrying capacity, b is
the phage adsorption rate, g is the phage decay rate, and d is the phage burst size,
with d 9 equal to d 2 1. To solve for equilibrium (i.e., dBdt ¼ dP

dt ¼ 0), equations 4 and 5
can be rewritten as equations 6 and 7.

mmax � B � ð12 B
Bmax

Þ2B� P � b ¼ 0 (6)

B� P� b � d 92g� P ¼ 0 (7)

Since we are interested in an equilibrium with the condition that there are still bac-
teria and phage in the environment (i.e., B = 0 and P = 0), we can divide equations 6
and 7 by B and P, respectively, to obtain equations 8 and 9. These must hold true for
there to be a nonzero bacteria and phage population at equilibrium.

mmax � ð12 B
Bmax

Þ2 P� b ¼ 0 (8)

B� b � d 92g¼ 0 (9)

We then obtain equations 10 and 11 by rearranging equations 8 and 9 to give
expressions for P and B at equilibrium.

P ¼ mmax

b
� ð12 B

Bmax
Þ (10)

B ¼ g

b � d 9
(11)

In our experiment with a starting phage concentration of 104 PFU/mL, after 24 h
the bacterial concentration was approximately 109 CFU/mL and the phage concentra-
tion was 105 PFU/mL. If we replace the corresponding terms in equations 10 and 11
with these values, alongside the carrying capacity (2.8 � 109) and average of the
growth rates estimated (1.52), we obtain equations 12 and 13.

105 ¼ 1:52
b

� ð12 109

2:8� 109
Þ (12)

FIG 4 Legend (Continued)
(purple). The lytic phage (PL) multiply by infecting a bacterium and bursting it to release new phage (gold). This process can create
transducing phage (PE or PT) carrying a resistance gene [erm(B) or tet(K), respectively] taken from the infected bacterium (green).
These transducing phage can then generate new DRP (BET) by infecting the bacterial strain carrying the other resistance gene
(green). (b) Phage predation in the model is either density- or frequency-dependent. (Top) With a density-dependent interaction, the
number of infections scales linearly with the number of phage and bacteria. (Bottom) A frequency-dependent interaction illustrates
that some phage may not infect a bacterium or that multiple phage may infect the same bacterium. (c) Phage predation in the
model can decrease as bacterial growth decreases. (Top) A change in bacterial growth phase can affect surface receptors, leading to
a reduced phage adsorption rate. (Bottom) Since phage replication relies on bacterial processes, reduced bacterial growth can
translate into reduced phage burst size. (d) Proposed function linking phage predation parameters to bacterial growth. This shows
the multiplier applied to decrease phage parameters as the bacterial population increases toward carrying capacity, equivalent to a
decrease in bacterial growth. Here, the carrying capacity is 2.76 � 109 CFU/mL, estimated from our data.
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109 ¼ g

b � d 9
(13)

Rearrangement of equation 12 leads to a solution for phage adsorption (b) (equa-
tion 14).

b ¼ 9:77� 1026 � 1025 (14)

Substituting this into equation 13 leads to a value for phage decay rate (g) (equation
15).

g¼ 109 � 1025 � d 9 � 104 � d 9 (15)

This gives rise to the condition that the phage decay rate, g, must be approximately 104

times greater than the burst size, d 9. As at least one phage must be released upon bursting, the
burst size, d 9, is greater than 1. However, the phage decay rate,g, which represents the propor-
tion of phage inactivated during one time step, must be less than 1; hence, this is impossible.

As for the frequency-dependent interaction, a simplified model of this process is
shown in equations 16 and 17.

dB
dt

¼ mmax � ð12 B
Bmax

Þ � ðB2 w � BÞ2 w � B (16)

dP
dt

¼ w � B� d2l � P2 g� P (17)

With the condition that dB
dt ¼ 0, equation 16 can be rewritten as equation 18. This

condition must hold for there to be a nonzero equilibrium.

w ¼ mmax � ð12 B
Bmax

Þ � ð12 wÞ (18)

Using our equilibrium values (B = 109, P = 105, Bmax = 2.8 � 109, mmax = 1.52), this is
equivalent to equation 19.

w ¼ 1:52� 12 wð Þ � ð1 2
109

2:8� 109
Þ (19)

Equation 19 is solved to obtain a value for w (equations 20 to 23).

w ¼ 0:97� ð12 wÞ (20)

w ¼ 0:9720:97� w (21)

1:97� w ¼ 0:97 (22)

w ¼ 0:49 (23)

Using our equilibrium values and this value of 0.49 for w , equation 3 can be rewrit-
ten as equation 24.

0:49 ¼ 12exp 2
l � 105

109

� �
(24)

Equation 24 is solved to obtain a value for l (equations 25 to 29).

0:49 ¼ 12exp 2
l

104

� �
(25)
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0:51 ¼ exp 2
l

104

� �
(26)

lnð0:51Þ ¼ 2
l

104
(27)

2lnð0:51Þ � 104 ¼ l (28)

l � 6; 733 (29)

Therefore, l must be approximately equal to 6,733 to obtain a nonzero equilibrium, as
seen in our in vitro data with our model-fitted values (biologically plausible ones). However,
the definition of l according to equation 2 implies that l is,1. Therefore, this is impossible.

Even though these analyses rely on a simplified set of equations, using realistic pa-
rameter values we have shown that a nonzero equilibrium, as we have seen in vitro,
cannot be reproduced using models with only a density- or frequency-dependent
interaction. Instead, phage-bacteria coexistence may be explained by variations in
phage predation parameters depending on bacterial resource availability or bacterial
growth rate (14, 17–22). However, to the best of our knowledge a simple mathematical
expression linking phage predation to bacterial growth has not yet been developed.

(iv) Second phage-bacteria interaction: dependence of phage predation on
bacterial growth. Here, we consider that a decrease in bacterial growth as bacteria
reach stationary phase could first affect the phage adsorption rate, b , due to changes
in receptors on bacterial surfaces, which affect opportunities for phage to bind
(Fig. 4c). Second, this could affect phage production and, thus, burst size, d , as phage
replication relies on bacterial processes and may decrease when bacterial growth slows
down (Fig. 4c). Using a single phage predation multiplier, with the same principle of
logistic growth applied to bacteria, we allow either or both b and d to decrease as
bacterial growth decreases in our model (equations 30 and 31).

b ¼ bmax � 12
B

Bmax

� �
(30)

d ¼ dmax � 12
B

Bmax

� �
(31)

These equations imply that as bacterial population size increases toward carrying
capacity (Bmax), phage parameters will be reduced (Fig. 4d).

Identification of the best-fitting phage-bacteria interactions to reproduce the
in vitro dynamics. Overall, we considered 6 different models, either density or fre-
quency dependent and with either or both the phage adsorption rate and burst size
linked to bacterial growth. Note that we did not include a phage decay rate in these
models, as this did not affect the dynamics of the system over 24 h, for a wide range of
decay rates (Fig. S4).

All models successfully reproduced the trends seen in vitro when the phage were
started at either 103 or 104 PFU/mL (Fig. 5a and b). However, only the two models
where only phage burst size decreases as the bacterial population approaches carrying
capacity could reproduce the increase in phage numbers seen in the later hours of the
105 PFU/mL data set, despite all models having been fitted to this data set (Fig. 5a and
b). This was confirmed by calculating the average deviance information criterion (DIC)
value for the models, which favors best-fitting models while penalizing more complex
models (i.e., those with more parameters) (38). The two models where only phage
burst size decreases as the bacteria population approaches carrying capacity had the
lowest DIC values, indicating that they were the better-fitting models (Table 1).

Our initial experiments considered the dynamics over 24 h for various phage start-
ing concentrations. To test the ability of our model to recreate the dynamics under
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changing bacterial levels, we replicated our transduction coculture experiments with
starting concentrations of 106 CFU/mL bacteria instead of 104 CFU/mL, varying the
starting phage concentration between 104 and 106 PFU/mL and measuring bacterial
and phage numbers after 24 h of coculture. We then used the estimated parameter
values (Table 1) to try to reproduce these 24 h numbers of bacteria and phage.

Increasing the starting phage concentration led to an increase in the number of
phage after 24 h (Fig. 5c). For a starting phage concentration between 104 and 106

PFU/mL, increasing starting phage numbers did not affect single-resistant parents BE
and BT numbers after 24 h but led to a progressive increase in DRP BET numbers.
Increasing starting phage numbers above 106 PFU/mL caused bacteria numbers after
24 h to decrease.

FIG 5 Accuracy of the best-fitted models to reproduce in vitro phage-bacteria dynamics. (a and b) The models with only phage burst size linked to
bacterial growth are the most accurate to reproduce in vitro trends in lytic phage (a) and double-resistant bacteria (b) numbers, starting from a bacterial
concentration of 104 CFU/mL and varying phage concentrations. All models (dashed lines) can reproduce the trends seen in vitro when phage are started
at 103 or 104 PFU/mL (data in solid lines), but only the models with just the phage burst size linked to bacterial growth (colored model output) can
reproduce the trend seen when phage are started at 105 PFU/mL. Other models (gray) have only the phage adsorption rate linked to bacterial growth or
both the phage adsorption rate and burst size. Models are fitted to the 103 and 105 data and tested with the 104 data. Parameter values used are the
median fitted values (Table 1). Shaded areas indicate standard deviations generated from Poisson resampling of model results. Error bars for the data (solid
lines) indicate means 6 standard errors from 3 experimental replicates. (c) When further testing fitted model dynamics starting from 106 CFU/mL bacteria
and varying phage concentrations, the density-dependent model incorrectly predicts bacterial extinction, while the frequency-dependent model reproduces
the trend but not the exact values of the 24 h data. In the coculture used to generate the data, each single-resistant parent strain (BE and BT) is added at a
starting concentration of 106 CFU/mL, and no DRP (BET) are initially present. The starting concentration of lytic phage (PL) varies (x axis). Points indicate
mean results and are each slightly shifted horizontally to facilitate viewing. Error bars indicate either means 6 standard deviation for the models (left/
center) or means 6 standard errors for the data (right). Parameter values used are the median fitted values (Table 1).
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Using the estimated parameter values (Table 1) with the model where only burst size is
linked to bacterial growth, we see that the density-dependent model cannot reproduce
these dynamics, as it predicts that bacteria become extinct rapidly (Fig. 5c). The frequency-
dependent model can reproduce these trends but fails to recreate the exact same numbers
of phage and bacteria, predicting a decline in bacterial levels when the starting phage con-
centration increases above 105 PFU/mL, a lower threshold than that seen in the data
(Fig. 5c). The same overall trends are seen for the models where only the adsorption rate is
linked to bacterial growth, or both adsorption rate and burst size (Fig. S5).

Analysis of phage predation and transduction dynamics. Parameter estimates
for our best-fitting model (with a frequency-dependent interaction and a link between
phage burst size and bacterial growth only) suggest that the adsorption rate is 2.3� 10210

(95% credible interval, 2.1 � 10210 to 2.4 � 10210), which is the smallest estimate from
the models (Table 1). On the other hand, the estimated burst size is relatively large, at 76
(70 to 83) phage, and is higher than a previous in vitro estimate for 80a of 40 (39).
However, due to the decrease in burst size when bacteria are in stationary phase, we
expect that this number would change depending on the conditions under which it is
measured (Fig. 6a). Finally, the estimated latent period of 0.72 h (0.69 to 0.77) is slightly
longer than a previous in vitro estimate of 0.67 h (39). Regarding the other models, we
note some biologically unlikely parameter estimates that further suggest that these mod-
els are inappropriate, such as the low burst size for the models with only the adsorption
rate linked to bacterial growth (12 [10 to 14] and 10 [8 to 12]) or the high latent period
for the models with both adsorption rate and burst size linked to bacterial growth (0.93
[0.86 to 0.99] and 0.88 [0.79 to 0.96]) (Table 1).

We used our best-fitting model to reproduce our in vitro data (Fig. 2) and uncover
the underlying phage-bacteria dynamics. Due to the link between phage burst size
and bacterial growth, burst size decreases as bacteria reach carrying capacity after 8 h
(Fig. 6a and b). This is reflected in the relative change in phage numbers, which tends
toward 0 after 8 h (Fig. 6b). After this point, phage incidence remains stable for the 103

and 104 PFU/mL data set but starts increasing again significantly after 20 h for the 105

PFU/mL data set as bacterial numbers start decreasing due to phage predation, allow-
ing burst size to increase again (Fig. 6a to c).

We estimate that for every 108 new lytic phage released during burst, there was
approximately one transducing phage carrying an antibiotic resistance gene (Table 1
and Fig. 6c). Note that new DRP can be generated either by transduction or by replica-
tion of already existing DRP. Using the model, we found that DRP were always predom-
inantly generated by transduction rather than by growth (Fig. 6d). This is because DRP
only appear after 2 to 4 h, while after 4 h bacterial growth rate starts decreasing as the
total bacteria population approaches carrying capacity (Fig. 6b and d).

DISCUSSION
Results in context. We observed rapid in vitro horizontal gene transfer of antimi-

crobial resistance (AMR) by generalized transduction in Staphylococcus aureus along-
side equilibria in phage and bacterial numbers, which varied depending on the starting
number of phage. The most accurate mathematical model to replicate phage-bacteria
dynamics, including generalized transduction, represented phage predation as a fre-
quency-dependent interaction and linked phage burst size to bacterial growth. To the
best of our knowledge, these two elements have both been suggested previously (17,
18, 36) but never combined.

Density-dependent models have been compared to data at less fine time scales
(e.g., daily time points) or over smaller time periods (e.g., less than 8 h), where they
were able to reproduce in vitro values from experiments in chemostats and have been
helpful to improve our basic understanding of phage-bacteria dynamics (14–16).
However, here we show that this type of interaction is not able to reproduce finer
hourly dynamics and does not perform consistently when varying concentrations of
starting phage and bacteria. Using this, alongside a critique of the mathematical impli-
cations of this process, we argue that density dependence is not a biologically accurate
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representation of phage predation, as it fails to reproduce these dynamics at large or
small numbers of phage and bacteria, which would correspond to scenarios potentially
seen during phage therapy.

Our work adds to the growing body of evidence that phage predation depends on
bacterial growth (14, 17–23). This has implications for antibiotic-phage combination
therapy, as it suggests that bacteriostatic antibiotics, which prevent bacterial growth,
could reduce phage predation. This effect has been seen previously in S. aureus (40). In
the environment, including in persistent infections, bacteria spend most of their time
in stationary phase (41). This suggests that bacteria and phage can coexist for prolonged

FIG 6 Underlying phage and bacteria dynamics generated by the best-fitting frequency-dependent model with
burst size linked to bacterial growth. Model parameters are the median estimates from model fitting (Table 1).
(a) Phage burst size over time by starting phage concentration. As bacteria reach stationary phase after 8 h,
phage burst size decreases. In the 105 data set, we see that burst size is predicted to increase again after 20 h.
This is due to bacterial numbers decreasing as bacteria are being lysed by phage. (b) Relative change in phage
and bacterial numbers over time by starting phage concentration. The number of new phage generated at
each time step increases (positive value) until bacteria reach stationary phase around 8 h. This applies to lytic
and transducing phage. In the 105 data set, phage keep increasing after 10 h, eventually causing a decrease in
bacterial numbers (negative value), which translates into a further acceleration in the increase in phage numbers
due to the increased burst size (Fig. 5a). After 8 h, the relative changes in lytic and transducing phage numbers
are identical. (c) Incidence of lytic (gold) and transducing (green) phage over time by starting phage
concentration (line type). For any data set and time point, there is approximately 1 new transducing phage
generated for each 108 new lytic phage. (d) Fraction of DRP generated by transduction each hour over time by
starting phage concentration (line type). DRP generation always occurs predominantly by transduction rather than
by growth of already existing DRP. Note that the time at which DRP are first generated varies by starting phage
concentration.
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periods of time in a broad range of settings without the phage systematically eradicating
the bacteria. Under such conditions, phage may mediate horizontal gene transfer by trans-
duction between bacteria at relatively low levels but for prolonged periods of time. This
may be particularly relevant for S. aureus, since approximately 20% of humans are colon-
ized asymptomatically by this bacterium at any given time (42), and at least 50% of these
carriers may also carry phage capable of generalized transduction (43), suggesting a con-
stant background evolution rate for S. aureus in the human population. Combined with envi-
ronmental exposure to antibiotics, which acts as a selective pressure, this may contribute to
the risk of multidrug-resistant bacterial evolution.

Strengths and limitations. Our experimental design is both a strength and a limita-
tion of our study. Since we jointly designed the experiments and models, we are confident
that we have included in our mathematical model all the organisms and interactions pres-
ent in vitro. We are therefore confident in the conclusions on model structure, which is
generalizable to other systems. Frequency-dependent predation is biologically plausible
for lytic phage in general, a link between phage predation and bacterial growth has been
seen in other systems (14, 17–23), and our model includes the relevant biological charac-
teristics of generalized transduction (2, 3), requiring a transducing phage to first be gener-
ated before the transfer of the AMR gene to another bacterium can occur. In addition, our
equations for phage-bacteria interaction can be directly applied to systems containing
more strains of phage and bacteria than in our study.

However, the use of such a specific experimental system with two bacterial strains
of the same genetic background and one phage limits the generalizability of our pa-
rameter values, as these will likely vary for different bacteria and phage. Growth condi-
tions will likely also differ between the in vitro environment studied here and in vivo
conditions. Here, our model assumes that phage do not decay, that bacteria do not
become resistant to phage, and that they can grow indefinitely as they are observed in
a rich medium for 24 h only, but over longer periods of time it may be necessary to
revisit these assumptions (44). The role of the immune system may have to be consid-
ered in vivo, as this could impact the numbers of phage and bacteria (45, 46), and our
model could be extended to include this. We assumed that the proportion of transduc-
ing phage created was independent of the gene being transduced [erm(B) on the bac-
terial chromosome or tet(K) on a plasmid]. This was supported by preliminary work
(not shown) but should be further investigated to improve our understanding of the
factors that can facilitate or prevent transduction of different genes. Finally, our model
does not include lysogeny and specialized transduction and would therefore need to
be extended with additional compartments for lysogenic bacteria to represent these
dynamics. To answer all of these questions, future work should investigate both phage
predation and transduction dynamics over longer time periods with different strains of
bacteria and phage.

All our models captured certain aspects of the trends seen in vitro but also underes-
timated phage numbers between 5 and 7 h by up to 20 times. This is likely a conse-
quence of our experimental design. To count lytic phage, we centrifuged and filtered
the coculture to remove bacteria. This could have caused the premature burst of some
phage-infected bacteria, artificially increasing the numbers of phage we then counted
(47). Since the period between 5 and 7 h is when phage infections are highest
(Fig. 6b), this is why we would see such a large discrepancy at this stage. We also note
that the models with only phage burst size linked to bacterial growth underestimated
the number of double-resistant progeny (DRP). This small difference (up to 10 CFU/mL)
is likely due to our choice of using a deterministic model. This type of model is useful
for our purpose of fitting to in vitro data and analyzing the underlying dynamics here
but mathematically allows for fractions of bacteria to exist instead of just whole num-
bers. Future analyses using a stochastic model would better capture random effects,
which can have an important impact at low numbers.

Multiplicity of infection (MOI; starting ratio of phage to bacteria) is a commonly
used metric to present results of experiments with these organisms (32). With a starting
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concentration of 104 bacteria per mL, we were able to fit our model to the dynamics for
two MOI (0.1 and 10) and replicate those of a third (1). However, when trying to use the
same model for these same three MOI but with a starting bacterial concentration at 106,
we found differences between our model and values seen after 24 h. This indicates that
MOI is not appropriate to summarize all the complexity of the underlying phage-bacteria
dynamics. Future experimental studies should express their results as a function of their
starting concentration of phage and bacteria, not just MOI.

In any case, the failure of our model to replicate 24 h values with different starting bacterial
concentrations shows that while we have reduced the model structure uncertainty, we are still
not fully capturing the phage-bacteria interaction. Currently, our model predicts that, for a
starting concentration of 106 bacteria, a starting concentration of 105 phage or more will be
enough to cause a decrease in bacterial numbers after 24 h, while our data show that the
starting concentration of phage must be higher than 106 for this to happen. In vitro, it is likely
that slower bacterial growth simultaneously affects the phage adsorption rate, latent period,
and burst size, each to various extents (14, 17–23). This would explain why we would need a
higher starting concentration of phage for a higher starting concentration of bacteria to exert
a strong enough predation pressure before bacteria reach stationary phase, causing a reduc-
tion in phage predation. However, here we have only made the first step in this process, hav-
ing linked the burst size linearly to the bacterial growth rate, instead of trying to link different
phage predation parameters to bacterial growth using different functions. These complexities
need to be explored further, supported by in vitro work measuring phage predation parame-
ters at various time points. In S. aureus, wall teichoic acid (WTA) is the phage receptor (48, 49).
Lack of WTA glycosylation has been shown to induce phage resistance (50), and changes in
WTA structure at different growth phases may be possible, since one of the genes involved in
its synthesis is repressed by a quorum-sensing system (51). However, to the best of our knowl-
edge this has not yet been investigated.

Implications. Despite being recognized as a major mechanism of horizontal gene
transfer, thus far there have been limited mathematical modeling studies on the dynamics
of transduction of AMR (12). Using our model, we are able to estimate numbers of trans-
ducing phage that we cannot count in vitro and see that approximately 1 generalized
transducing phage is generated per 108 lytic phage, consistent with previous estimates
(52, 53). Here, we show that this number, which may seem insignificant, is enough to con-
sistently lead to the successful horizontal gene transfer of AMR, resulting in DRP after only
7 h from phage addition, substantially less than the usual duration of antibiotic treatment.
We also show that transduction is the dominant mechanism to create new DRP through-
out the experiment rather than growth of existing DRP. This echoes the conclusions of pre-
viously published work on the importance of transduction, including in vivo experiments
and with other Staphylococcus species (4, 5, 29, 54).

Our findings suggest that transduction is currently underemphasized in the explora-
tion of phage-bacteria dynamics. Future studies on this topic should not assume that
transduction can be dismissed by default but instead investigate whether it is relevant
in their system. This requires further in vitro and in vivomonitoring to identify scenarios
where transduction plays a significant role in the transfer of AMR genes, likely depend-
ing on the environment and characteristics of the bacteria and phage present. This will
require new experimental designs, since counting phage numbers can be difficult,
notably with clinical strains of bacteria. This should also be investigated in the pres-
ence of antibiotics, where the importance of selection enters, increasing the fitness of
the small numbers of DRP generated by transduction.

Our results confirm that generalized transduction can consistently lead to the spread of
AMR genes, yet to the best of our knowledge there have not been any attempts to evalu-
ate the potential consequences of this process during phage therapy. Unlike specialized
transduction, likely not relevant in the context of phage therapy as temperate phage
would not be used for this purpose, generalized transduction is by definition a mistake
during the lytic cycle and therefore is difficult to prevent (8, 9). As phage therapy is gener-
ally administered alongside antibiotics (55) and we know that patients can be colonized
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and infected with strains carrying different resistance genes (42), a potential risk is for mul-
tidrug-resistant strains to be generated by transduction and then selected for by these
antibiotics. These new strains could in turn be transmitted to other individuals or gain re-
sistance to phage infection, which would lead to a worse treatment outcome for the
patient. Echoing recommendations from previous reviews (10–12), we suggest that future
studies of phage therapy should acknowledge the risk of generalized transduction and
evaluate the impact of this on in vivo bacterial evolution during therapy.

Conclusions. The joint dynamics of phage predation and transduction lead to complex
interactions with bacteria. These dynamics must be clarified to correctly evaluate the extent to
which phage contribute to the global spread of AMR. Wemust also understand these dynamics
in the context of phage therapy, as transductionmay lead to worse health outcomes in patients
if phage contribute to spreading AMR instead of overcoming it. Current modeling research that
ignores transduction may underestimate AMR development in various systems. Interdisciplinary
work will be essential to answer these urgent public health questions in the near future.

MATERIALS ANDMETHODS
All analyses were conducted using the statistical software R (56). The underlying code and data are

available in a GitHub repository: https://github.com/qleclerc/mrsa_phage_dynamics.
Experimental methods. (i) Strains and phage used. The Staphylococcus aureus parent strains used

for our transduction experiment were obtained from the Nebraska Transposon Mutant Library (35). These
were strain NE327, carrying the erm(B) gene encoding erythromycin resistance and knocking out the f 3 inte-
grase gene, and strain NE201KT7, a modified NE201 strain with a kanamycin resistance cassette instead of
the erm(B) gene knocking out the f 2 integrase gene and a pT181 plasmid carrying the tet(K) gene encoding
tetracycline resistance (57). Growing these strains together under identical conditions as those for our cocul-
ture below, but without the addition of exogenous phage, does not lead to detectable horizontal gene trans-
fer (HGT; data not shown). To enable HGT, exogenous 80a phage was used, a well-characterized temperate
phage of S. aureus capable of generalized transduction (33). To count lytic phage, S. aureus strain RN4220
was used, a restriction-deficient strain highly susceptible to phage infection (58).

(ii) Transduction coculture protocol. Precultures of NE327 and NE201KT7 were prepared separately in
50 mL conical tubes with 10 mL of brain heart infusion broth (BHIB; Sigma, United Kingdom) and incubated
overnight in a shaking water bath (37°C, 90 rpm). The optical densities of the precultures were checked at
625 nm the next day to confirm growth. The precultures were diluted in phosphate-buffered saline (PBS) and
added to a glass bottle of fresh BHIB to reach the desired starting concentration in CFU per mL (CFU/mL) for
each strain, forming a master mix for the coculture. CaCl2 was added at a concentration of 10 mM to the mas-
ter mix. Phage 80a stock was diluted in phage buffer (50 mM Tris-HCl, pH 7.8, 1 mM MgSO4, 4 mM CaCl2,
and 1 g/liter gelatin; Sigma-Aldrich) and added to the master mix to reach the desired starting concentration
in PFU per mL; 10 50 mL conical tubes were prepared (one coculture tube for each time point, from 0 to 8 h
and 16 to 24 h), each with 10 mL from the master mix. Each coculture tube was then incubated in a shaking
water bath (37°C, 90 rpm) for the corresponding duration.

Bacterial counts for each time point were obtained by diluting the coculture in PBS before plating 50 mL
on selective agar, either plain brain heart infusion agar (BHIA; Sigma, United Kingdom), BHIA with erythromy-
cin (Sigma, United Kingdom) at 10 mg/liter, BHIA with tetracycline (Sigma, United Kingdom) at 5 mg/liter, or
BHIA with both erythromycin and tetracycline (10 mg/liter and 5 mg/liter). Note we plated 500mL instead of
50 on the plates with both antibiotics to increase the sensitivity of the assay. This allowed distinction
between each parent strain, resistant to either erythromycin or tetracycline, and the DRP generated by trans-
duction. Plates were then incubated at 37°C for 24 h or 48 h for plates containing both antibiotics. Colonies
were counted on the plates to derive the CFU/mL in the coculture for that time point.

Lytic phage counts for each time point were obtained using the agar overlay technique (59). Briefly, the co-
culture was centrifuged at 4,000 rpm for 15 min, filtered twice with 10 mm filters, and diluted in nutrient broth
no. 2 (NB2; ThermoFisher Scientific, United Kingdom); 15 mL conical tubes were prepared with 300mL of RN4220
grown overnight in NB2 and CaCl2 at a concentration of 10 mM; 200 mL of diluted phage was added, and the
tubes were left to rest on the bench for 30 min. The contents of the tubes were then mixed with 7 mL of phage
top agar and poured on phage agar plates. Phage agar was prepared using NB2, supplemented with agar
(Sigma, United Kingdom) at 3.5 g/liter for top agar and 7 g/liter for plates. The plates were incubated overnight at
37°C. Clear spots in the bacterial lawn were counted to derive the PFU/mL in the coculture for that time point.

(iii) Relative fitness. Relative fitness was calculated using data from cocultures of NE327, NE201KT7,
and DRP in the absence of phage. For each pair of strains, we estimated relative fitness,W, using equation 32.

W ¼
ln½S1ð24ÞS1ð0Þ �
ln½S2ð24ÞS2ð0Þ �

(32)

Where S1(t) and S2(t) represent the number of bacteria (in CFU/mL) from the chosen strains 1 and 2
at times t 5 0 or 24 h.

(iv) PCR protocols. To confirm that DRP contained both the erm(B) and tet(K) genes, primers ermBF
(59-CGTAACTGCCATTGAAATAGACC-39), ermBR (59-AGCAAACTCGTATTCCACGA-39), tetKF (59-ATCTGCTG
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CATTCCCTTCAC-39), and tetKR (59-GCAAACTCATTCCAGAAGCA-39) were used. Strains NE327 [only con-
taining erm(B)] and NE201KT7 [only containing tet(K)] were used as positive and negative controls.

To confirm that 80a lysogeny did not occur in our coculture, we applied a previously published
method (33) and used a combination of four primers: SaRpmF (59-GACTGAATGCCCAAACTGTG-39) in the
S. aureus rpmF gene, SMT178 (59-GGCTGGGAATTAATGGAAGATG-39) in the 80a integrase, SaSirH (59-
TTAAGTAGCATCGTTGCATTCG-39) in the S. aureus sirH gene, and SMT179 (59-GAGTCCTGTTTGCGAA
TTAGG-39) in the 80a ORF73 region. SaRpmF and SMT178 were used to amplify the left prophage junction (attL),
SaSirH and SMT179 to amplify the right junction (attR), and SaRpmF and SaSirH to amplify the bacterial insertion
site (attB). RN4220 was used as a negative control for lysogeny, and JP8488, an RN4220 strain lysogenic for 80a,
was used as a positive control (obtained from José Penadés and Nuria Quiles, Imperial College London).

All PCRs were conducted using OneTaq hot start quick-load 2� master mix by following the manufacturer’s
protocol. Tested samples were homogenized in 20 ml nuclease-free water, except for samples used to test for
lysogeny that were generated by DNA extraction and therefore already suspended in nuclease-free water (see
below); 1.5ml of each suspension was used as the template for a total reaction volume of 25ml.

(v) DNA extraction protocol. To prepare samples for PCR to detect lysogeny, we extracted DNA
from a 1 mL sample of our NE327, NE210KT7, and 80a coculture after 24 h (approximately 109 bacteria)
using the bacterial genomic DNA purification kit PurElute (Edge Biosystems), supplemented with 2.5 ml
of lysostaphin (10 mg/mL; Sigma-Aldrich) (43).

The final DNA suspension was in 50 ml of nuclease-free water, and we used 1.5 ml of this suspension as a
template for the PCR and conducted three experimental replicates, which is equivalent to saying that we tested
DNA from approximately 9 � 107 bacteria (109 � [1.5/50] � 3 = 9 � 107). Using a binomial probability density
function and assuming a 100% PCR specificity, we estimate that the probability for a false-negative result (i.e.,
that the PCR results are negative yet the true number of lysogenic bacteria is greater than 0) exceeds 5% only if
the frequency of lysogenic bacteria in our sample is lower than 3.3� 1028. We therefore consider that the detec-
tion limit of our protocol is a frequency of 3.3� 1028 lysogenic per nonlysogenic bacteria after 24 h of our cocul-
ture. This means that, in our system, we would be able to detect lysogenic bacteria if there were more than (3.3 -
� 1028 � 109 = 33) 33 lysogenic bacteria in 1 mL of our coculture after 24 h.

Mathematical modeling methods. (i) General model structure. We designed a deterministic, com-
partmental model to replicate our experimental conditions. We included 6 populations: BE (corresponding to
erythromycin-resistant NE327), BT (tetracycline-resistant NE201KT7), BET (DRP), PL (lytic phage), PE [phage trans-
ducing erm(B)], and PT [phage transducing tet(K)]. Their interactions are represented in Fig. 2.

Bacteria from each strain, u (u [ {E, T, ET}), can multiply at each time step, t, by following logistic
growth at rate m,syb.u,/syb., with a maximum value, mmaxu , which declines as the total bacteria
population, N (= BE 1 BT 1 BET), approaches carrying capacity, Nmax.

mu ¼ mmax u
� ð1 2

N
Nmax

Þ (33)

At each time step, t, a proportion, l , of lytic phage (PL) infect a number of bacteria (w L), replicate,
and burst out from the bacteria with a burst size, d 1 1, after a latent period, t . During phage replica-
tion, a proportion, a, of new phage are transducing phage. The nature of the transducing phage (PE or
PT) depends on the bacteria being infected (e.g., BE bacteria can only lead to PE phage). A proportion, l ,
of these transducing phage (PE or PT) infect a number of bacteria (w E or w T). If they successfully infect a
bacterium carrying the other resistance gene (e.g., PE phage infecting a BT bacterium), this creates DRP
(BET). The complete model equations can be found below.

dBE

dt
¼ mE � ðBE 2 v � wL 1 wTð Þ � BE

N

� �
Þ 2 wL 1 wTð Þ � BE

N
(34)

Change inBE ¼ growth of BE– infections by PL– infections by PTf g

dBT

dt
¼ mT � ðBT 2 v � wL 1 wEð Þ � BT

N

� �
Þ 2 wL 1 wEð Þ � BT

N
(35)

Change inBT ¼ growth of BT– infections by PL– infections by PEf g

dBET

dt
¼ mET � ðBET 2 v � wL � BET

N

� �
Þ 2 wL � BET

N
1 wE � BT

N
1 wT � BE

N
(36)

Change inBET ¼ growth of BET– infections by PL1 infections of BT by PE1 infections of BE by PTf g

dPL
dt

¼ wLðt2 tÞ � d � 12 a� BE1BT12� BET

N

� �
2l � PL (37)

Change in PL ¼ newPL phage –PL phage infecting bacteriaf g
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dPE
dt

¼ wLðt2 tÞ � d � a � BE1BET

N
2l � PE (38)

Change in PE ¼ newPE phage – PE phage infecting bacteriaf g

dPT
dt

¼ wLðt2 tÞ � d � a� BT1BET

N
2l � PT (39)

Change inPT ¼ newPT phage – PT phage infecting bacteriaf g

Some parameters (t , a, v ) are constant, while others (mE, mT, mET, b , w L, w E, w T, d ) can change at
each time step and depending on the specified interaction mechanism. Note that v is a special parame-
ter equal to 0 if the model is density-dependent or 1 if it is frequency-dependent.

(ii) Density-dependent interaction. Over one time step, both the number of phage infecting bacte-
ria and the number of bacteria infected by phage are equal to the product of the number of phage, bac-
teria, and phage adsorption rate. In our equations for density dependence, given the phage adsorption
rate, b , the proportion, l , of phage that infect any bacteria is

l ¼ b � N (40)

and the number of bacteria infected by a phage u (u [ {L, E, T}) is

wu ¼ l � Pu (41)

Note that the parameter v is set to 0 in this case.
(iii) Frequency-dependent interaction. Using this interaction prevents the number of phage-infect-

ing bacteria over one time step from being higher than the total number of phage in the system (and
the number of bacteria being infected one time step being higher than the total number of bacteria in
the system). Equations 40 and 41 then become

l ¼ ½12exp 2b � Nð Þ� (42)

wu ¼ 12exp 2l � Pu
N

� �� �
� N (43)

With the frequency-dependent interaction, we set the parameter v to 1. This ensures that, over
one time step and for any bacterium, phage infection and bacterial replication are mutually exclu-
sive events. Without this modification, phage infections would not be able to reduce bacterial popu-
lation size due to mathematical constraints. Equation 44 shows a simplified frequency-dependent
model for a single bacterial strain, B, without any correction term.

dB
dt

¼ mmax � ð12 B
Bmax

Þ � B2wu � B (44)

According to equation 44, the change in bacterial numbers depends on the relative values of bacte-
rial growth and bacterial death due to phage predation, expressed in equation 45.

mmax � ð12 B
Bmax

Þ2 w (45)

The necessity for a correction term on the left side of equation 44 arises from the maximum values
of mmax and wu . As can be deduced from equation 43, the maximum possible value for wu is 1.
According to our fitted parameter values, the maximum value for mmax in our model is approximately
1.5, and the carrying capacity, Bmax, is approximately 2.8 � 109. Substituting these into equation 45 leads
to equation 46.

1:5� ð12 B
2:8� 109

Þ21 (46)

To have a decline in the bacterial population, we therefore must satisfy the condition stated in equation 47.

1:5 � ð12 B
2:8� 109

Þ,1 (47)

This can be rearranged into equation 48 by dividing by 1.5.

12
B

2:8� 109
,

1
1:5

(48)

Finally, by subtracting 1 and multiplying by 22.8 � 109, we obtain equation 49.
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B.2ð 1
1:5

21Þ � 2:8� 109 (49)

Solving equation 49 leads to the condition that the number of bacteria must be greater than
9.3 � 108 for bacterial growth to be low enough that bacterial numbers decrease. In other words, it is
impossible for the effect of phage predation to decrease bacterial numbers below 9.3 � 108. We over-
come this by applying a correction term to Equation S1, leading to equation 50.

dB
dt

¼ mmax � ð12 B
Bmax

Þ � ðB2wu � BÞ2wu � B (50)

This is equivalent to saying that bacteria infected by phage cannot replicate and, hence, is more bio-
logically realistic.

(iv) Link between bacterial growth and phage predation. We consider that reduced bacterial
growth can lead to decreased phage predation through reduced adsorption (b) and/or burst size (d ).
Equations 51 and 52 allow these parameters to decrease as bacterial growth decreases, using the same
principle of logistic growth as that seen in equation 33.

b ¼ b max � 12
N

Nmax

� �
(51)

d ¼ d max � 12
N

Nmax

� �
(52)

If we do not link these parameters to bacterial growth, we assign them their maximum values.

b ¼ b max (53)

d ¼ d max (54)

(v) Model fitting. We fit our model to the in vitro data using the Markov chain Monte Carlo
Metropolis–Hastings algorithm. For every iteration, this algorithm slightly changes the parameter values,
runs the model, assesses the resulting model fit to the data, and accepts or rejects these new parameter
values based on whether the model fit is better or worse than that with the previous set of values. We
run the algorithm with two chains, and once convergence has been reached (determined using the
Gelman-Rubin diagnostic, once the multivariate potential scale reduction factor is less than 1.2 [60]), we
generate 50,000 samples from the posterior distributions for each parameter.

In a first instance, we used our growth coculture data, where phage are absent, to calibrate the bac-
terial growth rate parameters, mmaxu , for each bacteria strain, u (u [ {E, T, ET}), and the carrying capacity,
Nmax, using a simple logistic growth model (equation 55). All other parameters related to phage preda-
tion were set to 0.

dBu

dt
¼ mmax u

� Bu � 12
Bu

Nmax

� �
(55)

The phage predation parameters (t , a, bmax, d max) were jointly estimated by fitting to the phage and
double-resistant bacterial numbers from the transduction coculture data. We fitted to the transduction
coculture data sets with starting phage concentrations of 103 and 105 PFU/mL and tested whether the
estimated parameters could reproduce the dynamics seen with the starting phage concentration of 104

PFU/mL. Convergence and posterior distribution plots for our best-fitting model are shown in Fig. S6 in
the supplemental material. Fitting was performed by evaluating the log likelihood of each in vitro data
point being observed in a Poisson distribution, with the corresponding model data point as a mean.

To mirror our experimental sampling variation, in vitro data points were scaled down to be between
1 and 100 before fitting, with the same correction applied to the corresponding model-predicted value
for the same time point. For example, if at 1 h there are 1.4 � 104 phage in vitro, this is scaled down to
14, and if the corresponding model value is 5.3 � 106, this is scaled down by the same magnitude (i.e.,
103), resulting in a value of 5,300.

Previous research estimated that the latent period for 80a in S. aureus was approximately 40 min
(0.67 h) and that the burst size was approximately 40 phage per bacterium (39). Since this study did not
provide error values for these point estimates, we assumed the standard deviation and chose the follow-
ing informative priors for these parameters: t ; Normal(0.67, 0.07) (95% confidence interval, 0.53 to
0.81) and dmax ; Normal(40, 7) (95% confidence interval, 54 to 26). Due to a lack of available data, we
used uninformative priors for the remaining parameters: a ; Uniform(0, 1) and bmax ; Uniform(0, 1).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.6 MB.
FIG S2, TIF file, 0.2 MB.
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FIG S3, TIF file, 0.6 MB.
FIG S4, TIF file, 1 MB.
FIG S5, TIF file, 1.2 MB.
FIG S6, TIF file, 1.9 MB.
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