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SUMMARY
Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two

translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The

molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required

for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identifymei-P26mRNA as a direct and

major target of Nos/Pum/CCR4 translational repression in theGSCs.mei-P26 encodes a protein of the Trim-NHL tumor suppressor family

that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-

renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-

mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.
INTRODUCTION

A major issue in stem cell biology concerns understanding

the mechanisms controlling the balance between self-

renewal and differentiation. Drosophila germline stem cells

(GSCs) have proven to be an excellent model for studying

adult stem cells in vivo (Fuller and Spradling, 2007). In

the Drosophila ovary, two to three GSCs are localized at

the anterior of the germarium, the anteriormost region of

each ovariole, and give rise to the female germline. The

GSCs divide asymmetrically to produce a GSC and a cell

that differentiates as a cystoblast. The cystoblast then di-

vides four times to produce a cyst of 16 germline cells.

Translational controls have a central role in the regula-

tion of stem cell biology. The importance of translational

regulations has been reported in mouse embryonic stem

cells, which display a considerable increase in mRNA levels

and translation during their differentiation (Sampath et al.,

2008). In Drosophila GSCs, two major factors for stem cell

self-renewal are the translational repressors Nanos (Nos)

and Pumilio (Pum) (Gilboa and Lehmann, 2004; Wang

and Lin, 2004). Females mutant for nos and pum have

empty ovaries due to the loss of GSCs by differentiation.

Nos and Pum are thus required in the stem cells to repress

their differentiation, indicating that stem cell self-renewal

corresponds in part to the repression of the differentiation

program (Gilboa and Lehmann, 2004; Wang and Lin,

2004). The microRNA (miRNA) pathway also plays an

essential role in GSC self-renewal. Mutations in Dicer-1,

Argonaute1 (Ago1), and loquacious result in a phenotype of

stem cell loss consistent with the potential role of the

miRNA pathway in translational repression of differentia-
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tion factors in the GSCs (Jin and Xie, 2007; Park et al.,

2007; Yang et al., 2007).

Bag of marbles (Bam) is the major factor of GSC differen-

tiation (McKearin and Ohlstein, 1995; Ohlstein and

McKearin, 1997). bam mutant females have tumorous

ovaries full of stem cell-like germ cells, whereas overexpres-

sion of bam in stem cells leads to their differentiation. bam

transcription in GSCs is repressed by the short-range bone

morphogenetic protein (BMP) signaling that emanates

from the niche, the microenvironment provided by

somatic cells surrounding the GSCs (Song et al., 2004; Xie

and Spradling, 1998). Upon division, the daughter cell still

in contact with the niche continues to receive the BMP

signal and thus remains a stem cell, whereas the daughter

cell localized posteriorly expresses bam due to the lack of

BMP signal and thereby differentiates into a cystoblast

(Harris et al., 2011; Xia et al., 2012). Genetic data suggest

that Bam promotes differentiation by relieving the Nos/

Pum-dependent translational repression of differentiation

factors (Chen and McKearin, 2005; Szakmary et al.,

2005). Consistent with this, Bam downregulates Nos

expression in cystoblasts through the regulation of nos

mRNA (Li et al., 2009).

To date, a single mRNA target of Nos/Pum regulation has

been identified: the brain tumor (brat) mRNA, which

encodes a Trim-NHL domain-containing protein with a

known function in stem cell biology (Harris et al., 2011).

Brat is a key differentiation factor in neural stem cells (Bet-

schinger et al., 2006; Lee et al., 2006) and was recently

shown to be involved in female GSC differentiation by re-

pressing the translation of self-renewal mRNAs, including

Mad, which encodes a component of BMP signaling (Harris
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Figure 1. CCR4 Is Expressed in the GSCs and Is Required for Their Self-Renewal
(A) Schematic representation of a germarium. GSC, germline stem cell; CB, cystoblast; TF, terminal filament, CC, cap cell; and FSC, follicle
stem cell.
(B) Schematic representation of the twin locus, twinDG24102, twin41, and twin8115 mutants. Black boxes indicate exons. The arrow
indicates the transcription start site. The P-Hobo (yHw) transposable element (not drawn to scale) inserted in twinDG24102 is shown.
The coordinates of the insertion sites are 20027036 for twinDG24102 and 20032277 for twin8115, according to the AE014297 sequence
in NCBI.
(C–D0) Expression of CCR4 in GSCs. Wild-type (C and C0) and twinDG24102 mutant (D and D0) germaria labeled with anti-CCR4 antibody (red)
and 1B1 (green), which marks the spectrosome and fusome. The merge is shown in C0 and D0. Right panels show higher magnifications of
the anterior tips of germaria shown in the left panels. White arrows indicate GSCs.

(legend continued on next page)
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et al., 2011). Mei-P26 is another Trim-NHL protein with an

essential function in the ovarian stem cell lineage. It pro-

motes differentiation and restricts proliferation in cyst cells

by inhibiting themiRNA pathway through its direct associ-

ation with Ago1 (Neumüller et al., 2008). More recently, a

distinct role for Mei-P26 in GSC self-renewal was described

(Li et al., 2012). Mei-P26 was found to repress Brat expres-

sion in GSCs, thus allowing BMP signaling and Bam repres-

sion, which are required for GSC self-renewal. However,

Mei-P26 overexpression in GSCs leads to GSC loss, high-

lighting the importance of the precise regulation of Mei-

P26 expression levels for GSC biology (Neumüller et al.,

2008).

The mechanisms of action of Nos and Pum in GSC self-

renewal remain unknown. In the embryo, Nos and Pum

act by twomechanisms: inhibition of translation initiation

(Sonoda and Wharton, 1999) and recruitment of the

CCR4-NOT deadenylation complex (Kadyrova et al.,

2007). Direct interactions between Pum and the deade-

nylation complex are conserved from yeast to human

(Goldstrohm et al., 2006; Kadyrova et al., 2007). Interac-

tions between the CCR4-NOT deadenylation complex

and Nanos2, a mouse homolog of Nos, have also been

reported in mouse gonocytes where Nanos2 represses

mRNAs involved in meiosis (Suzuki et al., 2010; Suzuki

et al., 2012).

The Drosophila CCR4-NOT complex is composed of

seven proteins: NOT1–NOT4, CAF40, and two potential

deadenylases, CCR4 and CAF1 (Barckmann and Simonelig,

2013; Temme et al., 2004, 2010). Drosophila CCR4 deade-

nylase is encoded by the twin gene, which is required

for early oogenesis. twin has a role in the control of germ

cell divisions leading to 16-cell cysts, in germ cell survival,

and in oocyte specification (Morris et al., 2005; Zaessinger

et al., 2006). Here, we address the molecular mechanisms

underlying Nos/Pum translational repression in the

GSCs. We find that CCR4 is required for GSC self-renewal

and interacts with Nos and Pum for this function. We

identify mei-P26 mRNA as a direct target of the Nos/Pum/

CCR4 complex. mei-P26 is a major target of this complex

for GSC self-renewal, as GSC loss in twinmutants is rescued

by lowering the gene dosage of mei-P26. In addition, we

show that increased expression of Mei-P26 in twin mutant

GSCs correlates with longer poly(A) tails of its mRNA.

These data reveal that Nos and Pum translational repres-

sion in the GSCs depends on deadenylation by the
(E–G) twin mutant phenotype of loss of GSCs. Wild-type (E) and twinDG

Vasa antibody (red). Vasa is used as a germ cell marker. White arrows i
cyst. (G) Lack of GSCs and germ cells. Scale bars represent 20 mm in
(H) Quantification of germaria containing at least one GSC in differen
females. n represents the number of germaria scored.
See also Figure S1.
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CCR4-NOTcomplex. They also show that GSC fate requires

the precise regulation of Mei-P26 levels and that this fine-

tuning is achieved by CCR4-NOT-mediated repression.
RESULTS

Function of CCR4 in GSC Self-Renewal

To address a potential function of CCR4 in GSCs, we first

analyzed CCR4 expression in these cells. GSCs were identi-

fied by their anterior localization in the germarium and by

the presence and anterior localization of a spherical organ-

elle called the spectrosome, visualized using the Hu-li tai-

shao marker (Hts/1B1 antibody) (Lin et al., 1994)

(Figure 1A). CCR4 was present in the GSCs as well as in

other cells in the germarium (Figure 1C) where it was

mostly cytoplasmic and accumulated in discrete foci, as

reported in other cell types in the ovary and embryo (Rou-

get et al., 2010; Temme et al., 2004; Zaessinger et al., 2006).

CCR4 is encoded by the twin gene. CCR4 levels were

strongly decreased in a strong hypomorphic allele

twinDG24102 (see below) (Figure 1D).

We next analyzed GSC self-renewal in twin mutant

ovaries using three alleles: twin8115, which we previously

characterized as a strong hypomorphic allele (Zaessinger

et al., 2006); twinDG24102 (FlyBase); and twin41, obtained

after mobilization of the hybrid P-Hobo-element inserted

into twinDG24102 (Figure 1B). twin mRNA levels quantified

by RT-PCR and quantitative RT-PCR (qRT-PCR) were

strongly reduced in the ovaries of twinDG24102 and twin41

mutants, indicating that they are strong hypomorphic

alleles (Figure S1 available online). Ovaries from different

allelic combinations were dissected from 3-, 7-, 14-, and

21-day-old females. All germ cells were rapidly lost in

twin mutant ovaries (Figures 1E–1G). Quantification of

germaria containing GSCs at the four time points showed

that 100% of germaria were devoid of GSCs in 7-day-old

females hemizygous for all three twin alleles over Df(3R)

Exel6198 (Figure 1H). GSC loss was slightly slower in

twinDG24102 homozygous females, consistent with the fact

that this is not a null allele (Figure 1H). These results

show that CCR4 is required for GSC self-renewal.
CCR4 Is Required in the GSCs for Their Self-Renewal

We used clonal analysis to determine if CCR4 was

required intrinsically in the GSCs for their self-renewal.
24102 (F and G) mutant germaria labeled with 1B1 (green) and anti-
ndicate GSCs. (F) Lack of GSCs and the presence of a differentiating
(C–G).
t twin mutant and control genotypes in 3-, 7-, 14-, and 21-day-old
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(A) Clonal twin mutant GSCs do not self-renew. Control (top panel) and twinDG24102 (bottom panel) mosaic germaria labeled with GFP
(green) and 1B1 (red) 7 days after clone induction. Clonal cells, marked by the lack of GFP, are outlined with white dotted lines.
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represents the number of germaria scored.
See also Figure S2.
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FLP-mediated FRT recombination was used to generate

wild-type or twin mutant clonal GSCs that were analyzed

at four time points after clone induction. Clonal GSCs

were identified by the lack of GFP. In the wild-type, the per-

centage of germaria with at least one clonal GSC decreased

from 31% 3 days after clone induction to 24% 21 days after

clone induction, reflecting GSC turnover (Jin and Xie,

2007) (Figures 2A and 2B). In twin8115 and twinDG24102,

the percentage of germaria with one clonal GSCwas similar

to wild-type 3 days after clone induction (34% and 31%)

but strongly decreased at later time points, with only 5%

and 3% of germaria containing a clonal GSC 21 days after

clone induction, respectively (Figures 2A and 2B). This
414 Stem Cell Reports j Vol. 1 j 411–424 j November 19, 2013 j ª2013 The
indicated that twin mutant GSCs were rapidly lost. This

loss was more rapid in twinDG24102 mutant than in

twin8115, indicating that twinDG24102 is a stronger allele.

We determined the division rate of twin8115 and

twinDG24102 GSCs by counting the number of cysts

produced by a clonal marked mutant GSC and dividing it

by the number of cysts produced by a wild-type unmarked

GSC in the same germarium (Jin and Xie, 2007). The

division rate of wild-type GSCs (FRT82B chromosome)

was close to 1 (0.93, n = 89), while those of twin8115 and

twinDG24102 GSCs were 0.44 (n = 37) and 0.50 (n = 33),

respectively, indicating that division in twin mutant GSCs

is slower than in wild-type.
Authors
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See also Figure S3.
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The loss of twin mutant GSCs could result either from

apoptosis or differentiation. Clonal twin mutant GSCs

were able to give rise to differentiated cysts identified by a

branched fusome (Figure 2A), indicating that these mutant

GSCs can differentiate. Apoptosis was recorded using acti-

vated caspase-3 antibody. The twin mutant clonal GSCs

were not stained with this antibody (n = 35) (Figures S2A–

S2C), thus ruling out their potential death by apoptosis.

As independent evidence in favor of the cell-autono-

mous requirement of CCR4 for GSC self-renewal, we

rescued the twinDG24102 phenotype of GSC loss by express-

ing CCR4 in the GSCs. We used the UAS/Gal4 system to

express CCR4-hemagglutinin (CCR4-HA) specifically in the

germ cells with the nos-Gal4 driver. This led to a nearly
Stem Cell R
complete rescue of the twinDG24102 GSC loss phenotype

(Figures 2C–2F).

In the CCR4-NOT complex, both CCR4 and CAF1 are

potential deadenylases, and CAF1 has been reported to be

the major deadenylase in Drosophila S2 cells, with CCR4

acting as a structural subunit in the complex (Temme

et al., 2010). To determine whether the deadenylase ac-

tivity of CCR4 is required for GSC self-renewal, we gener-

ated the CCR4mut-Flag transgene, in which CCR4 has a

double point mutation inactivating the deadenylase activ-

ity (Temme et al., 2010). When expressed with nos-Gal4,

this deadenylase-dead CCR4 was able to partially rescue

the twinDG24102 phenotype of GSC loss, with 59.5% of ger-

maria containing GSCs in 21-day-old females (Figures 2F

and S2D). This indicated that the deadenylase activity of

CCR4 could be compensated to some extent for GSC self-

renewal. This could result from CAF1 acting as a deade-

nylase in the GSCs, as in S2 cells, and/or from an additional

role of the CCR4-NOTcomplex in translational repression,

independently of deadenylation, as proposed in other sys-

tems (Chekulaeva et al., 2011; Cooke et al., 2010).

To address whether CCR4 acts in the GSCs as part of the

CCR4-NOT complex, we knocked down NOT1, the key

structural subunit of the complex, using RNAi in the

germ cells. This led to a strong phenotype of lack of GSCs

and germ cells (Figure S2E). In addition, CCR4 was found

in complex with NOT1 and CAF1 in GSC-like cells, using

coimmunoprecipitation (co-IP) experiments on bamD86

mutant ovaries, which contain only undifferentiated pre-

cystoblasts (Figure S2F).

Taken together, these results show that CCR4,most likely

as part of the CCR4-NOT complex, is required intrinsically

in the GSCs to control their division rate and for their self-

renewal. They also show that twin mutant GSCs are not

maintained because they differentiate.

CCR4 Functions Together with Pum and Nos

To genetically determine if twin could act together with

nos and pum, we first tested whether the GSC loss pheno-

type in the hypomorphic twinDG24102 allele could be

increased by reducing the gene dosage of pum or nos. GSC

loss in twinDG24102 was accelerated in the presence of

both heterozygous pumMSC or nos18 mutations (Figure 3A).

This is consistent with a role for twin and pum, and twin and

nos, together in the same pathway.

We analyzed intracellular colocalization in GSCs

between Pum or Nos and CCR4 using CCR4-HA. Pum,

Nos, and CCR4-HAwere present diffusely in the cytoplasm

and accumulated in cytoplasmic foci. Colocalization

occurred mostly in diffusely distributed pools of proteins

(Figures S3A–S3D), consistent with the hypothesis that

deadenylation takes place outside foci (Barckmann and

Simonelig, 2013).
eports j Vol. 1 j 411–424 j November 19, 2013 j ª2013 The Authors 415
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We addressed whether CCR4, Pum, and Nos form a com-

plex in GSC-like cells using co-IP experiments in bamD86

mutant ovaries. The CCR4-HA protein was able to copreci-

pitate both Pum and Nos in the absence of RNase (Fig-

ure 3B). Both co-IPs still occurred but were decreased in

the presence of RNase. In the reverse experiment, Pum

was able to coprecipitate Nos and CCR4. The presence of

RNase decreasedCCR4 co-IP and abolished that of Nos (Fig-

ures 3C and S3E). Nos and Pumare known to form a ternary

complex with RNA, in which Nos stabilization depends on

its interaction with both Pum and the RNA (Sonoda and

Wharton, 1999). In light of these data, our results are

consistent with the presence of CCR4, Pum, and Nos in

the same complex and with the role of RNA in stabilizing

Nos in the complex.

Taken together, these results indicate that CCR4, Pum,

and Nos form a complex in the GSCs that is required for

their self-renewal.

GSCs Lacking Both twin and bam Can Differentiate

Extensive analyses of pum/bam relationships have shown

that pum is not involved in the repression of Bam expres-
416 Stem Cell Reports j Vol. 1 j 411–424 j November 19, 2013 j ª2013 The
sion in the GSCs (Chen and McKearin, 2005) and that

GSCs double mutant for pum and bam can differentiate

(Chen and McKearin, 2005; Szakmary et al., 2005). These

data led to the proposition that bam antagonizes pum func-

tion in the cystoblasts: Bam would relieve the translational

repression of differentiation factors imposed by Pum/Nos

in the GSCs, thus promoting differentiation.

We reasoned that if twin is involved together with pum in

translational repression of mRNA targets in the GSCs, twin/

bam relationships should be similar to pum/bam relation-

ships. To test this, we analyzed Bam protein expression in

twinDG24102 germaria and found that Bam was not over-

expressed in twin mutant GSCs (0%, n = 35) (Figures 4A

and 4B), as was the case in pum mutant GSCs (Chen and

McKearin, 2005). We also verified the lack of Bam upregu-

lation in pum and nos mutant GSCs (0%, n = 18 and n =

43, respectively) (Figure S4A).

We then recorded the phenotype of twin bam doublemu-

tants. As reported for pum bam double mutants (Chen and

McKearin, 2005), the twin bam phenotype was amixture of

both the bam phenotype (tumor of undifferentiated cells

identified by the presence of a spectrosome; Figure 4C)
Authors
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and the twin phenotype (loss of GSCs). Similarly to pum

bam, the twin bam phenotype evolved over time, with the

percentage of bam phenotype decreasing and the percent-

age of twin phenotype increasing as the flies got older (Fig-

ures 4E and S4B). Importantly, twin bam GSCs were able to

differentiate, as shown by the presence of cysts with

branched fusomes and older cysts containing cells with

polyploid nuclei or ring canals (Figures 4D, S4B, and S4C).

These results are consistent with twin and pum acting

together in the repression of differentiation mRNAs in

the GSCs for their self-renewal and with the role of bam

in antagonizing twin/pum function for the differentiation

in cystoblasts.

mei-P26 mRNA Is a Target of Nos/Pum/CCR4

Regulation in GSCs

Mei-P26 is a potent differentiation factor in the GSC line-

age. Strong mei-P26 mutants develop ovarian tumors of

cyst cells, and accordingly, Mei-P26 expression increases

in -8-cell cysts and peaks in 16-cell cysts (Liu et al., 2009;

Neumüller et al., 2008). However, Mei-P26 is already

present in GSCs, although at lower levels, where it plays a

role in self-renewal (Li et al., 2012). The tight regulation

ofMei-P26 levels in the GSCs is essential, as overexpression

of mei-P26 in GSCs leads to their loss (Neumüller et al.,

2008) (Figure S5). We addressed whether mei-P26 regula-

tion in the GSCs depended on the Nos/Pum/CCR4 com-

plex. Because Pum is the specific RNA binding protein in

the Nos/Pum complex, we used Pum immunoprecipitation

(IP) experiments to investigate whethermei-P26mRNAwas

in complex with Pum in GSC-like cells. Using RT-PCR and

qRT-PCR, we found an enrichment of mei-P26 mRNA in

Pum IP compared to in mock IP (Figures 5A and 5B). While

CCR4 itself does not bind specifically to RNA, a specific

interaction might be recorded between CCR4 and mRNAs

resulting from the recruitment of CCR4 onto mRNAs by

RNA binding proteins. We performed IP of CCR4-HA

expressed with nos-Gal4 in bamD86 mutant ovaries and

found an enrichment of mei-P26 mRNA in CCR4-HA IP

compared to in mock IP (Figures 5A and 5B).

Apotential poly(A) site hasbeenmapped inmei-P26 at po-

sition 844 after the stop codon in ovaries (Liu et al., 2009)

(cDNA clone GH10646 from FlyBase). However, a more

recent study identified another mei-P26 mRNA in ovaries

with an extended 30 UTR of about 4 kb (Smibert et al.,

2012). We therefore used mRNA circularization to map

mei-P26poly(A) sites inearly stages of oogenesis (germarium

to stage 8 dissected from newly eclosed females). We identi-

fied two poly(A) sites at positions 1207 [poly(A) site 1] and

4303 [poly(A) site 2], respectively (Figures 5C and S6). This

indicated the potential utilization of mei-P26 alternative

poly(A) sites in ovaries. We sought to determine whether a

specific poly(A) site was preferentially used in the GSCs. In
Stem Cell R
particular, poly(A) test assays (PAT assays) used to measure

poly(A) tail lengths at the abovementioned three poly(A)

sites indicated that poly(A) sites at positions 844 and 1207

were poorly used in early ovaries (see below).We quantified

by qRT-PCR the ratio of mRNA upstream of position 844 to

mRNA cleaved at poly(A) site 2 and compared this ratio

between early ovarian stages containing mostly differenti-

ated cells (germarium to stage 8) and GSC-like cells from

bamD86 mutant ovaries. Using two different sets of primers

upstream of position 844 (primers 1 and 2) and one set

just upstream of poly(A) site 2 (primers 3) (Figure 5C), we

found that the ratios (primers1or2/primers3)were strongly

reduced in GSC-like cells, indicating the increased utiliza-

tion of poly(A) site 2 in these cells (Figure 5D).

To investigate potential direct interactions between the

Nos/Pum/CCR4 complex and mei-P26 mRNA, we looked

for Pum binding sites inmei-P26 30 UTR. Two Pum binding

sites have been defined: UGUAHAUA (Gerber et al., 2006)

and the Nanos response element (NRE) GUUGN(3 to 45)

AUUGUA, first identified in hunchback (hb) mRNA (Chen

et al., 2008; Wharton and Struhl, 1991). Two UGUAHAUA

Pum binding sites and one NRE are present in mei-P26 30

UTR (Figures 5C and S6). We used RNA pull-down assays

with the C-terminal moiety of Pum, which contains the

RNA binding domain (HA-PumC) synthesized in vitro, to

identify potential fragments ofmei-P26 30 UTR that directly

interacted with PumC. A region of oskar (osk) coding

sequence, not known to be bound by Pum, and the region

of hb 30 UTR containing the NRE were used as negative and

positive control RNAs, respectively. Surprisingly, none of

the fragments containing a Pum binding motif in mei-

P26 30 UTR were able to strongly pull down PumC,

although fragments containing the NRE appeared to

weakly do so (Figure 5E). The 50-most Pum binding motif

was also shown recently to be inactive in mei-P26 repres-

sion in male germ cell cysts (Insco et al., 2012). However,

we identified another fragment of mei-P26 30 UTR (#2)

that was able to pull down PumC (Figures 5C and 5E).

Competition assays were used to test the binding speci-

ficity of PumC to this fragment. Unlabeled osk or hb RNA

fragments were added in excess (203 or 503) to the bind-

ing reaction. The presence of osk RNA competitor had no

effect on the binding of PumC to fragment #2. In contrast,

increasing amounts of hb NRE fragment increasingly

reduced the pull down of PumC by fragment #2, consistent

with a specific binding of Pum to this region (Figure 5F).

Although this fragment does not contain a canonical

Pum binding site, it has a degenerated motif (UGUAACAA)

that might be used to interact with Pum (Figure S6).

We then measured poly(A) tail length variations of mei-

P26mRNA in twinmutant early ovarian stages (germarium

to stage 8) using PAT assays. Different primers were used to

visualize potential poly(A) tails at position 844, poly(A) site
eports j Vol. 1 j 411–424 j November 19, 2013 j ª2013 The Authors 417



C

A B

G

D

F

E

Figure 5. mei-P26 mRNA Is a Target of the Nos/Pum/CCR4 Complex in the GSCs
(A and B) RNA immunoprecipitations (IP) with the anti-Pum antibody in bamD86 ovarian extracts (left panels, Mock IP: preimmune serum)
and with the anti-HA antibody in bamD86 and nos-Gal4, bamD86/UASp-CCR4-HA, bamD86 (bamD86, CCR4-HA) ovarian extracts (right panels).
sopmRNA was used as a negative control. (A) Top panels show protein IP using western blots (WB). Bottom panels show the enrichment of
mei-P26mRNA in IP compared to in mock IP, visualized by RT-PCR. Inputs are protein or RNA extracts (1/10) prior to immunoprecipitation.

(legend continued on next page)
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1, and poly(A) site 2. PAT assays in the region of position

844 and poly(A) site 1 did not produce the expected smear

corresponding to different sizes of poly(A) tails, but did

produce a discrete band (Figure 5G). This suggested a

poor utilization of these poly(A) sites in early ovarian stages

(although their usage was evenweaker in GSC-like cells). In

both cases, the discrete band would correspond to PCR

amplification between the mei-P26 primer and the poly(A)

stretch present downstream of position 844 and poly(A)

site 1 (Figure S6), thus indicating an extended 30 UTR. In

contrast, PATassays in the region of poly(A) site 2 produced

the expected smear indicating the utilization of this

poly(A) site (Figure 5G). The mei-P26 poly(A) tails were

longer in twinDG24102 mutant than in wild-type, consistent

with the repression ofmei-P26mRNA by CCR4-NOT-medi-

ated deadenylation.

We next analyzed the effect ofmei-P26mRNAdeadenyla-

tion by measuring Mei-P26 protein levels in GSCs. As

described above, Mei-P26 was present in GSCs and its

amount increased in 16-cell cysts (Figures 6A and 6E).

Mei-P26 levels were significantly increased inGSCsmutant

for twin, pum, or nos, consistent with the translational

repression of mei-P26 mRNA by the Nos/Pum/CCR4 com-

plex in GSCs (Figures 6A–6E). Increased levels of Mei-P26

in twinmutant GSCs were confirmed using the clonal anal-

ysis (Figures 6F and 6G).

Together, these results show that mei-P26 mRNA is a

direct target of the Nos/Pum/CCR4 complex through its

interaction with Pum protein. Binding of the complex to

mei-P26 mRNA leads to deadenylation and translational

repression, resulting in the fine-tuning of Mei-P26 protein

levels in the GSCs.

mei-P26mRNA Is a Major Target of CCR4 for GSC Self-

Renewal

We addressed whether this regulation ofmei-P26mRNA by

Nos/Pum/CCR4 was functionally important by deter-
Two (HA IP) and four (Pum IP) IPs were performed with similar results
Quantifications were done in triplicate, and error bars represent SD. *
(C) Schematic representation ofmei-P26 30 UTR showing position 844,
potential Pum binding motifs, including the NRE-type motif. RNA fra
(1, 2, and 3) used to quantify the utilization of alternative poly(A) sit
the first nucleotide of the 30 UTR (see also Figure S6).
(D) Quantification by qRT-PCR of ratios of mRNA levels upstream of
ovarian stages and bamD86 mutant ovaries. Two primer sets (1 and 2)
from two independent RNA extracts quantified in triplicate, and erro
(E) RNA pull-down assays using the mei-P26 RNA fragments #1 to #6 s
protein (1/10) prior to RNA pull-down. osk and hb RNA fragments are
(F) RNA pull-down competition assays of mei-P26 RNA fragment #2 wi
is HA-PumC pull-down with fragment #2 in the absence of competito
(G) PAT assays of mei-P26mRNA with specific primers allowing to mea
site 1 (left panel), and poly(A) site 2 (right panel), in wild-type and tw
assay profiles of mei-P26 poly(A) site 2, using ImageJ, are shown.
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mining the effect of reducing mei-P26 gene dosage in twin

mutant ovaries. Strikingly, reduction of one copy of mei-

P26 gene strongly rescued the twinDG24102 phenotype of

GSC loss and resulted in normal egg chamber development

(Figures 6H–6J). About 60% of germaria contained GSCs in

mei-P26�/+; twinDG24102 21-day-old-females compared to

0% in twinDG24102 females of the same age (Figure 6J).

This shows that mei-P26 mRNA is an essential target of

CCR4 for GSC self-renewal. Although mei-P26 is unlikely

to be the only target of CCR4-mediated regulation in

GSCs, its control by CCR4 has a major impact in GSC

self-renewal, possibly because of its central role in GSC

biology.
DISCUSSION

Here, we have provided evidence that the twin gene that

encodes the CCR4 deadenylase is essential for GSC self-

renewal. GSCs are rapidly lost in twin mutants because

they differentiate and cannot self-renew. Clonal analysis

shows that twin is required cell autonomously in the

GSCs for their self-renewal. Nos and Pum are major factors

of GSC self-renewal and are translational repressors (Gilboa

and Lehmann, 2004; Wang and Lin, 2004). Genetic and

protein interactions among twin, nos, and pum indicate

that CCR4 acts together with Nos and Pum to promote

GSC self-renewal. This identifies the recruitment of the

CCR4-NOT deadenylation complex as the molecular

mechanism underlying Nos and Pum translational repres-

sion in the GSCs. Two mechanisms of action used by

Nos/Pum have previously been described in the embryo.

First, Nos/Pum represses hb mRNA translation by forming

a complex with Brat, which in turn interacts with 4EHP

and blocks initiation of translation (Cho et al., 2006;

Sonoda and Wharton, 2001). Second, Nos/Pum represses

cyclin B mRNA translation in the primordial germ cells by
. (B) Quantification by qRT-PCR. Normalization was with sop mRNA.
***p < 0.0001 using the t test.
the two poly(A) sites identified by RNA circularization and the three
gments tested in RNA pull-down assays (#1 to #6) and primer sets
es are also indicated. Coordinates are from the STOP codon, 1 being

position 844 to just upstream of poly(A) site 2, in wild-type early
localized upstream of position 844 gave similar results. Means are
r bars represent SD. ***p < 0.0005 using the t test.
hown in (C) and HA-PumC protein. Input is the in vitro synthesized
negative and positive controls for Pum-C binding, respectively.

th increasing amounts of osk or hb unlabeled RNA fragments. Lane 2
r. Input is as in (E).
sure potential poly(A) tails downstream of position 844 and poly(A)
inDG24102 early ovarian stages. sop was used as a control mRNA. PAT
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Figure 6. mei-P26 Is a Major Target of CCR4-Mediated Translational Repression for GSC Self-Renewal
(A–D) Upregulation of Mei-P26 protein levels in twin, pum, and nosmutant GSCs. Wild-type (A), twinDG24102 (B), pumMSC/pum01688 (C), and
nos18/nos53 (D) germaria from 3-day-old females stained with anti-Mei-P26 antibody (green). The merges between anti-Mei-P26 (green)
and 1B1 (red) are shown in (A0–D0). White arrows indicate GSCs. Scale bars represent 10 mm.
(E) Quantification of fluorescence intensity ratios between GSCs and cysts in the four genotypes shown in (A–D). The numbers of germaria
used in the quantification were 44 wild-type, 22 twinDG24102, 24 pumMSC/pum01688, and 14 nos18/nos53. Error bars represent SD. *p = 0.01,
***p = 0.0007, and ****p < 0.0001 using the t test.
(F and G) Upregulation of Mei-P26 protein levels in twinmutant clonal GSCs. (F) Example of twinDG24102mosaic germarium labeled with GFP
(green), 1B1 (purple), and anti-Mei-P26 (red) 7 days after clone induction. The white arrow indicates the twinDG24102 clonal GSC (lack of
GFP) and the white arrowhead indicates the twinDG24102/+ heterozygous GSC. Scale bars represent 10 mm. (G) Quantification of fluorescence
intensity of Mei-P26 staining in twinDG24102/+ heterozygous and twinDG24102 clonal GSCs. n = 8 germaria. Bars represent means with SD.
**p = 0.0088 using the t test.

(legend continued on next page)
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Figure 7. Model for the Role of CCR4 in
GSC Self-Renewal
In the GSCs, the CCR4-NOT deadenylation
complex interacts with Nos and Pum and is
recruited to mei-P26 mRNA to repress its
translation. Translational repression is
counterbalanced by Vasa-mediated trans-
lational activation, leading to low levels of
Mei-P26 protein, which cooperate with the
miRNA pathway for silencing of mRNAs
encoding differentiation factors. The CCR4-
NOT complex is also likely to participate in
miRNA silencing through its recruitment by
GW182, as it is the case in other cell types.

In cystoblasts, Bam represses nos mRNA translation (possibly together with Bgcn, Sex-Lethal, and Mei-P26; Li et al., 2013), resulting in
the new association of Pum with Brat to target a different set of mRNAs (Harris et al., 2011). Mei-P26 levels do not increase, potentially
due to a different mechanism of translational repression that might involve Bam. In eight-cell and 16-cell cysts, translational repression of
mei-P26 mRNA is relieved, leading to an increase of Mei-P26 levels that antagonize miRNA-dependent silencing of mRNAs encoding
differentiation factors.
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recruiting the CCR4-NOT complex through direct interac-

tions between Pum and CAF1 and between Nos and

NOT4 (Kadyrova et al., 2007). Brat is not expressed in

GSCs (Harris et al., 2011), thus excluding the first mode

of Nos/Pum translational repression in these cells. How-

ever, we did find Pum, Nos, and CCR4 present in a complex

in GSC-like cells, consistent with the recruitment of the

CCR4-NOT complex by Nos/Pum for GSC self-renewal.

Interestingly, a mutant form of CCR4 that is inactive for

deadenylation is able to partially rescue the lack of CCR4 in

GSCs. This is consistent with CCR4 not being the only

deadenylase in the complex (Temme et al., 2010). However,

CCR4 does participate in the deadenylation activity of the

complex, probably via a structural role. Furthermore, the

CCR4-NOT complex has been shown recently to be

involved in direct translational repression, in addition to

its role in deadenylation (Chekulaeva et al., 2011; Cooke

et al., 2010). This dual mode of action of CCR4-NOTmight

also be relevant to GSCs.

The miRNA pathway also plays a crucial role in GSC self-

renewal (Jin and Xie, 2007; Park et al., 2007; Yang et al.,

2007). A large body of evidence has shown that an impor-

tantmechanism of silencing bymiRNAs involves deadeny-

lation resulting from the recruitment of CCR4-NOT by

GW182 bound to Ago1 (for review, see Braun et al.,

2012). Therefore, the CCR4-NOT complex is also likely to

contribute to miRNA-mediated translational repression in

the GSCs, thus making this complex a central effector of

translational repression in the GSCs.
(H and I) Rescue of twinDG24102 mutant phenotype of GSC loss by decr
P26fs1/+; twinDG24102 (I and I0) ovaries labeled with 1B1 (green) and
GSCs; oogenesis appears normal. Scale bars represent 20 mm in (H) a
(J) Quantification of germaria containing at least one GSC in twinDG241

females of 3, 7, 14 and 21 days. n represents the number of germaria
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An important result from this study is that mei-P26

mRNA is a major target of Nos/Pum/CCR4 regulation for

GSC self-renewal (Figure 7). Nos and Pum are known to

be essential players in GSC self-renewal, and many mRNAs

are expected to be regulated by this complex. However, to

date only one mRNA target of this complex, brat, has

been reported. Here, we have identified another target,

mei-P26 mRNA, and have shown that its repression by

the Nos/Pum/CCR4 complex has a key role in GSC self-

renewal, because the loss of GSCs in the twin mutant is

strongly rescued by decreasing mei-P26 gene dosage.

Both Brat andMei-P26 belong to the Trim-NHL family of

proteins, which have conserved functions in stem cell

lineages from C. elegans to mouse (for review, see Wulczyn

et al., 2010). Proteins within this family are potential E3

ubiquitin ligases and can act by either activating or antag-

onizing the miRNA pathway, through their association

with Ago1 and GW182. In particular, Mei-P26 function

switches from activation of the miRNA pathway in the

GSCs (Li et al., 2012) to inhibition of the pathway in differ-

entiating cysts where Mei-P26 levels are higher (Neumüller

et al., 2008). As such, Mei-P26 plays a central role in the

control of cell fate in the GSC lineage. The rescue of the

twin mutant phenotype of GSC loss by decreasing mei-

P26 gene dosage suggests that the levels of Mei-P26 them-

selves might be important for this switch of its function.

This might provide an explanation as to why such a precise

regulation of its level is crucial for GSC self-renewal and

differentiation.
easing the gene dosage of mei-P26. twinDG24102 (H and H0) and mei-
anti-Vasa (red) in 7-day-old females. (I) The white arrows indicate
nd 60 mm in (I).
02, mei-P26fs1/+; twinDG24102 and mei-P26mfs1/+; twinDG24102 mutant
scored.
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Which molecular mechanisms underlie the fine-tuning

ofMei-P26 in theGSC lineage? The translational repression

ofmei-P26mRNA is not complete inGSCs. This differs from

the complete repression by Nos/Pum of cyclin B mRNA in

the primordial germ cells, or brat mRNA in the GSCs, and

may result from the concomitant activation of mei-P26

by Vasa (Liu et al., 2009). Vasa does activate mei-P26 trans-

lation, leading to a peak of expression in -8- and 16-cell

cysts. However, Vasa is expressed in all germ cells, suggest-

ing that it is not the key regulator governing the timing of

Mei-P26 peak of expression. We propose that translational

activation of Mei-P26 by Vasa would be active already in

GSCs but counterbalanced by translational repression by

Nos/Pum and the CCR4-NOT complex (Figure 7). In cysto-

blasts, the presence of Bam overcomes Nos/Pum transla-

tional repression by decreasing Nos levels (Li et al., 2009),

which would thus switch the balance to translational acti-

vation by Vasa. This does not lead to a peak of Mei-P26

expression in cystoblasts, but rather to a progressive

increase of Mei-P26 levels in proliferating cysts. This pro-

gressive accumulation of Mei-P26 could depend on the

necessity to build up Vasa-mediated translational activa-

tion. However, another possibility could be that a different

factor still partially represses mei-P26 translation in cysto-

blasts and early cysts. A potential candidate is Bam, which

has been defined as a translational repressor (Li et al., 2009;

Shen et al., 2009) and has recently been reported to directly

repressmei-P26mRNA translation in the male GSC lineage

(Insco et al., 2012). The Bam expression profile in female

germ cells is consistent with this potential role in mei-P26

translational repression, because Bam protein is present

from cystoblasts to 8-cell cysts but absent in 16-cell cysts,

where Mei-P26 levels are the highest (Li et al., 2009).

Recent advances have established the generality of a

central role for translational regulations in adult stem cell

lineages (Crist et al., 2012; Harris et al., 2011; Insco et al.,

2012). Translational repression is required to prevent the

synthesis of differentiation factors whose mRNAs are

already present in stem cells. In the Drosophila female

GSC lineage, recent work has demonstrated that changes

in cell fate are driven by different translational regulation

programs; associations between translational repressors

evolve to trigger stage-specific regulation of mRNA targets.

For example, while Nos/Pum maintain female GSCs by

repressing a specific set of mRNAs, Pum associates with

Brat in cystoblasts to repress a different set (Harris et al.,

2011). The Trim-NHL proteins appear to be of particular

importance in the translational regulations essential for

stem cell fate as exemplified by Mei-P26 (Li et al., 2012,

2013; Neumüller et al., 2008). Here, we add that the fine-

tuning ofMei-P26 protein levels by translational repression

is essential for GSC self-renewal and implicate CCR4 in this

regulation.
422 Stem Cell Reports j Vol. 1 j 411–424 j November 19, 2013 j ª2013 The
The functions of Trim-NHL proteins are conserved

in many adult stem cell lineages in different organisms,

and mutations in the corresponding genes lead to

highly proliferative tumors. Elucidating the molecular

mechanisms behind their translational control is key to

deciphering how these proteins regulate adult stem cell

fates.
EXPERIMENTAL PROCEDURES

Drosophila stocks are described in the Supplemental Experimental

Procedures.

DNA Constructs
The DNA encoding the deadenylase-dead form of CCR4 (Temme

et al., 2010) was cloned into the pUASP vector digested with

KpnI and XbaI. In this mutant form of CCR4, amino acids 412

(aspartic acid) and 414 (asparagine) were substituted by alanine.

Transgenic stocks were generated by BestGene. The HA-PumC

construct was obtained by inserting the 2,236 pb SmaI to XbaI

fragment from the pGEX-PumC (Zamore et al., 1997) (animo acids

849–1,533) into the StuI and XbaI sites of the pCSH3 (pCS2+ back-

bone vector with two HA tags).

Antibodies and Immunostaining
The rabbit and guinea pig anti-Pumantibodies were raised byAgro-

Bio against amino acids 408–883 of the Pumprotein (Zamore et al.,

1997). Antibody dilutions for immunostaining and fluorescence

quantification are described in the Supplemental Experimental

Procedures.

Immunoprecipitations and RNA Pull-Down Assays
The procedures for immunoprecipitations and RNA pull-

down assays are described in the Supplemental Experimental

Procedures.

RNA Circularization
RNA circularizationwas performed as previously described (Cham-

beyron et al., 2002), with RT-PCR reactions followed by nested

PCR. The primers used are listed in Table S1.

PAT Assays, RT-PCR, and qRT-PCR
PAT assays, RT-PCR, and qRT-PCR were performed as described

previously using two to four independent RNA preparations

(Juge et al., 2002; Zaessinger et al., 2006), and the ePAT method

of PAT assays was also used (Jänicke et al., 2012). The primers

used are listed in Table S1. Quantitative PCR experiments were

performed with the LightCycler System (Roche Molecular

Biochemical).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, and one table and can be found with

this article online at http://dx.doi.org/10.1016/j.stemcr.2013.

09.007.
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