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Abstract

Many cancers are understood to be the product of multiple somatic mutations or other rate-

limiting events. Multistage clonal expansion (MSCE) models are a class of continuous-time

Markov chain models that capture the multi-hit initiation–promotion–malignant-conversion

hypothesis of carcinogenesis. These models have been used broadly to investigate the epi-

demiology of many cancers, assess the impact of carcinogen exposures on cancer risk, and

evaluate the potential impact of cancer prevention and control strategies on cancer rates.

Structural identifiability (the analysis of the maximum parametric information available for a

model given perfectly measured data) of certain MSCE models has been previously investi-

gated. However, structural identifiability is a theoretical property and does not address the

limitations of real data. In this study, we use pancreatic cancer as a case study to examine

the practical identifiability of the two-, three-, and four-stage clonal expansion models given

age-specific cancer incidence data using a numerical profile-likelihood approach. We dem-

onstrate that, in the case of the three- and four-stage models, several parameters that are

theoretically structurally identifiable, are, in practice, unidentifiable. This result means that

key parameters such as the intermediate cell mutation rates are not individually identifiable

from the data and that estimation of those parameters, even if structurally identifiable, will

not be stable. We also show that products of these practically unidentifiable parameters are

practically identifiable, and, based on this, we propose new reparameterizations of the

model hazards that resolve the parameter estimation problems. Our results highlight the

importance of identifiability to the interpretation of model parameter estimates.

Author summary

Parameter estimation from data is an important part of mathematical modeling, and

structural identifiability is the study of what parametric information exists, for a given

model, in ideal data. Unfortunately, for a variety of reasons, there is often less information

available in our real data sets. The study of these problems is called practical identifiability.

In this study, we consider a family of models of cancer biology that are commonly used to

explain cancer incidence in terms of underlying biological parameters. Using profile
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likelihoods, a widely applicable numerical tool, we demonstrate that even though the

more complex models we consider have theoretically more identifiable parameters, the

data contains only three pieces of practically identifiable information for each model: the

product of the initiating mutation rates, the net cell proliferation rate, and the scaled

malignant conversion rate. This result can be interpreted biologically: we can determine

only the product of cell mutation rates not the intermediate rates themselves. Our result

limits the interpretability of previous work, but we propose a novel parameterization to

resolve the identifiability issue. Ultimately, our analysis demonstrates the importance of

verifying the practical identifiability of parameters before assigning too much weight to

the interpretation of their estimated values.

Introduction

Parameter estimation is an important aspect of computational modeling in the life sciences

because parameter estimates can shed light on underlying biological mechanisms and pro-

cesses and provide a way to link dynamic models to real-world data. However, the dynamics of

many living systems have evolved to be robust to changes in underlying parameters, which

necessitates an understanding of which parameters or combinations of parameters can even be

estimated from data, known as identifiability. Here, we leverage computational identifiability

tools to determine what cancer incidence data can tell us about the biology of carcinogenesis.

Cancers arise from the accumulation of genetic (and epigenetic) abnormalities and muta-

tions. Although a single change is thought to be sufficient for certain cancers (certain leuke-

mias, lymphomas, and sarcomas in particular), many cancers are thought to require two or

more hits [1]. For example, retinoblastoma is a two-hit cancer—indeed, a two-hit model of ret-

inoblastoma predicted the existence of the tumor suppressing gene pRb before it was discov-

ered [2]—and colorectal cancer can be described by three or more hits to the APC, RAS, and

P53 genes [1]. Similarly to the development of precancerous polyps for colorectal cancer,

many esophageal cancers begin with a transition to a condition called Barrett’s esophagous [3]

before accumulating additional abnormalities. These genetic (or epigenetic) hits are often

described as starting different phases of carcinogenesis: initiation, the first destabilizing muta-

tion(s); promotion, the unchecked growth of a tumor; and malignant conversion, the spread

into other tissues. This classification is useful because different exposures may act on different

stages of carcinogenesis.

Multistage clonal expansion (MSCE) models are a class of continuous-time Markov chain

models that capture this initiation–promotion–malignant-conversion hypothesis of carcino-

genesis. Originally posed as a two-stage model [4, 5] using birth–death–mutation branching-

process theory, this class of models has been expanded to three or more stages, multiple path-

ways, and other variations. These models have been successfully used to analyze epidemio-

logical population-level cancer incidence data [6–11], to assess the impact of time-varying

exposures on cancer risk using individual-level data [12–16], and to project the impact of

prevention and control strategies on population cancer rates [10, 17–19]. Although models

that use multiple clonal expansion steps have been considered, models with multiple initia-

tion stages but only a single, final clonal expansion stage are more common in the literature

and appear to capture the incidence patterns of many cancers (e.g. [6–8, 20]. We are con-

cerned here with parameter estimation for MSCE models because it can lead to better under-

standing of the rates of biological processes like tumor growth or adverse mutations. Indeed,

knowing the approximate speed at which an abnormality arises may help to classify the

Practical identifiability of MSCE models
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underlying abnormal event (e.g. single nucleotide mutation, chromosomal translocation, or

epigenetic change).

Identifiability is the study of the parametric information available in a data set when viewed

through the lens of a model, and identifiability analysis is an important precursor to accurate

parameter estimation. A model is said to be identifiable if all model parameters may be

uniquely determined from observed data [21–23]. There are two kinds of identifiability analy-

ses: structural—which analyzes the model in the context of perfectly measured and noise-free

data in order to uncover the inherent limitations of the model structure in the context of

parameter estimation—and practical—which considers obstacles to parameter estimation that

arise from noise, sampling frequency, bias, and other issues in real-world data sets [24]. Iden-

tifiability analysis can identify parameter combinations that embody the parametric informa-

tion available in the data and lead to useful reparameterizations of the model [23].

That MSCE models are not fully identifiable is well established [6, 25–27]. In particular,

finding the closed-form solution of a model’s hazard function—the model output correspond-

ing to age-specific incidence data—gives an upper bound on the number of identifiable param-

eter combinations available for that model from the age-specific incidence data and constrains

the forms of those combinations. We previously computed the exact structural identifiability

for the class of MSCE models with constant parameters and one clonal-expansion step [28].

However, this is not the last word on the identifiability of MSCE models. In particular, it is

known that there is a practical identifiability problem with the clonal expansion models with

three or more stages: the information contained in the asymptote of the corresponding hazard

function is not available in the usual age-specific cancer incidence data because the asymptote

is not reached within human lifespans [8].

In this analysis, we examine this practical identifiability problem with a profile-likelihood

approach. We consider pancreatic cancer, which has linear age-specific incidence at older ages

[8] and can be fit by an MSCE model with two or more stages. We demonstrate that the two-,

three-, and four-stage models have only three practically identifiable parameter combinations

and that, for the three- and four-stage models, several parameters that are theoretically struc-

turally identifiable individually, are, practically, identifiable only in their product. This practi-

cal unidentifiability means the incidence data contains information about the overall rate of

progression from normal to cancer-initiated cells but not the expected information on the

rates of the individual steps leading to initiation.

Methods

Multistage clonal expansion models

The mathematics of multistage clonal expansion models have been detailed elsewhere [4, 5, 8,

25, 29–36], so we only give a basic description here. The n-stage clonal expansion model

(Fig 1) is a continuous-time Markov chain with the following states: X(t), the number of nor-

mal cells at age t; Y1(t), . . ., Yn−2, the number of cells in subsequent preintiation states; Yn−1(t),
the number of initiated cells; and Z(t), the number of malignant cells. Let ν be the initial muta-

tion rate, μ1, . . ., μn−3 the following preinitiation mutation rates, μn−2 the initiation mutation

rate, μn−1 the malignant transformation rate, α the clonal expansion rate, and β the cell death

rate. If the parameters and X(t) are constant, then we may denote

pn; qn≔
1

2
� a � b � mn� 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a � b � mn� 1ð Þ
2
þ 4amn� 1

q� �

; ð1Þ

and write hazard functions [6, 8] of the two-, three-, and four-stage models (a derivation is

Practical identifiability of MSCE models
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provided in S1 Text):

h2ðtÞ ¼
nX
a

p2q2ðe� q2t � e� p2tÞ

q2e� p2t � p2e� q2t

� �

; ð2Þ

h3ðtÞ ¼ nX 1 �
q3 � p3

q3e� p3t � p3e� q3t

� �m1=a
 !

; ð3Þ

h4ðtÞ ¼ nX 1 � exp
Z t

0

m1

q4 � p4

q4e� p4ðt� uÞ � p4e� q4ðt� uÞ

� �m2=a

� 1

 !

du

 ! !

: ð4Þ

From the hazard functions, we can see that the two-, three-, and four-stage models have at

most three (νX/α, p2, q2), four (νX, μ1/α, p3, q3), and five (νX, μ1, μ2/α, p4, q4) structurally iden-

tifiable parameter combinations. In this case, these parameter combinations are structurally

identifiable [28].

Multistage clonal expansion model hazards share similar characteristics, including an expo-

nential region, a linear region, and an asymptote (Fig 2). The transition from the linear phase

to the asymptote occurs on different time scales for the different models, and, for biologically

reasonable ranges of the parameters, only h2 can achieve this asymptote within human life-

spans. The other hazards achieve their asymptotes on the order of 1,000 to 100,000 years,

depending on the parameters. For example, the asymptote of the three-stage model occurs on

the order of (μ1(1 − β/α))−1 [8], and mutation rate estimates are typically on the order of 10−7–

10−5 [4–8] (note that 0< (1 − β/α)< 1, so that this term can only exacerbate the time span).

Thus, because real data cannot access the information contained in the asymptote and other

late appearing features, one may expect inherent practical identification issues for MSCE mod-

els with more stages.

Data

We consider cancers reported to the Surveillance, Epidemiology, and End Results (SEER) can-

cer registries, using SEER 9 data 1973–2012 (data available in S1 and S2 Data). We use the

Fig 1. Schematic of a general multistage clonal expansion model. Multistage clonal expansion models are continuous-time Markov chain models in

which normal cells undergo a series of genetic changes that lead to a state of clonal expansion followed by progression to malignancy.

https://doi.org/10.1371/journal.pcbi.1005431.g001
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International Classification of Diseases (ICD-10) codes to identify incidence of pancreatic can-

cer (C25).

Identifiability framework

More thorough treatments of identifiability of dynamical systems are presented elsewhere [23,

24, 37, 38], and we previously described a framework to apply dynamical systems identifiability

techniques to stochastic time-to-event models, including multistage clonal expansion models

[28]. Nevertheless, we provide the basic identifiability framework and definitions here for

reference.

Consider a vector of states x(t) (unobserved), vector of parameters to be estimated ρ, and

observed (known) input u(t) and output v(t) in the dynamical systems model,

_xðtÞ ¼ f ðxðtÞ; uðtÞ; ρÞ;

vðtÞ ¼ gðxðtÞ; ρÞ:
ð5Þ

Definition 1 Parameter ρi in the model given in Eq (5) is (globally) structurally identifiable
if, for almost all values r�i and initial conditions, the observation of an output trajectory
(v(t) = v�(t)) uniquely identifies ρi (ri ¼ r�i ), i.e. if only one value of ρi could have resulted in the
observed output.

Definition 2 The model given in Eq (5) is (globally) structurally identifiable if each ρi is struc-
turally identifiable.

The definition of structural identifiability concerns perfectly measured input and output.

However, because real data may not capture all of the parameteric information available in a

theoretic trajectory, parameters that are structurally identifiable in a model for a kind of

Fig 2. Salient features of a multistage clonal expansion model hazard. Multistage clonal expansion

models have exponential and linear phases that may be observed on the time scale of a human lifespan.

Depending on the number of stages in the model, the asymptote may or may not occur within a human

lifespan.

https://doi.org/10.1371/journal.pcbi.1005431.g002
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theoretical data may be practically unidentifiable given a corresponding real-world dataset.

Practical non-identifiability can arise from poor data quality (uncertainty, infrequent sam-

pling, etc), but it can also be inherent to the type of data measured. For example, the saturation

constant of a Michaelis-Menten equation may not be identifiable from low-dose data [39], and

the amplitude of a circadian rhythm will not be identifiable if a value is measured once a day at

the same time [40]. Thus, even if there are a large number of data points (e.g. as is often the

case for cancer registry data), practical identifiability may still be an issue. It is this kind of

inherent limitation of the data that we explore for the multistage clonal expansion models.

Practical identifiability is difficult to define in a rigorous way without choosing a threshold

(e.g. width of a confidence interval) and thus has a “I know it when I see it” quality. Neverthe-

less, descriptions of practical identifiability are possible and typically consider the confidence

bounds for the estimated parameters, found by Fisher Information Matrix (FIM) [22, 23, 41,

42] or likelihood-based methods [24]. In this analysis, we use likelihood-based confidence

intervals, which are defined as follows. Let LðρÞ be the likelihood for the model given the data

set as a function of the parameters ρ, and let ρ̂ the maximum-likelihood estimator.

Definition 3 Let L�ðriÞ denote the maximum likelihood when the ith parameter is fixed to
value ρi, and call it the profile likelihood of ρi. Then, the likelihood-based confidence interval for ρi

at level of significance α is the set of values of ρi for which the relative negative log-likelihood at ρi

is less than a threshold determined by α, that is,

fri : log ðLðρ̂ÞÞ � log ðL�ðriÞÞ < Dag; ð6Þ

where

2Da ¼ w2ða; dfÞ ð7Þ

is the chi-squared distribution with a number of degrees of freedom (df) equal to the number of
parameters (for simultaneous confidence intervals) or equal to 1 (for pointwise confidence inter-
vals). [24, 43].

We would like to say that parameter ρi in the model given in Eq (5) is practically identifiable

if the likelihood-based confidence interval for ρi has finite length. However, this definition is

neither well-defined (the confidence interval may be finite for one level of significance but infi-

nite at another) nor practically verifiable. Ultimately, parameters with confidence intervals

that are sufficiently large—typically orders of magnitude—as to cause uncertainty and parame-

ter estimation problems at the desired parameter scale and level of significance can be said to

be practically unidentifiable.

Computation methods

We use profile likelihood [24] and subset profiling [42] methods to investigate the practical

identifiability of the two-, three-, and four-stage models. We assume that cancer incidence is

Poisson distributed (details in S1 Text). Profile likelihoods were computed by fixing the value

of one parameter at each of a series of values within an interval and numerically optimizing

the negative log-likelihood as a function of the remaining parameters. Numerical optimization

was done in R (v.3.0.1) using the Bhat package [44].

Results

We plot incidence rates of pancreatic cancer reported to SEER 9 (1973–2012) in men by

decade (Fig 3). The data exhibit the classic pattern of linear incidence at older ages. There are

no apparent temporal trends, so we fit the two-, three-, and four-stage clonal expansion model

hazards to the entire data set by minimizing the negative log-likelihood. The Akaike

Practical identifiability of MSCE models
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Information Criterion (AIC) for each model (relative to the best-fitting model) is 177.7, 72.3,

and 0, respectively, which preferences the four-stage model.

Two-stage model

We profile the relative negative log-likelihood of the maximum-likelihood two-stage hazard as

a function of each of the parameter combinations p3, q3, and νX/α (Fig 4). All three parameters

combinations are practically identifiable because of the trough-shape of the negative log-likeli-

hood, giving finite confidence intervals. The parameter estimates are given in Table 1.

Three-stage model

We profile the relative negative log-likelihood of the maximum-likelihood three-stage hazard

as a function of each of the parameter combinations p3, q3, νX, and μ1/α (Fig 5). Parameter

combinations p3 and q3 are practically identifiable as above, but parameter combinations νX
and μ1/α are not practically identifiable because their likelihoods flatten out, resulting in infi-

nite confidence intervals.

To identify the form of the practically-identifiable parameter combination of νX and μ1/α,

we plot the fitted value of μ1/α as we vary the value of νX (Fig 6). Because the relationship is lin-

ear on the log–log scale, νX and μ1/α exist in a practically identifiable product. From the bio-

logical perspective, this means that we can only know the net rate of transition from normal to

initiated cells but not the rates of the individual intermediate steps.

Fig 3. Pancreatic cancer incidence and best-fit MSCE models. Incidence of pancreatic cancer in men per

100,000 (SEER 9, 1973–2012), and best-fit two-, three-, and four-stage clonal expansion model hazards.

Note that the three model hazards largely overlap.

https://doi.org/10.1371/journal.pcbi.1005431.g003
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Fig 4. Two-stage model profile likelihoods. Profiles of the relative negative log-likelihood (NLL) of the two-

stage clonal expansion model as each of the parameter combinations p2, q2, and νX/α are varied while the

remaining parameters are fit. The gray dotted line gives the α = 0.01 threshold for simultaneous confidence

intervals based on the relative negative log-likelihood. All three parameters are identifiable.

https://doi.org/10.1371/journal.pcbi.1005431.g004

Table 1. Best-fit parameters and likelihood-based 99% confidence intervals. Best-fit parameters and likelihood-based 99% confidence intervals for the

fits of the two-, three-, and four-stage clonal expansion models (with parameterizations using only practically identifiable parameter combinations and given in

Eqs (2), (9) and (11) respectively) to age-specific incidence of pancreatic cancer.

Model Parameter combination Value Likelihood-based 99% CI

Two-stage

p2 ¼
1

2
� a � b � m1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � b � m1Þ þ 4am1

p� �
-1.29E-1 (-1.30E-1, -1.29E-1)

q2 ¼
1

2
� a � b � m1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � b � m1Þ þ 4am1

p� �
6.21E-6 (6.13E-6, 6.29E-6)

r2 = νX/α 1.50E-2 (1.49E-2, 1.52E-2)

Three-stage

p3 ¼
1

2
� a � b � m2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � b � m2Þ þ 4am2

p� �
-1.38E-1 (-1.39E-1, -1.37E-1)

q3 ¼
1

2
� a � b � m2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � b � m2Þ þ 4am2

p� �
1.57E-5 (1.53E-5, 1.60E-5)

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nXm1=a

p
2.35E-2 (2.33E-2, 2.38E-2)

Four-stage

p4 ¼
1

2
� a � b � m3ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � b � m3Þ þ 4am3

p� �
-1.50E-1 (-1.52E-1, -1.48E-1)

q4 ¼
1

2
� a � b � m3ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � b � m3Þ þ 4am3

p� �
4.59E-5 (4.40E-5, 4.78E-5)

r4 = (νXμ1μ2/α)1/3 2.66E-2 (2.63E-2, 2.70E-2)

https://doi.org/10.1371/journal.pcbi.1005431.t001

Practical identifiability of MSCE models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005431 March 13, 2017 8 / 18

https://doi.org/10.1371/journal.pcbi.1005431.g004
https://doi.org/10.1371/journal.pcbi.1005431.t001
https://doi.org/10.1371/journal.pcbi.1005431


Our analysis thus demonstrates that there are three parameter combinations that are practi-

cally identifiable for the three-stage model from age-specific cancer-incidence data. Since

there are three pieces of information in the data and four degrees of freedom in the full model

(Eq 3), one might assume that one additional constraint on the model is sufficient to reduce

the number of parameters estimated to three and simultaneously resolve the non-identifiability

problem. However, the most reasonable simplifying assumption, namely that the first two

mutation rates are the same (ν = μ1), such as for biallelic gene inactivation [1], does not do

this; the three-stage model with ν = μ1 still has four structurally identifiable parameter combi-

nations, namely p3, q3, νX, and ν/α, but only three pieces of practically identifiable information,

so another constraint would be needed for a fully identifiable model. In this case, the con-

straint would need to designate the relative values of νX and μ1/α, which assuming ν = μ1 does

not do. The ν = μ1 assumption does, however, suggest a new reparameterization of Eq 3.

Denote

r3≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnXÞðm1=aÞ

p
; ð8Þ

Fig 5. Three-stage model profile likelihoods. Profiles of the relative negative log-likelihood (NLL) of the

three-stage clonal expansion model as each of parameter combinations p3, q3, νX, and μ1/α are varied while

the remaining parameters are fit. The gray dotted line gives the α = 0.01 threshold for simultaneous

confidence intervals based on the relative negative log-likelihood. Parameter combinations p3 and p4 are

identifiable, while νX and μ1/α are practically unidentifiable.

https://doi.org/10.1371/journal.pcbi.1005431.g005
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and fix X and α at reasonable values, i.e. at values where the likelihood profiles are flat (see

Fig 5). Then, assuming ν = μ1, we parameterize nX ¼ r3

ffiffiffiffiffiffi
aX
p

and m1=a ¼ r3=
ffiffiffiffiffiffi
aX
p

, and write

h3ðtÞ ¼ r3

ffiffiffiffiffiffi
aX
p

1 �
q3 � p3

q3e� p3t � p3e� q3t

� �r3=
ffiffiffiffi
aX
p !

: ð9Þ

As long as X and α are chosen so that νX and μ1/α are within a the range of values for which

the likelihood is flat, their exact values do not affect the model fit and can be fixed. Caution is

advisable here, however: although the exact values of these parameters do not affect the fit in

this context, it is important to not take these values into other contexts where the exact values

may be relevant, e.g. prediction in context of time-varying exposures. Nevertheless, this

parameterization has several advantages. In particular, multiplicative effects on r3, such as rela-

tive period or cohort effects, can be thought of as affecting both ν and μ1 equally: under the

assumption μ≔ ν = μ1, r3 simplifies to r3 ¼ m
ffiffiffiffiffiffiffiffiffi
X=a

p
, and, more generally, we can write, for

some scalar ξ, xr3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxnÞðxm1ÞðX=aÞ

p
.

We see that the profile relative NLL of r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm1X=a

p
has a finite confidence interval

(Fig 7), as p3 and q3 did in Fig 5. The best-fit parameters for the three-stage model—parameter-

ized as in Eq (9) and fit to the age-specific pancreatic cancer incidence data—are given in

Table 1.

Four-stage model

We similarly profile the relative negative log-likelihood of the maximum-likelihood four-stage

hazard as a function of each of the parameter combinations p4, q4, νX, μ1, and μ2/α (Fig 8). As

before, parameters combinations p4 and q4 have finite confidence intervals and are practically

Fig 6. Three-stage model parameter dependency. Fitted value of μ1/α as νX is varied for the three-stage

clonal expansion model. The linear relationship on a log–log scale indicates an identifiable product.

https://doi.org/10.1371/journal.pcbi.1005431.g006
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identifiable, while combinations νX, μ1 and μ2/α have infinite confidence intervals and are not

practically identifiable.

To determine the combination structure, we use subset profiling [42]. However, rather than

using FIM to determine the profiled parameter subsets, we note that the analysis of the three

stage model leads us to suspect that the three parameter combinations νX, μ1, and μ2/α are in a

practical product. We use this structure to propose our nearly-full rank subsets. To verify this

proposal, we plot the fitted value of one parameter combination while another is fixed and the

third is varied (Fig 9). The three selected plots presented are sufficient to verify that the three

parameter combinations indeed exist in a practically identifiable product. As for the three-

stage case, that νX, μ1, and μ2/α can only be identified up to their product means that we can

only know the net rate of transition from normal to initiated cells but not the rates of the indi-

vidual intermediate steps.

We can define a quantity analogous to r3 in the three stage case. Here,

r4 ¼ nXm1m2=að Þ
1=3

ð10Þ

and, for some reasonable fixed values of X and α,

h4ðtÞ ¼ r4 X2að Þ
1=3

1 � exp
Z t

0

r4 a=Xð Þ
1=3 q4 � p4

q4e� p4ðt� uÞ � p4e� q4ðt� uÞ

� �r4= a2Xð Þ
1=3

� 1

0

@

1

Adu

0

@

1

A

0

@

1

A:ð11Þ

We see that the profile relative NLL of r4 = (νXμ1μ2/α)1/3 has the expected trough shape

(Fig 10), as seen in Fig 8 for p4 and q4. The best-fit parameters for the four-stage model—

Fig 7. Profile likelihood for the reparameterized combination of the three-stage model. Profile of the

relative negative log-likelihood (NLL) as the parameter r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nXm1=a

p
is varied while the remaining

parameters are fit in the three-stage clonal expansion model. The gray dotted line gives the α = 0.01 threshold

for simultaneous confidence intervals based on the relative negative log-likelihood. Parameter combination r3
is identifiable.

https://doi.org/10.1371/journal.pcbi.1005431.g007
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Fig 8. Four-stage model profile likelihoods. Profiles of the relative negative log-likelihood (NLL) of the four-

stage clonal expansion model as each of parameter combinations p4, q4, νX, μ1, and μ2/α are varied while the

remaining parameters are fit. The gray dotted line gives the α = 0.01 threshold for simultaneous confidence

intervals based on the relative negative log-likelihood. Parameter combinations p4 and q4 are identifiable,

while νX, μ1, and μ2/α are practically unidentifiable.

https://doi.org/10.1371/journal.pcbi.1005431.g008
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parameterized as in Eq (11) and fit to the age-specific pancreatic cancer incidence data—are

given in Table 1.

Discussion

Practical unidentifiability is a significant barrier to parameter estimation. Indeed, because it—

unlike structural identifiability—can be so dependent on the quality of the data, it can be a

moving target. From this perspective, ironically, it is perhaps fortunate that the practical iden-

tifiability issue described herein is inherent to any age-specific cancer incidence data that is lin-

ear at older ages. This way, such problems can be anticipated and handled systematically, e.g.

by reparameterizing the model appropriately. In theory, we could gain additional information

if people were to live long enough to see the incidence plateau, but, as previously discussed, the

expected timing of the plateau in the three- and four-stage clonal expansion models is well

beyond conceivable human life spans. While the observation of a plateau might suggest that

either the underlying mechanism is the two-stage model or the presence of heterogeneities or

temporal effects, the absence of a plateau leaves room for various interpretations. Indeed, the

Fig 9. Four-stage model parameter dependencies. Fitted values of one of νX, μ1, or μ2/α as another is

fixed and the third is varied for the four-stage model. The linear relationships on a log–log scale indicate that

νXμ1μ2/α is an identifiable product.

https://doi.org/10.1371/journal.pcbi.1005431.g009
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two-, three-, and four-stage models were all able to reasonably fit the pancreatic cancer inci-

dence data (Fig 3).

For each of the two-, three-, and four-stage models, only three parameter combinations

were practically identifiable. In each case, these combinations are most easily interpreted in

the following forms:

a � b � mn� 1 ð12Þ

the net cell proliferation rate of initiated cells,

amn� 1 ð13Þ

the scaled malignant conversion rate, and

n
Yn� 2

i¼1

mi

 !

ðX=aÞ ð14Þ

the product of all preinitation rates scaled by the number of normal cells and the cell growth

rate. Note that the first two combinations are together equivalent to pn and qn. Because the last

combination is a product of individually structurally identifiable combinations, we know that

information about mutation rates at the intermediate steps is only available in later features of

the MSCE hazards, i.e. the asymptote and the transition from the linear phase to the

asymptote.

Because there are only three practically identifiable combinations, successful parameter

estimation can only be achieved if the models are reparameterized in terms of these

Fig 10. Profile likelihood for the reparameterized combination of the four-stage model. Profile of the

relative negative log-likelihood (NLL) as the parameter r4 = (νXμ1μ2/α)1/3 is varied while the remaining

parameters are fit in the four stage clonal expansion model. The gray dotted line gives the α = 0.01 threshold

for simultaneous confidence intervals based on the relative negative log-likelihood. Parameter combination r4
is identifiable.

https://doi.org/10.1371/journal.pcbi.1005431.g010
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combinations. For example, with the three-stage model parameterized as in Eq (3), parameter

estimates for νX and μ1/α are not stable. Here, we proposed one possible solution with the

reparameterizations in Eqs (9) and (11) and show that it does indeed resolve the practical uni-

dentifiabilities, though an infinite number of reparameterizations will give equivalent fits as

long as the parameter combinations are preserved. Each reparameterization represents a dif-

ferent assumption about the relative sizes of its constituent parameter combinations. Our

reparameterizations are inspired by the assumption that the preinitation mutation rates are

equal (ν = μ1 = . . .) but do not actually codify this assumption in the models. Nevertheless, it is

consistent with a scenario in which multiple copies of a tumor suppressor gene must be

“knocked out” [1].

Traditional approaches to parameter estimation that use asymptotic confidence intervals

do not always reveal practical identifiability issues. Because asymptotic confidence intervals

are based on the local curvature of the likelihood around the parameter estimate, they may

give finite confidence bounds when the likelihood is curved on one side of the estimate but flat

on the other. Numerical optimization algorithms may provide results that give the appearance

of practical identifiability but have in fact simply pushed the estimate to the point where the

likelihood begins to curve. Hence, the fact that our group and others have previously reported

values of μ2/α with finite confidence intervals in four-stage models [6, 8] is not inconsistent

with our results. Some of these previous works have interpreted the larger-than-expected val-

ues for μ2 (fixing α) as being too fast to represent a genetic mutation, suggesting that the four-

stage model may represent two, slow genetic mutations followed by a fast epigenetic change, a

transient event, or other transformation. Our results suggest that a large range of values μ2/α
would have resulted in equivalent fits, and we note that the values presented in these previous

works are of the same order of magnitude where we see curvature in our likelihood function.

In particular, a previous fit of pancreatic cancer incidence in SEER (1973–2004) using the

four-stage model [8] estimated νXμ1μ2/α to be 1.88E-5—the same value that we find here with

the new parametrization (for pancreatic cancer in SEER 1973–2012; Table 1)—but also sepa-

rately estimated μ2/α to be 4.0E-1, which falls exactly where the profile likelihood begins to

curve up (Fig 8). Hence, such parameter estimates may be an artifact of the algorithm numeri-

cally optimizing the likelihood, and one should then be careful when giving a biological inter-

pretation to those results.

This analysis also speaks to the question of model selection and model reduction. Although

the four-stage model gives the best statistical fit to the data in Fig 3, its hazard nearly entirely

overlaps with the that of the other models. Hence, we must question whether or not the larger

model is actually capturing some nuance in the data. Given the practical identifiability issues

we have presented, does the two-stage already capture all of the information? Possibly so. Are

the results of both models equivalent? Unfortunately not: although each model is estimating

the same biological parameters (i.e. the product of initiation rates, the final promotion rate,

and the malignant conversion rate), a perusal of Table 1 reveals that the parameter estimates

are not particularly consistent across the three models (although are generally within an order

of magnitude). Moreover, the different dynamics of each model will become important as we

move away from simply analyzing incidence and consider prediction or individual time-vary-

ing exposures. Nevertheless, in this situation, one might be inclined to take an ensemble

approach and to consider uncertainty quantification not only within a model but across the

models, perhaps weighting in some way by statistical fit. Additional empirical science, by bet-

ter elucidating carcinogenesis mechanisms common to cancer at given site, could aid modelers

in model selection.

The guidance we have presented in this study is important as three- and four-stage clonal

expansion models are commonly used to model certain cancers at the population level, and
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successful parameter estimation is dependent on the model being identifiable with respect to

the available data. Ultimately, our analysis demonstrates the need for future studies to verify

the practical identifiability of model parameters whenever feasible, which should strengthen

the validity of the analyses and aid in the interpretation of estimated parameter values and

modeling results.
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