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Abstract: Hepatic encephalopathy (HE) is a common neurological consequence in patients with
cirrhosis and has a healthcare burden of USD 5370 to 50,120 per patient annually. HE significantly
hampers the quality of life and is a major cause of morbidity and mortality. Patients with cirrhosis
are at a high risk for protein-calorie malnutrition due to altered metabolism. Current evidence has
changed the old belief of protein restriction in patients with cirrhosis and now 1.2 to 1.5 g/kg/day
protein intake is recommended. Case series and studies with small numbers of participants showed
that a vegetarian protein diet decreases the symptoms of HE when compared to a meat-based diet,
but the evidence is limited and requires further larger randomized controlled trials. However,
vegetable or milk-based protein diets are good substitutes for patients averse to meat intake. Branch
chain amino acids (BCAA) (leucine, isoleucine and valine) have also been shown to be effective in
alleviating symptoms of HE and are recommended as an alternative therapy in patients with cirrhosis
for the treatment of HE. In this review, we provide an overview of current literature evaluating the
role of protein intake in the management of HE in cirrhosis.

Keywords: hepatic encephalopathy; vegetable protein; meat protein; branch chain amino acids;
chronic liver disease

1. Introduction

Hepatic encephalopathy (HE) is a common neurologic complication of cirrhosis [1,2].
It effects 30 to 80% of patients with cirrhosis, with symptoms ranging from minimal (covert
HE) to coma [3–6]. HE significantly reduces the quality of life by affecting physical and
social functioning. Covert HE may be present in up to 84% patients with liver cirrhosis [5].
Although associated with minimal symptoms, it still affects quality of life, is associated
with poor prognosis, and predicts the development of overt HE [1,7,8]. Aside from neg-
atively impacting the quality of life, HE has a high economic burden [9–12]. The global
burden of direct healthcare cost due to HE is USD 5370 to 50,120 per patient annually [12].
Therefore, to reduce morbidity, efforts should be made to identify patients at risk, and to
modify the course of the disease by early intervention.

Protein Calorie malnutrition (PCM) is also a common complication of cirrhosis [13,14].
PCM increases the risk of infections, recurrent ascites, and spontaneous bacterial peritonitis
and is a negative prognostic factor [15–19]. Earlier, it was thought that protein restriction in
cirrhosis improves symptoms of HE; however, multiple studies revealed the importance of
positive nitrogen balance and protein intake in patients with cirrhosis [20–24]. Vegetarian
diet mostly consists of milk, fruits, nuts, vegetables, pulses and cereals. Pulses are rich in
essential amino acids and able to provide adequate protein. The aim of this review is to
assess and provide insight regarding the source of protein on symptoms of HE.
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2. Methods

A comprehensive literature search was performed up to January 2020 in Medline,
Google Scholar and web of science. We used the following Medical Subject Headings
(MeSH) terms: hepatic encephalopathy; liver cirrhosis; dietary proteins; diet, protein-
restricted; diet vegetarian. Our primary outcome was to evaluate utilization of vegetarian
diet in patients with cirrhosis to decrease the risk of hepatic encephalopathy. Our secondary
outcomes were evaluation of role of Branch Chain Amino Acids (BCAA) in the management
of hepatic encephalopathy, role of vegetarian diet in the modulation of gut microbiota and
prevention of sarcopenia.

2.1. Reasoning for the Use of Vegetarian Diet

Vegetarian diet may reduce the circulating levels of ammonia, oxyphenol and mercap-
tans which are involved in the development of HE. Vegetables are rich in arginine, which
via urea cycle can increase the urea production and, therefore, decrease blood ammonia
levels [25–27]. Vegetable diets are also rich in fiber, which increases the bulk of feces,
thus increasing excretion of nitrogenous waste products [28–30]. Intestinal microbiota di-
gest non-absorbable disaccharides in fiber, thus enhancing acidic environment in the colon
by production of various acids and help increase the excretion of ammonia. Gut microbiota
also transforms dietary tryptophan and methionine into toxic oxyphenols and mercaptans
that are involved in development of HE [31–35]. Patients with cirrhosishave decreased
ability for hepatic tran-sulphuration to metabolize oxyphenols and mercaptane, which ac-
cumulate in blood [36]. Sources of vegetable protein are low in methionine and tryptophan
compared to animal derived protein and this, therefore, might explain the beneficial effects
of vegetable-based protein diet in preventing HE in patients with cirrhosis [34,35].

2.2. Evidence from Animal Studies and Humans

The effect of proteins from various sources on growth and metabolism in rats has
been very well documented. Brandsch et al., in 2006, evaluated the effect of protein from
beef, pork, and turkey meat on lipid concentrations in plasma, lipoproteins, and liver. The
study also compared these results with effects of casein and soy protein [37]. Rats were
fed a semisynthetic diet containing 200 g/kg of protein from different sources (casein,
soy protein, or proteins isolated from beef, pork, or turkey meat) for 20 days. There was
no difference in overall lipid and cholesterol metabolism between rats fed meat-based
and non-meat-based proteins as the results were statistically non-significant. The authors
did not provide any potential explanation for these observed effects. Interestingly, pork
protein feeding compared with casein recorded lower hepatic triglyceride content that
was attributed to decreased lipogenesis as indicated by lower levels of SREBP-1c (Sterol
regulatory element-binding transcription factor 1) and G6PDH (Glucose-6-phosphate de-
hydrogenase). In 2016, a series of research articles from the group of Chunbao Li and
Guanghong Zhou provided evidence for differential ability of meat and non-meat-based
proteins to regulate physiological and molecular changes in laboratory rats. Male Sprague
Dawley rats (4-weeks-old) were fed nutritionally balanced semi-synthetic diet containing
proteins from different sources for 7 days and a series of analysis were carried out. The lipid,
energy and amino acid metabolic pathways, in addition to insulin signaling pathway, were
differently regulated by soy and meat proteins. They also identified many key upstream
regulators such as NFE2L2 (nuclear factor erythroid 2-like 2), ATF4 (activating transcription
factor 4), Srebf1 (Sterol Regulatory Element Binding Transcription Factor 1) and Rictor
(rapamycin-insensitive companion of TOR, complex 2) [38]. Pathway responses were most
similar for beef and chicken, followed by pork and fish [39]. Compared with casein, all other
protein sources reduced the abundance of proteins involved in fatty acid metabolism and
Pparα (Peroxisome proliferator-activated receptor alpha) signaling pathway. All dietary
proteins, with the exception of chicken, increased oxidoreductive reactions but reduced
metabolic pathways of energy and essential amino acids. Only soy protein increased the
metabolism of sulfur-containing and non-essential amino acids. In rat liver, feeding of soy,
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pork, and fish proteins resulted in more pronounced metabolic changes (oxidoreductive
transformation and amino acid, lipid, glucose, and energy metabolism) when compared to
chicken protein. Additionally, feeding soy and fish proteins was associated with more pro-
teomic changes pertaining to protein synthesis (translation, mRNA processing, and protein
folding) than pork and chicken proteins [39]. In a subsequent study by the same research
group, the rats were fed experimental diets containing different protein sources (i.e., casein,
soy, chicken, fish, beef, or pork) for 14 days. It was concluded that meat proteins were ben-
eficial for growth and metabolism of young rats compared to casein and soy proteins [40].
In a long-term feeding study (90 days) the same research group reported that intake of
meat protein diets significantly reduced the levels of enzymes involved in xenobiotics
metabolism [CYP450 (cytochrome P450 enzymes), GST (glutathione S-transferases), UGT
(UDP-glucuronosyltransferase), and SULT (sulfotransferase)] compared to those of the
casein and soybean protein diet. There was no difference in total antioxidant capacity and
lipid peroxidation values between four meat protein diet groups and the casein diet group.
GSH (reduced glutathione) levels, however, were significantly higher in the fish, chicken
and beef protein groups than in the casein and soybean protein groups [41]. Overall, these
studies used the generalized pathway analysis approach to describe their results and did
not specifically carry out in-depth evaluations at the molecular levels. Although this series
of animal studies does establish the differential ability of meat and non-meat based proteins
to alter various physiological and molecular changes, it does not provide details on the
effects of these protein sources to alter metabolism during a specific disease state.

The role of vegetable protein in animal models of hepatic cirrhosis has been evalu-
ated in multiple studies. Soybeans and soy products are of particular interest because
they constitute a significant source of dietary protein in some parts of the world [42].
In one of the earlier studies, Proot et al. compared the efficacy of soy protein isolate to
meat-based low-protein diet in dogs with HE [43]. Two experimental diets contained 40 g
protein/1000 kcal metabolizable energy with the same nutrient composition except for the
main protein source. Soy isolate and dehydrated poultry meat proteins represented 60% of
total protein in test and control diets, respectively. Plasma ammonia was significantly lower
in dogs fed soy isolate compared to dogs fed meat proteins. Soy protein diet also resulted
in significantly higher fibrinogen concentrations and lower prothrombin times. Both diets
improved the HE score, with no significant difference between them. In a study by Sarhan
et al., 2012 carbon tetrachloride-treated rats were fed with diet containing 45.8% crude soy
protein for 8 weeks. Supplementation with soy successfully restored the elevation of liver
enzymes and improved serum biochemical parameters. In addition, soy supplementation
restored the activity of antioxidant enzymes (glutathione peroxidase and superoxide dismu-
tase), reduced lipid peroxidation and improved histological features of the liver injury [44].
Additionally, other studies have reported beneficial effects of soy proteins in improving
hepatic steatosis and hepatocellular carcinoma (HCC) [45,46]. Specifically, soy protein
supplementation significantly reduced hepatocyte fat accumulation and tumor growth
in high fat diet (HFD)- diethyl nitrosamine (DEN) and ethanol fed mice. The significant
reduction in tumorigenesis by soy proteins was attributed to inhibition of Wnt/β-catenin
signaling mechanisms. Ethanol feeding is associated with ceramide generation and signifi-
cant severe inflammation. Soy protein supplementation also suppressed hepatic ceramide
generation specifically by inhibiting serine palmitoyltransferase subunit (Sptlc1), a key
enzyme involved in de novo ceramide biosynthesis. Additionally, soy protein also signifi-
cantly reduced kuppfer cell activation (as indicated by lower CD145 transcript) and of the
pro-inflammatory cytokine CXCL2 (C-X-C Motif Chemokine Ligand 2) and tumor necrosis
factor receptor 1 (TNFR1) [45,46].

In many parts of the world, mung bean is a popular legume and is commonly used
to make bean sprouts or consumed as mung bean itself. It is a major source of protein for
vegetarian populations, especially in Asia [47]. Mung bean protein isolate (MuPI) contains
high concentrations of 8S globulins, which exhibit high sequence homology (68%) and
structural similarities to b-conglycinin. Mung bean is composed of; 20% protein, with
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90% of that protein consisting of 8S globulins. Mung protein supplementation to high
fat diet-fed mice significantly reduced hepatic steatosis, fibrosis, and inflammation [48].
Recently, two independent, double-blind, placebo-controlled clinical studies in humans
showed that a commercially available MuPI may be useful in preventing insulin resistance
and visceral fat accumulation [49]. Collective data based on all the available reports on
experimental animals suggest that source of protein in the diet may play a role in normal
metabolism and in liver disease phenotype.

2.3. Evidence Regarding the Use of Vegetable-Based Protein in Patients with Cirrhosis

Multiple studies have evaluated the role of vegetable protein in patients with cirrhosis
in preventing HE. Bianchi et al., in a randomized cross-over study evaluated the utility of
vegetable-based protein diet in eight cirrhosis patients with grade I and II HE; patients
were already receiving lactulose. Patients were fed both vegetable-based and animal-
based protein diet for seven days [50]. The study revealed that while on a vegetarian diet,
patients had significant lower venous ammonia levels. Mental status measured by clinical
grading utilizing Conn’s index, psychometric testing by using number connection test
(NCT), and continuous reaction times to sound (CRT-s), were also significantly improved
in patients on vegetable-based protein diet [50–52].

In a single blinded randomized controlled study, Uribe et al. evaluated 10 patients
with cirrhosis and chronic mild HE [53]. Patients were fed 3 different diets during the
2-week period. Three dietary combinations included 40 g per day animal protein diet with
neomycin and milk of magnesia, 40 g per day vegetable-based protein and 80 g per day
vegetable protein diet. There were no significant differences in the clinical improvement
of HE as measured by Conn’s index and serum ammonia levels. However, there was
significant difference in NCT times in patients while on 40 g and 80 g/day vegetable
protein diets. Additionally, patients on 80 g/day vegetable protein diet showed significant
improvement in electroencephalogram (EEG) testing. Patients on 80 g/day vegetable
protein diet had significantly increased number of bowel movements per day compare to
patients on other diets. Hypoglycemia was observed in two patients while on vegetable
protein diet [53].

In a non-randomized unblinded crossover study, 8 patients with chronic mild HE with
history of shunt surgery were administered three different diets, vegetable-based protein,
animal protein and mixed protein diets [25]. Patients on vegetable-based protein diet
revealed trend towards positive nitrogen balance associated with decreased excretion of
urine nitrogen compared to animal or mixed protein diets [25]. The authors also evaluated
computer-analyzed EEG (CAEEG) in all patients. The peak frequency of CAEEG was lower
during the period of animal diet. Most of the patient’s frequency of CAEEG fell below 7,
which has been shown in the past to be associated with development of encephalopathy [25].
These findings favor the utilization of vegetarian diet in patients with cirrhosis for the
prevention of HE. Greenberger et al. showed similar beneficial outcomes of vegetable
protein diet in a series of 3 patients with chronic mild HE on neomycin treatment, compared
to meat diet [54]. All 3 patients had portosystemic shunts. The study revealed that
vegetable protein diet enhances the effects of lactulose and are better tolerated in these
patients. They also had reduced serum ammonia levels and improved clinical symptoms.
One patient, during the period of meat diet, developed stage III hepatic coma and EEG
abnormalities [54].

Another series of 3 patients with portosystemic shunts, also revealed clinical improve-
ment of HE while on vegetable and milk protein diet compared to meat diet [55]. In
a controlled cross over trial, 6 patients with chronic moderate HE on lactulose therapy
were nourished with two different diets, one constituting 30 g animal protein and 10 g
vegetable-based protein and the other constituting 30 g animal protein 50 g vegetable pro-
tein, for 10 days [56]. Two patients showed improvement in EEG and clinical performance
while on higher amount of vegetable protein diet [56].
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Although the above-mentioned studies favor the utilization of vegetable protein
diets, some studies failed to show any improvement in HE [25,50,53–56]. In a cross over
study of acute decompensated HE secondary to alcohol abuse or gastrointestinal bleeding,
5 patients were treated with vegetable or meat diet [57]. In total, 4 of the 5 patients received
lactulose therapy as well. The study did not show any significant differences in outcomes of
HE, including improvement in clinical symptoms, nitrogen balance or psychometric testing.
However, patients on vegetable diet had a lower compliance to the dietary regimen [57].
Similarly, in a randomized controlled trial, including 8 patients with cirrhosis and mild to
moderate HE, the patients were fed either vegetable or animal protein diet. Patients, while
on vegetable protein diet, did not have any improvement in clinical symptoms and EEG
findings, however, had improved nitrogen balance [58]. Table 1 summarizes the studies
comparing animal protein and vegetable protein diet in patients with cirrhosis.

Table 1. Summary of studies comparing vegetable diet and animal diet in patients with cirrhosis.

Study Study Design Sample Size and Included Patients Results

Bianchi et al. [50] Randomized cross-over study 8 patients with cirrhosis and grade I or
II hepatic encephalopathy (HE)

Patients on vegetable diet had significantly
lower venous ammonia levels. Mental

status was also significantly improved in
patients on vegetable-based protein diet

Uribe et al. [53] Single blinded randomized controlled study 10 patients with cirrhosis and chronic
mild HE

Patients on 80 g/day vegetable protein diet
showed significant improvement in
electroencephalogram (EEG) testing

compared to patients on 40 g/day animal
protein or 40 g/day vegetable protein diet

De Burjin et al. [25] Non-randomized unblinded crossover study 8 patients with chronic mild HE with
history of shunt surgery

The authors evaluated computer-analyzed
EEG (CAEEG) in all patients. The peak

frequency of CAEEG was lower during the
period of animal diet compared to

vegetable diet. Most of the patient’s
frequency of CAEEG fell below 7 which

has been shown in the past to be associated
with development of HE

Greenberger et al. [54] Case series
3 patients with history of

portosystemic shunt and chronic mild
HE on neomycin treatment

The study revealed that vegetable protein
diet enhances the effects of lactulose and is

better tolerated. One patient, during the
period of meat diet, developed stage III

hepatic coma and EEG abnormalities

Fenton et al. [55] Case Series 3 patients with portosystemic shunts
Patients had clinical improvement of HE
while on vegetable and milk protein diet

compared to meat diet

Keshavarzian et al. [56] Controlled cross over trial 6 patients with chronic moderate HE
on lactulose therapy

Two patients showed improvement in EEG
and clinical performance while on higher

amount of vegetable protein diet

Shaw et al. [57] Cross over study
5 patients with decompensated HE

secondary to alcohol use or
gastrointestinal bleeding

The study did not show any significant
differences in outcomes of HE including

improvement in clinical symptoms,
nitrogen balance or psychometric testing in
patients on vegetable or meat diet. Patients
on vegetable diet had a lower compliance

to the dietary regimen

Chiarino et al. [58] Randomized controlled trial 8 patients with cirrhosis and mild to
moderate HE

Patients, while on vegetable protein diet,
did not have any improvement in clinical
symptoms and EEG findings compared to

animal protein diet

The major limitations of these studies are small sample size, and variability of the
dietary composition and duration of vegetarian diet intake. Now regardless of the source,
it is recommended to maintain adequate protein intake in these patients as per societal
guidelines [59].

2.4. Role of Branch Chain Amino Acids (BCAA)
2.4.1. Evidence from Animal Studies

In 1982, Rossi-Fanelli and colleagues evaluated the effects of aromatic amino acids
(AAA) and BCAA in dogs with portacaval shunts who developed HE [60]. Infusion of
1% phenylalanine and 1% tryptophan in these dogs induced coma. In contrast, dogs that
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received infusion of a solution containing 1.5% phenylalanine, 1% tryptophan and 1.5%
BCAA (leucine 0.63%, isoleucine 0.4%, valine 0.46%) neither developed coma nor showed
any neurologic derangements. Additionally, blood levels of glucose, electrolytes, osmo-
larity, and ammonia remained normal [60]. Later, Meyer et al., evaluated the effect of
BCAA-enriched diet on chronic HE in dogs [61]. Following partial hepatectomy, beagle
dogs were fed high BCAA/AAA ratio or low BCAA/AAA ratio diets. BCAA-enriched diet
had no beneficial effect on plasma ammonia levels or severity of HE. Hence, they could not
replicate results obtained by Rossi-Fanelli and colleagues. Regardless, authors concluded
that it is not the content of the dietary amino acids but rather the total protein intake that
may have a beneficial effect on HE [61]. The discrepancies between these two studies
could have arose from multiple experimental factors such as infusion vs. dietary intake,
choice of animal model, and simultaneous vs. post-operative treatment. Hence, these re-
sults need to be interpreted with caution. A study in a rat model of hepatic encephalopathy
revealed that isoleucine, a BCAA, may help reduce the effect of hyperammonemia [62].
It was shown that higher isoleucine metabolism in muscle could have contributed to fixing
hyperammonemia.

Supplementation with BCAA has also been shown to improve disease-associated
pathology in animal models of cirrhosis, non-alcoholic steatohepatitis (NASH) and HCC.
Cha et al. evaluated the anti-fibrotic effects of BCAA in a rat model, on the devel-
opment of diethyl nitrosamine (DEN)-induced liver cirrhosis and HCC [63]. Rats re-
ceived intraperitoneal 50 mg/kg/wk DEN for 16 weeks and fed control or BCCA diet
(leucine:isoleucine:valine ratio of 2:1:1.2). BCAA supplementations improved liver fibrosis
by downregulating Smad-4 (SMAD Family Member 4), TIMP-1 (Tissue inhibitor matrix
metalloproteinase 1), and Col1a2 (Collagen Type I Alpha 2 Chain) through the inhibition
of TGF-β1 (Transforming growth factor beta 1). Furthermore, BCAA supplementation
suppressed HCC angiogenesis and cell proliferation, and increased cancer cell apopto-
sis [63]. Another study using Wistar rats, in carbon tetrachloride-induced model of cirrhosis
reported similar results [64]. The BCAA mixture used in this study had a weight ratio
of 1:2.3:1.2 for isoleucine: leucine: valine. This study revealed that in rats with cirrhosis,
BCAA prolonged survival, and in the livers reduced iron accumulation, oxidative stress
and fibrosis, and improved glucose metabolism [64]. Others have reported beneficial effects
of BCAA on mouse model of NASH-associated fibrosis [65]. In an atherogenic high fat-diet
mouse model, BCAA significantly improved hepatic steatosis, inflammation, fibrosis, and
prevented development of HCC [65].

Since cirrhosis is associated with decreased ratio of serum BCAA suggesting poor
prognosis [66–68]; hyperammonemia enhances glutamine synthesis and BCAA catabolism,
resulting in the BCAA deficiency; thus, supplementation with BCAA is thought to provide
nitrogen for glutamate synthesis that serves as a substrate for ammonia detoxification to
glutamine. Enhancing BCAA availability may activate the rate of BCAA transamination
and production of glutamate and glutamine in muscles and brain and decreases ammonia
levels [69]. Studies have shown that glutaminase, the first enzyme of glutamine catabolism,
is activated by increased availability of glutamine and that duodenal glutaminase activity
is higher in patients with cirrhosis than in healthy people [70]. It is also possible to enhance
the therapeutic potential of BCAA by optimizing its supplementation protocol. Therefore,
to increase the therapeutic value of BCAA supplementation in patients with cirrhosis and
hepatic encephalopathy, it is necessary to search for strategies to attenuate adverse effects
and augment positive effects of BCAA.

Patients with cirrhosis also have an imbalance in AAA and BCAA fractions that may
enhance HE [71,72]. Patients with end stage liver disease (ESLD) have higher levels of
AAA (tyrosine, methionine, tryptophan and phenylalanine) and lower levels of BCAA
(leucine, isoleucine and valine) [71]. BCAA and AAA compete to enter the blood brain
barrier. Higher concentration of AAA is believed to increase false dopaminergic neurotrans-
mission and inhibition of dopamine synthesis resulting in neuro-depression in HE [72].
However, there is no strong evidence to support this hypothesis. BCAAs, especially leucine,
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also stimulate production of hepatocyte growth factor, a pleiotropic ligand with mitogenic
activity. It is secreted by hepatic stellate cells and is involved in the regenerative process of
the liver [73].

2.4.2. Evidence Regarding the Use of BCAA in Patients with Cirrhosis

Several studies evaluated the role of BCAA in ESLD for prevention and treatment
of HE patients [74–84]. It has been shown to enhance the improvement of mental status
in patients with HE [74]. In a randomized double-blind study, patients with cirrhosis
and chronic HE were treated with BCAA or casein in addition to dietary protein for
3 months [75]. Patients who received BCAA showed significant improvement in mental
status as compared to those who received casein. Patients from casein group, who had
no improvement of mental status, were then administered BCAA, which resulted in
improvement of HE. In a randomized study of 37 hospitalized protein-intolerant patients,
BCAA administration achieved positive nitrogen balance without worsening symptoms of
HE [83]. However, compared to patients on BCAA, those who were on similar amount of
dietary protein had increased incidence of encephalopathy [83].

In another multicenter randomized double-blind study, 116 patients with cirrhosis
were treated with either BCAA or maltodextrin for 56 weeks [84]. Patients in BCAA group
had improvement in symptoms of minimal HE and muscle mass. However, BCAA did
not prevent recurrence of HE. Some studies also showed mortality benefit of BCAA [85].
Although a meta-analysis of 16 randomized clinical trials including 827 cirrhosis patients
did not show any effect of BCAA in decreasing mortality, it did show benefit in patients
with HE [86]. However, this beneficial effect on HE was not seen if including trials with
lactulose or neomycin as controlled groups. Therefore, beneficial effects of BCAA were
only seen when in a sensitivity analysis, trials using neomycin and lactulose controls were
excluded. Use of BCAA was associated with nausea and diarrhea but no serious adverse
events [87]. Therefore, BCAA do not provide any additional benefit in patients already on
lactulose or neomycin, but can be beneficial in patients on no therapy. Table 2 summarizes
some of the studies on BCAA supplementation in patients with cirrhosis.

Table 2. Summary of studies on BCAA supplementation in patients with cirrhosis.

Study Study Design Sample Size and Included
Patients Results

Gluud et al. [86] Meta-analysis
16 randomized controlled

trials including 827 patients
with cirrhosis

No benefit of BCAA in decreasing
mortality. BCAA did not provide any
additional benefit on HE in patients

already on lactulose or neomycin,
but found to be beneficial in patients

on no pharmacological therapy

Les et al. [84] Multicenter randomized
double-blind study

116 patients with cirrhosis
treated with either BCAA

or maltodextrin for 56
weeks

Patients in BCAA group had
improvement in symptoms of
minimal HE and muscle mass

Muto et al [85] Multicenter, randomized
controlled trial

646 patients with
decompensated cirrhosis

The incidence of primary end point
significantly decreased in the BCAA
group. The primary end point was a

composite of death by any cause,
development of liver cancer, rupture
of esophageal varices, or progress of
hepatic failure (event-free survival)

Horst et al. [83] Randomized study 37 hospitalized
protein-intolerant patients

BCAA administration achieved
positive nitrogen balance without

worsening symptoms of HE

Marchesini et al. [75] Randomized
double-blind study

64 patients with cirrhosis
and chronic HE

Patients who received BCAA
showed significant improvement in
mental status as compared to those

who received casein

AASLD guidelines recommend using oral BCAA as an alternative or adjuvant in
patients with HE who are not responsive to conventional therapy [59,73,87]. Due to lack of
evidence, the guidelines do not recommend use of intravenous BCAA [59,74]. Oral BCAA
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is also recommended in patients intolerant to dietary protein to maintain recommended
nitrogen intake [59]. The AASLD guidelines also recommend that in order to maintain
recommended protein intake of 1.2 to 1.5 g/kg/day, consider substitution of protein source
to vegetable or milk-based protein in protein intolerant patients [59,88].

2.5. Role in Prevention of Sarcopenia

Sarcopenia is loss of muscle mass and strength which is common in ESLD [89,90].
In patients with cirrhosis, sarcopenia is associated with poor outcomes, increased rate
of severe infections, and increased mortality and hospital stay [91]. Sarcopenia is also
associated with development of HE. In a meta-analysis including 1795 patients, sarcopenia
was positively associated with HE [92]. Bhanji et al., in a study including 675 patients
with cirrhosis, revealed that myosteatosis and sarcopenia are independently related to the
development of overt HE [93]. Although the exact mechanism of association of sarcopenia
and HE is unclear, hyperammonemia is the most commonly described mechanism [94,95].
Skeletal muscles transform blood ammonia to glutamine and contribute to reduction of
hyperammonemia through increased protein anabolism; therefore, decline in muscle mass
results in reduced detoxification of ammonia, which may contribute to the development of
HE [94,95].

Previously, vegetable protein diet was linked to higher skeletal muscle mass and
reduced sarcopenia. In a cross-sectional study of 168 patients with type 2 diabetes melli-
tus, vegetable protein intake was positively associated with skeletal muscle mass in the
elderly [96]. A prospective cohort study of ≥65 years old Chinese patients revealed that
vegetable diet was associated with lower odds of sarcopenia [97]. Similarly, another study
including elderly patients also showed inverse association of vegetable and fruit intake
with sarcopenia [98]. Therefore, higher intake of vegetable protein diet might be associated
with lower risk of sarcopenia and, hence, lower risk of development of HE.

2.6. Role of Microbiota

Microbiota profile of patient stool samples suggest that a plant-based diet may be
beneficial for human health by promoting microbial diversity [99]. The gut microbiota
has a dominant representation of two phyla: Bacteroidetes and Firmicutes [100]. Commonly
found bacteria in human stool samples belong to genera Bacteroides, Prevotella, Bifidobac-
terium, Eubacterium, Clostridium, Streptococcus, and Enterobacteriaceae. Those with diets
rich in animal-based proteins, there is reduction in gut bacteria that metabolize dietary
plant polysaccharides, such as Roseburia, Eubacterium rectale, and Ruminococcus bromii,
and increase in bile-tolerant microorganisms, such as Bacteroides and Clostridia [101,102].
In contrast, those consuming plant-based protein diets have increase in Bifidobacterium and
Lactobacillus and decrease in pathogenic Bacteroides fragilis and Clostridium perfringens [103].

The liver obtains its blood supply from the intestine through portal circulation and
is exposed to gut toxins including bacteria and their by-products [104,105]. In a person
with an intact immune system, inflammatory response by macrophages, lymphocytes,
and natural killer cells help remove these toxins. However, patients with cirrhosis have
impaired immune response and these gut florae can cause systemic inflammation [106,107].
Further, the translocated bacteremia products might be responsible for cognitive impair-
ment in HE [107]. Multiple studies have shown the possible association of gut microflora
with HE. Patients with cirrhosis have a higher amount of Enterobacteriaceae, Fusobacteri-
aceae, Veillonellaceae and Alcaligenaceae and a reduction in Ruminococcaceae, Bacteroidetes and
Lachnospiraceae compared to patients with no cirrhosis [108–110]. The higher proportion of
Alcaligenaceae is associated with poor cognitive performance as these organisms degrade
urea to ammonia [111]. Similarly, higher quantity Veillonellaceae is associated with increased
levels of inflammatory cytokines and poor cognitive function [112]. Another study re-
ported the overrepresentation of Streptococcaceae and Veillonellaceae in stools of patients
with cirrhosis with and without HE compared with normal individuals [113]. In patients
with cirrhosis and HE, increased presence of Streptococcus salivarius was observed and
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was associated with higher circulating levels of ammonia. A study comparing stool mi-
crobiota analysis of healthy individuals and patients with cirrhosis with and without HE
revealed that patients with cirrhosis and HE have higher proportions of Staphylococcaceae,
Enterococcaceae, Porphyromonadaceae, and Lactobacillaceae compared to the healthy patients
and cpatients with cirrhosis without HE [114]. Again, these microbiota species are linked
to higher endotoxin and ammonia production and thus in turn linked to poor cognitive
function.

It has been hypothesized that a vegetarian diet modulates gut microbiota and has
beneficial effects on patients with cirrhosis and HE. However, there are limited studies
to support such a claim. Zimmer et al. revealed that fecal samples of patients following
a vegetarian/vegan diet compared those on a meat diet had a reduction of Bacteroides,
Bifidobacterium, Escherichia coli and Enterobacteriaceae [115]. A cohort study from South India
assessed the comparison of fecal microbiota in vegetarian and omnivores, and revealed
higher proportions of fecal Clostridium cluster XIVa, specifically Roseburia-E. rectangle in
omnivores [116]. Further studies evaluating the role of a vegetarian diet in improving
cognitive function in patients with cirrhosis and HE by modulating gut microbiota are
needed.

2.7. Other Potential Effects of Diet in Patients with Cirrhosis

Diets high in vegetables and fruits have also been associated with decreased incidence
of HCC, another consequence of cirrhosis, which is frequently associated with HE [117–122].
In animal studies, flavonoids which are abundant in vegetables and fruits, have shown
anti-tumor effects [123,124]. High dietary fiber intake is inversely related to development
of HCC [125]. A case control study of 267 patients revealed inverse association of vegetable
intake and risk of HCC [126]. A meta-analysis of 19 studies showed that risk of HCC
decreases by every 100 g/day increase in vegetable intake [127]. However, other studies
failed to show any beneficial effects of vegetable-rich diet in prevention of HCC. Therefore,
further studies are needed to confirm the association of a vegetable rich diet and the risk
of HCC development [128,129]. BCAA supplementation has also shown to be protective
against HCC but the evidence is limited, and larger randomized controlled trials are needed
to evaluate its anti-carcinogenic effects [130–133].

3. Conclusions

HE is a common neurologic manifestation in patients with cirrhosis, with a high
economic burden and significant impact on the quality of life. Protein calorie malnutrition
is highly prevalent in these patients and, therefore, it is important to maintain adequate
protein intake. We suggest use of vegetable or milk-based protein in protein intolerant
patients as they are a good substitute for animal protein. We also suggest higher intake
of vegetable protein diet due to lower risk of sarcopenia, and development of HE. BCAA
administration can be considered as an alternative agent in HE patients not responsive
to conventional therapies. Lastly, the current evidence regarding beneficial effects of
vegetable diet in patients with cirrhosis is not yet conclusive and further research is needed
to evaluate the beneficial role of vegetable diet in these patients.
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