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Background: Subjective cognitive decline and amnestic mild cognitive impairment

(aMCI) were widely thought to be preclinical AD spectrum disorders, characterized

by aberrant functional connectivity (FC) within the triple networks of the default mode

network (DMN), the salience network (SN), and the executive control network (ECN).

Dynamic FC (DFC) analysis can capture temporal fluctuations in brain FC during the

scan, which static FC analysis cannot. The purpose of the current study was to

explore the changes in dynamic FC within the triple networks of the preclinical AD

spectrum and further reveal their potential diagnostic value in diagnosing preclinical AD

spectrum disorders.

Methods: We collected resting-state functional magnetic resonance imaging data from

44 patients with subjective cognitive decline (SCD), 49 with aMCI, and 58 healthy controls

(HCs). DFC analysis based on the sliding time-window correlation method was used to

analyze DFC variability within the triple networks in the three groups. Then, correlation

analysis was conducted to reveal the relationship between altered DFC variability within

the triple networks and a decline in cognitive function. Furthermore, logistic regression

analysis was used to assess the diagnostic accuracy of altered DFC variability within the

triple networks in patients with SCD and aMCI.

Results: Compared with the HC group, the groups with SCD and aMCI both showed

altered DFC variability within the triple networks. DFC variability in the right middle

temporal gyrus and left inferior frontal gyrus (IFG) within the ECN were significantly

different between patients with SCD and aMCI. Moreover, the altered DFC variability in

the left IFG within the ECN was obviously associated with a decline in episodic memory

and executive function. The logistic regression analysis showed that multivariable analysis

had high sensitivity and specificity for diagnosing SCD and aMCI.
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Conclusions: Subjective cognitive decline and aMCI showed varying degrees of

change in DFC variability within the triple networks and altered DFC variability within the

ECN involved episodic memory and executive function. More importantly, altered DFC

variability and the triple-network model proved to be important biomarkers for diagnosing

and identifying patients with preclinical AD spectrum disorders.

Keywords: subjective cognitive decline, amnestic mild cognitive impairment, dynamic functional connectivity,

resting state functional magnetic resonance imaging, triple network

INTRODUCTION

Alzheimer’s disease is a great medical challenge that haunts
the world because of its progressive, irreversible, and incurable
nature (Jessen et al., 2014a,b). Subjective cognitive decline (SCD)
is regarded to be the preclinical stage of AD, and amnestic
mild cognitive impairment (aMCI) is considered to be the
prodromal stage of AD, both of which have received more
attention in recent years (Morris and Cummings, 2005; Jessen

et al., 2014a,b; Xue et al., 2019). Patients with SCD, which refers
to self-reported memory decline in elderly persons with normal
objective cognitive performance, are widely believed to have two
times to give rise to aMCI/Alzheimer’s disease (AD) than elderly

without SCD (Jessen et al., 2014b; Mitchell et al., 2014). Patients
with aMCI, which is characterized by subjective memory decline,
are thought to have nearly 10 times to progress to AD than
healthy elderly people (Bischkopf et al., 2002; Jessen et al., 2014b;
Chen et al., 2019; Slot et al., 2019). Due to the lack of effective
treatment for AD, comparing and analyzing the neuroimaging
characteristics of SCD and aMCI are crucial to research the early
biomarkers of the preclinical AD spectrum.

Resting-state functional magnetic resonance imaging, which

is a task-independent and powerful imaging modality, has been
widely used to investigate the intrinsic functional connectivity
networks of neuropsychiatric diseases (Li et al., 2002; Zhang
and Raichle, 2010). Of the many intrinsic brain networks, the
triple-network model, composed of the default-mode network
(DMN), the salience network (SN), and the executive control
network (ECN), has been the focus of recent research (Menon,
2011; Joo et al., 2016; Zhan et al., 2016). Numerous studies
have suggested that the triple networks can be used to detect
the reliability and stability of large-scale connections, which are
damaged in neuropsychiatric diseases (He et al., 2014; Joo et al.,
2016; Wu et al., 2016; Li et al., 2019). Moreover, the triple-
network model provides a common framework for checking the
reliable and stable patterns of large-scale connectivity (Menon,
2011). The DMN, mainly located in the ventromedial prefrontal
cortex (vmPFC) and posterior cingulate cortex, is activated in
internally directed cognitive activities, such as self-referential
mental processes and social functions (Raichle et al., 2001;
Broyd et al., 2009). The ECN, primarily involved in the lateral
posterior parietal cortex and dorsolateral prefrontal cortex,
is activated during externally directed higher-order cognitive
function, including working memory, decision-making, and
attention (Liang et al., 2016). The SN, which primarily includes
the anterior cingulate cortex and anterior insula, is associated

with affective processes, attention, and interoception (Sridharan
et al., 2008; Uddin, 2015). Specifically, when salient events are
detected, the SN can activate brain networks, direct the DMN
and ECN to perform cognitive tasks, and help the corresponding
brain regions to respond to stimuli appropriately (Menon and
Uddin, 2010; Menon, 2011). Further study of triple-network
model alterations in SCD and aMCI could help us better
understand their pathological mechanisms.

Many neuroimaging studies have demonstrated that SCD and
aMCI patients showed altered functional connectivity (FC) in
the triple networks (Brier et al., 2012; Uddin, 2015; Chand et al.,
2017). However, all the aforementioned studies were based on the
assumption that the functional networks were spatiotemporally
static during MRI scans (Chang and Glover, 2010). Due to the
complexity and changing environment of the human brain, the
assumption that brain activity remains static is too simplistic and
may not reflect the dynamic characteristics of brain activation
and connectivity (Preti et al., 2017). Previous rsfMRI studies
have suggested that brain FC patterns can be time varying
across a short time window; this phenomenon is known as
dynamic FC (DFC) (Hutchison et al., 2013). DFC analysis has
become an important tool in resting-state functional magnetic
resonance imaging (rsfMRI) research by capturing temporal
fluctuations in brain FC during the scan (Hutchison et al., 2013).
Previous studies have demonstrated that the quantification of
DFC disruption might be a sensitive biomarker or a prognostic
indicator of disease progression and cognitive function (Long
et al., 2019; Finc et al., 2020). Moreover, some studies have
highlighted the potential role of DFC analysis in improving the
accuracy of disease diagnosis, which made it necessary to apply
DFC analysis to the diagnosis of AD spectrum disorders (Lei
et al., 2020).

A number of studies found that AD showed altered DFC.
Gu et al. suggested that AD showed decreased regional temporal
variability, primarily in the temporal, parietal, and somatomotor
regions (Gu et al., 2020). The authors also found that disrupted
DFC was associated with cognitive function in patients with
AD. They claimed that DFC analysis provided novel insight
into the pathophysiological mechanisms of AD. In recent
years, the research focus has been shifted to preclinical AD
spectrum disorders, including SCD and MCI. Dong et al. found
that patients with SCD showed both increased and decreased
temporal variability compared with healthy controls (HCs)
(Dong et al., 2020). Niu et al. found that patients with aMCI
showed altered DFC in the prefrontal and parietal cortexes
compared with HCs, and the regions were mainly in the DMN
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(Niu et al., 2019). Córdova-Palomera et al. suggested that
patients with MCI showed altered DFC mainly in the frontal-
superior, temporal, and default modes compared with patients
with AD (Cordova-Palomera et al., 2017). However, the previous
studies did not reveal changes in DFC with the progression of
preclinical AD spectrum disorders. It is unclear whether there are
common or specific changes in DFC features in SCD and aMCI.
Specifically, there are few studies on alterations in DFC variability
within the triple networks in patients with SCD and aMCI and
their diagnostic value for SCD and aMCI.

Therefore, in the current study, using combined rsfMRI and
the classic sliding time-window correlation approach, we aimed
to reveal changes in DFC variability within the triple networks
in patients with SCD and aMCI, as well as their relationship
with cognitive function. We further explored the diagnostic
efficiency of DFC variability in patients with SCD and aMCI. We
hypothesized that DFC variability within the triple networks in
patients with SCD and aMCI had varying degrees of change, and
that altered DFC variability of the triple networks may contribute
to cognitive decline. Additionally, a comprehensive analysis of
DFC temporal variability within the triple networks might serve
as an indicator to diagnose and identify SCD and aMCI.

MATERIALS AND METHODS

Subjects
The applied research data were obtained from our in-home
database: Nanjing Brain Hospital-Alzheimer’s Disease Spectrum
Neuroimaging Project (NBH-ADsnp) (Nanjing, China), which
is continuously being updated. Related information of the
NBH-ADsnp was summarized in SI Methods. The research
gained approval by the responsible Human Participants Ethics
Committee of the Affiliated Brain Hospital of Nanjing Medical
University (No. 2018-KY010-01 and No. 2020-KY010-42). All
volunteers participated voluntarily and with written informed
consent. The current study used 151 data (until January 21, 2020),
including 58 healthy control (HC), 44 SCD, and 49 aMCI from
theNBH-ADnsp database. The inclusion and exclusion criteria of
participants were provided in SI Method. All subjects underwent
a comprehensive and standardized clinical evaluation interview,
including demographic inventory, medical history, neurological
and mental status examination, and MRI scan.

Neurocognitive Assessments
Classical and comprehensive neurocognitive assessments were
performed for all the participants, including general cognitive
functions, episodic memory, executive function, information
processing speed, and visuospatial function. Details of the
neurocognitive assessments were summarized in SI Methods.

MRI Data Acquisition

The details of image acquisition parameters (structure MRI
images and rsfMRI images) are provided in SI Methods.

Preprocessing of rsfMRI Data
Functional MRI images were analyzed as described in previous
studies using the DPABI based on the SPM program,

implemented in MATLAB2013b with the following steps
(Chen et al., 2016a, 2020): We discarded the first 10 volumes and
performed slice-timing correction and head motion correction.
The participants with excessive head motion (cumulative
translation or rotation of > 3. mm or 3.0) were excluded.
Subsequently, segmentation and nuisance covariate regression
with 24 motion parameters, global signal, white matter signal,
and cerebrospinal fluid signal were performed. Then, we selected
a filtering frequency of 0.01–0.08Hz, used segmented T1 image
for normalization, and resampled to an isotropic voxel size of
3mm. Finally, we applied spatial smoothing with a 6-mm full
width at half-maximum Gaussian kernel and detrending.

After preprocessing, we further processed the preprocessed
data according to the following steps illustrated in Figure 1.

Definition of Functional Brain Networks
Seed-based static FC analysis was carried out to extract the triple
networks. In the current study, four 10-mm spherical regions
of interest (ROIs) centered in the vmPFC (MNI space: 0, 52,
and −6) for the anterior DMN (aDMN), posterior cingulated
cortex (PCC) (MNI space: 0,−53, and 26) for the posterior DMN
(pDMN), right anterior insula (rAI) (MNI space: 38, 22, and−10)
for the SN, and dorsolateral prefrontal cortex (MNI space: 48, 12,
and 34) for the ECN were created according to previous studies
(Wotruba et al., 2014; Chen et al., 2016b; Xue et al., 2019). The
average time series of the ROIs in each participant was extracted,
and voxel-wise cross-correlation analysis was conducted between
the average time series within the ROIs and the whole brain
within the GM mask. Fisher’s z-transformation was applied to
enhance the normality of the correlation coefficients.

Following this, the individual correlation maps from the
HC group were subjected to random-effects analysis using a
one-sample t-test. The threshold was set at a p < 0.05 with
threshold-free cluster enhancement (TFCE) approach (1,000
random permutations) and family-wise error (FWE) correction.
The regions with positive functional connections to the four ROIs
were defined as templates for the aDMN, pDMN, SN, and ECN.

Seed-Based DFC Variability Within the
Triple Networks
The dynamic brain connectome analysis toolbox (http://restfmri.
net/forum/DynamicBC) was used to compute DFC variability
within the aDMN, pDMN, SN, and ECN. First, similar to the
above static FC analysis, seed-based (vmPFC, PCC, rAI, and
dorsolateral prefrontal cortex) voxel-wise DFC was applied to
calculate DFC changes in the triple networks. The classic sliding
time-window correlation method was used to compute the
correlation between each ROI with a width of 40 TRs slid in steps
of 2 TR according to previous studies, resulting in the analysis
of 96 windows (Lin et al., 2018; Ma et al., 2019). Each obtained
correlation coefficients were converted to a z score by the Fisher
r-to-z transformation to improve normality. These Fisher’s z-
transformed correlation results were used to further calculate the
temporal variation in DFC.
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FIGURE 1 | A flow chart for the dynamic functional connectivity analysis in this study. (A) For the RS-fMRI data of all subjects, we first used four ROIs to prepare for

the next seed-based functional connectivity analysis. (B) Then, we adopted stationary functional connectivity analysis and obtained the template of the triple networks.

(C) We applied the sliding window approach to analyze the dynamic functional connectivity of the obtained 96 windows. Afterward, we calculated dynamic functional

connectivity variability across the windows. (D) Last, we performed the statistical analysis. ROI, regions of interests; vmPFC, ventromedial prefrontal cortex; PCC,

posterior cingulated cortex; rAI, right anterior insula; DLPFC, dorsolateral prefrontal cortex; FC, functional connectivity; DFC, dynamic functional connectivity; aDMN,

anterior default mode network; pDMN, posterior default mode network; SN, salience network; ECN, executive control network. ANCOVA, analysis of covariance.

Statistical Analysis
The Statistical Package for the Social Sciences (SPSS) software
version 22.0 (IBM, Armonk, NY, USA) was used to analyze the
demographic and clinical information. The analysis of covariance
(ANCOVA) and chi-squared tests were conducted to compare
the demographic and neurocognitive data across the three groups
with SCD, aMCI, andHC. Bonferroni’s correction with a p< 0.05
was used for post hoc analysis.

One-way ANCOVA was used to compare the differences in
DFC variability in the aDMN, pDMN, SN, and ECN within the
corresponding network mask among the three groups with SCD,
aMCI, and HC after controlling for the effects of age, gender, and
years of education. The non-parametric permutation test with the
permutation times of 1,000 was performed in the present study
to precisely control the false-positive rate. Corrected p < 0.05
and cluster numbers of ≥ 20 voxels (cluster size ≥ 540 mm3)

were applied to multiple comparisons. The two-sample t-test was
used for post hoc comparisons with the mask from the ANCOVA
analysis and age, gender, and years of education as covariates. The
significance level was set with a TFCE-FWE corrected p < 0.05
and a cluster number of > 9 voxels (cluster size > 243 mm3).

Significantly, altered DFC variability was extracted with the
DPABI and used for the next correlation analysis. Correlation
analysis was conducted by SPSS software to explore the
relationship between altered DFC variability and cognitive
domains with age, gender, and years of education as covariates
(Bonferroni-corrected, p < 0.05).

Binary Logistic Regression Analysis
Univariate and multivariable analyses of binary logistic
regression were conducted in SPSS software to test the
diagnostic value of DFC variability in SCD and aMCI. Altered
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TABLE 1 | Demographics and clinical measures of three groups, including SCD, aMCI, and HC.

HC(58) SCD(44) aMCI(49) F-values(χ2) P-values

Age (years) 63.328 ± 6.28 66.000 ± 7.80 63.633 ± 7.58 1.966 0.144

Gender (male/female) 25/33 8/36** 13/36 7.865 0.020c

Education level (years) 12.40 ± 2.52 12.33 ± 2.59 10.99 ± 2.95* 4.359 0.014a

MMSE scores 28.62 ± 1.24 28.34 ± 1.14 27.22 ± 1.86***/** 13.319 <0.001ab

MDRS-2 141.57 ± 2.21 139.89 ± 3.61 136.80 ± 5.10***/*** 11.808 <0.001ab

MoCA 25.11 ± 2.52 24.64 ± 1.95 22.77 ± 2.98***/** 21.740 <0.001ab

SCD-Q 3.51 ± 1.52 6.45 ± 0.89*** 5.02 ± 1.92***/*** 46.568 <0.001cab

Composite Z scores of each cognitive domain

Episodic memory 0.185 ± 0.080 0.330 ± 0.093 −0.519 ± 0.090***/*** 25.178 <0.001ab

Information processing speed 0.190 ± 0.084 0.042 ± 0.098 −0.264 ± 0.095** 6.339 0.002a

Executive function 0.175 ± 0.065 0.147 ± 0.076 −0.330 ± 0.074***/*** 15.166 <0.001ab

Visuospatial function 0.068 ± 0.098 0.226 ± 0.114 −0.218 ± 0.111* 3.954 0.021b

Numbers are given as means ± standard deviation, SD unless stated otherwise. Values for age derived from ANCOVA; gender from chi-square test; all clinical measures from ANCOVA

with age, gender, years of education as covariates. MMSE, mini-mental state examination; MDRS-2, Mattis Dementia Rating Scale-2; MoCA, the Montreal Cognitive Assessment test;

SCD-Q, Subjective Cognitive Decline Questionnaire; apost hoc analyses showed a significant group difference between aMCI and HC; bpost hoc analyses showed a significant group

difference between aMCI and SCD; cpost hoc analyses showed a significant group difference between SCD and HC; *p < 0.05; **p < 0.01; ***p < 0.001; aMCI, amnestic mild cognitive

impairment; SCD, subjective cognitive decline; HC, healthy control.

DFC variability and cognitive function in univariate analysis
were included in the multivariable models using backward
elimination according to the likelihood ratio with a variable
selection criterion of p < 0.05. We estimated the receiver-
operating characteristic (ROC) curve and the area under the
receiver-operating characteristic curve (AUC) to assess the
predictive ability of the univariate and multivariable models
according to the accuracy, sensitivity, and specificity. A p < 0.05
was considered statistically significant.

RESULTS

Demographic and Neurocognitive
Characteristics
The demographic and neurocognitive characteristics of all
subjects, including 49 with aMCI, 44 with SCD, and 58 with
HCs, are shown in Table 1. As is expected, the results showed
significant differences in cognitive performance. The aMCI group
showed significantly lower episodic memory (EM) and executive
function (EF) scores compared with both the SCD and HC
groups. The aMCI group showed significantly lower information
processing speed and visuospatial function compared with the
HC group (Bonferroni’s post hoc correction, p < 0.05).

Altered DFC Variability in the Triple
Networks in Patients With SCD and aMCI
In the aDMN subnetwork, the ANCOVA results showed
significantly altered DFC variability among the three groups,
including the right parahippocampal gyrus, right inferior frontal
gyrus (IFG), left anterior cingulum gyrus, left caudate, right
angular gyrus, right superior temporal gyrus, and bilateral
superior frontal gyrus (SFG). Compared with the HC group,
the aMCI group showed decreased DFC variability in the right
angular and right SFG (TFCE-FWE corrected, p < 0.05, cluster

number > 9 voxels). All results were obtained with age, gender,
and years of education as covariates (Table 2 and Figure 2).

In the pDMN subnetwork, the ANCOVA showed significantly
alteredDFC variability in the rightmiddle temporal gyrus (MTG)
in the three groups. Compared with the HCs, the patients with
SCD showed significant decreased DFC variability in the right
MTG (TFCE-FWE corrected, p < 0.05, cluster number > 9
voxels). All results were obtained with age, gender, and years of
education as covariates (Table 2 and Figure 2).

In the SN, the ANCOVA showed significantly altered DFC
variability in the left hippocampus, right IFG, left insula, left
putamen, left STG, and right IFG. Compared with the group with
HC, the group with aMCI showed increased DFC variability in
the left putamen while the group with SCD showed increased
DFC variability in the left putamen and left insula (TFCE-FWE
corrected, p < 0.05, cluster number > 9 voxels). All results were
obtained with age, gender, and years of education as covariates
(Table 2 and Figure 3).

In the ECN, the ANCOVA showed significantly altered DFC
variability in the bilateral middle frontal gyrus (MFG), left
IFG, and right inferior parietal lobule. Compared with the
HCs, the group with SCD showed increased DFC variability
in the MFG. Compared with SCD, aMCI showed decreased
DFC variability in the right MFG, while increased DFC
variability in left IFG (TFCE-FWE corrected, p < 0.05,
cluster number > 9 voxels). All results were obtained with
age, gender, and years of education as covariates (Table 2
and Figure 4).

Behavioral Significance of Altered DFC
Variability Within the Triple Networks in
Patients With SCD and aMCI
The correlation analysis showed that in the groups with SCD
and aMCI, altered DFC variability in the left IFG of the ECN
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TABLE 2 | The difference of dynamic functional connectivity variability in default mode network across three groups.

Region(aal) Peak MNI coordinate F/t Cluster number

x y z

Anterior default mode network

ANCOVA

R parahippocampal gyrus 21 −18 −30 6.3284 20

R inferior frontal gyrus 36 24 −24 7.0609 42

B anterior cingulum gyrus −6 39 3 8.9345 22

L caudate −9 6 −3 7.232 38

R angular gyrus/superior temporal gyrus 60 −51 21 6.6394 79

R superior frontal gyrus 21 39 27 7.4796 40

L superior frontal gyrus −21 33 54 7.2538 21

aMCI vs. HC

R angular gyrus 42 −51 24 −3.0653 18

R superior frontal gyrus 24 39 33 −3.6477 18

Posterior default mode network

ANCOVA

R middle temporal gyrus 66 −45 −3 6.9386 21

SCD vs. HC

R middle temporal gyrus 66 −45 0 −3.1797 10

Salience network

ANCOVA

R Hippocampus 39 −27 6 3.8555 20

R superior temporal gyrus 51 −24 6 3.1027 34

L hippocampus −18 −18 −15 6.3901 49

R inferior frontal gyrus 45 39 −6 7.1029 47

L insula/putamen −45 12 3 11.4039 252

L superior temporal gyrus −48 −39 18 6.4033 57

R inferior frontal gyrus 45 15 15 6.6237 28

SCD vs. HC

L putamen −30 −3 −3 3.6342 15

L insula −45 12 3 4.1688 53

aMCI vs. HC

L putamen −27 12 −3 4.0464 11

Executive control network

ANCOVA

R middle frontal gyrus 33 54 9 7.1346 38

L inferior frontal gyrus −39 9 24 6.3027 59

R middle frontal gyrus 45 36 21 5.0147 64

L middle frontal gyrus −42 45 18 7.732 39

R inferior parietal lobule 54 −42 42 8.0083 32

SCD vs. HC

L middle frontal gyrus −48 42 21 3.8698 22

aMCI vs. HC

R middle frontal gyrus 30 57 6 −3.3649 11

L inferior frontal gyrus −36 15 15 3.7362 14

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster size > 19 voxels in ANCOVA analysis, p < 0.05; Cluster size > 10 voxels in post hoc test, p < 0.05,

TFCE-FWE corrected; L, left; R, right; B, bilateral; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline; HC, healthy control.

was significantly negatively correlated with EM (r =−0.421, p <

0.001) and EF (r=−0.382, p< 0.001) (Bonferroni-corrected, p<

0.05). Age, gender, and years of education were used as covariates
for all these results (Figure 4).

Diagnosis and Classification of SCD and
aMCI Using Logistic Regression Analysis
The receiver-operating characteristic (ROC) curve of each
altered index is shown in Figure 5. The best-fitting model
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FIGURE 2 | Brain regions exhibiting significant differences in dynamic functional connectivity variability within default mode network. (A,C) Brain regions showing

significant differences in dynamic functional connectivity variability within the anterior default mode network and posterior default mode network across three groups,

including SCD, aMCI, and HC (p < 0.05, the cluster size > 19 voxels). (B,D) Results of post hoc analysis in voxel-wise analysis (TFCE-FWE corrected, cluster size >

9, p < 0.05). aDMN, anterior default mode network; pDMN, posterior default mode network; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive

decline; HC, healthy controls; AG, angular gyrus; SFG, superior frontal gyrus; MTG, middle temporal gyrus; R, right.

FIGURE 3 | Brain regions exhibiting significant differences in dynamic functional connectivity variability within salience network. (A) Brain regions showing significant

differences in dynamic functional connectivity variability within the salience network across three groups, including SCD, aMCI, and HC (p < 0.05, the cluster size >

19 voxels). (B,C) Results of post hoc analysis in voxel-wise analysis (TFCE-FWE corrected, cluster size > 9, p < 0.05). aDMN, anterior default mode network; pDMN,

posterior default mode network; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline; HC, healthy controls; INS, insula; L, left.

was based on the multivariable models, combining altered
DFC variability and decreased cognitive function. The
AUC in the groups with SCD and HC based on the
multivariable model was.877, with 88.6% sensitivity and
75.9% specificity (p < 0.001). In the groups with aMCI and

HC, the AUC based on the multivariable model was.927,
with 75.% sensitivity, and 98.2% specificity (p < 0.001).
The AUC of the groups of SCD and aMCI based on the
multivariable model was.907, with 86.4% sensitivity and 81.8%
specificity (p < 0.001).
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FIGURE 4 | Brain regions exhibiting significant differences in dynamic functional connectivity variability within executive control network and the correlation with

cognitive function. (A) Brain regions showing significant differences in dynamic functional connectivity variability within the executive control network across three

groups, including SCD, aMCI, and HC (p < 0.05, the cluster size > 19 voxels). (B,C) Results of post hoc analysis in voxel-wise analysis (TFCE-FWE corrected, cluster

size > 9, p < 0.05). (D) Results of associations between altered dynamic functional connectivity variability and cognitive function. Age, gender, and years of education

were used as covariates of results (Bonferroni corrected, p < 0.05). aDMN, anterior default mode network; pDMN, posterior default mode network; aMCI, amnestic

mild cognitive impairment; SCD, subjective cognitive decline; HC, healthy controls; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; EM, episodic memory; EF,

executive function; R, right; L, left.

DISCUSSION

To the best of our knowledge, the present study was the first
to analyze DFC variability in patients with SCD and aMCI
based on the triple-network model and the association with
cognitive decline. The primary findings of the study were that
DFC variability within the triple networks in patients with SCD
and aMCI had varying degrees of change. Moreover, altered
DFC variability within the ECN was significantly correlated with
cognitive performance in patients with SCD and aMCI. Most
importantly, altered DFC variability, combined with the triple-
network model, can serve as an important biomarker for their
higher efficiency in the diagnosis of SCD and aMCI.

The present study showed that the DFC variability within
the triple networks, including the DMN, SN, and ECN, was
changed to different degrees in patients with SCD and aMCI.
The DMN can be divided into the aDMN and pDMN, each of
which has been considered to function independently in a wide
range of cognitive tasks. Specifically, the aDMN is involved in
self-referential mental idealization, while the pDMN is involved
in EM retrieval (Xue et al., 2020). In the present study, patients
with SCD patients showed decreased DFC variability in the right

MTG within the pDMN compared with HCs, whereas patients
with aMCI showed decreased DFC variability in the right angular
gyrus and right SFG within the aDMN. The impaired brain
regions are involved in language processing functions (angular
gyrus), spatial orientation (angular gyrus), motor planning and
executive (SFG) function, and visual information processing
(MTG). This might mean that impairment in the DMN may
lead to extensive cognitive decline. Moreover, a prior static FC
study indicated that the FC of the aDMN first increased and then
decreased with the progression of AD spectrum disease, which
was consistent with our results, showing that DFC variability of
the aDMN was decreased in patients with aMCI compared with
HCs, while the patients with SCD remained stable (Xue et al.,
2020). Notably, previous DFC studies demonstrated that higher
DFC variability in brain regions may reflect greater complexity
and greater information processing ability (Marusak et al.,
2017). Decreased DFC variability may indicate the decreased
information processing ability of patients with SCD and aMCI
(Marusak et al., 2017). The decreased DFC variability within the
DMN subnetworks of the patients with SCD in the present study
means that patients with SCD already had a tendency toward
impaired information processing. In addition, the patients with
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FIGURE 5 | Diagnosis and differentiation of SCD and aMCI based on ROC

analysis. (A) The ROC curve showing the classification of SCD and HC; (B)

The ROC curve showing the classification of aMCI and HC; (C) The ROC

curve showing the classification of aMCI and SCD.

SCD showed altered DFC variability, mainly in the pDMN,
whereas the patients with aMCI showed altered DFC variability
mainly in the aDMN, which seemed to confirm the specificity
of DFC variability within the DMN of patients with AD
spectrum disorders.

In our study, the groups with SCD and aMCI both showed
increased DFC variability in the left putamen within the SN,

while the group with aMCI additionally showed increased DFC
variability in the left insula within the SN. The putamen is part
of the neostriatum, which was identified as one of the first brain
areas affected by amyloid deposition in healthy elderly people
(Rodriguez-Vieitez et al., 2016). Previous studies indicated that
the putamen was involved in working memory and probabilistic
learning and might be an appropriate clinical biomarker of
neurodegenerative disease (Bellebaum et al., 2008; Looi et al.,
2012). Research studies reported that a decline in the amplitude
of low frequency fluctuations and volume of the putamen were
significantly related to cognitive decline in patients with AD
spectrum disorders (de Jong et al., 2008; Ren et al., 2016). The
insula, a major region of the SN, is believed to play an important
role in the maintenance of memory performance in the early
stage of AD spectrum disorders (Lin et al., 2017). One study
suggested that the left insula had the higher node degree and
participation coefficient in the brain network and was associated
with EM (Xue et al., 2020). The increased DFC variability
of the SN in patients verified the “brain reserve” hypothesis
that the enhanced FC of the SN in SCD and aMCI might
be a compensatory mechanism for decreased DMN function,
which resists amyloid protein deposition andmaintains relatively
normal cognitive function (Cohen et al., 2009; Menon and
Uddin, 2010).

Our results showed altered DFC variability within the ECN
in patients with SCD and aMCI. The ECN, with the prefrontal
lobe as the core, plays an important role in the regulation
of cognition and behavior, the integration of perception and
memory information, and working memory (Petersen et al.,
2019). The MFG and IFG are responsible for executive cognitive
function and working memory. The present research found that
SCD showed increased DFC variability in the left MFG compared
with HCs, whereas patients with aMCI showed decreased DFC
variability in the right MFG compared with the patients with
SCD. This might indicate that DFC variability decreased as AD
spectrum disorder progressed, representing a gradual decline in
information-processing ability.

Taken together, we can speculate that patients with SCD
and aMCI have a common and unique disruption in the
triple networks. The triple networks are involved in a wide
range of cognitive tasks through direct or indirect means.
The disruption of any network of the triple networks will
result in aberrant goal-related stimuli and internal psychological
events (Sridharan et al., 2008). Previous research findings
suggested that abnormal organization and function of the triple
networks were prominent features of neuropsychiatric diseases.
However, the specific changes in static FC within the triple
networks of patients with SCD and aMCI were inconsistent. For
example, some research claimed that aMCI showed increased
static FC in the SN, while several reported disrupted static
FC in the SN (Brier et al., 2012; Uddin, 2015; Chen et al.,
2016b). One possible reason for the inconsistent results may
be that the FC pattern was dynamic rather than static during
the entire rsfMRI scan, leading to different FC patterns in
different scan periods (Wang et al., 2020). Therefore, our
study confirmed that the DFC of the triple networks was
disrupted in patients with SCD and aMCI, suggesting that
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DFC analysis can be used to complement and verify static
FC analysis.

The present study showed observably negative associations
between altered DFC variability in the left IFG and cognitive
domains in patients with SCD and aMCI, including EM and
EF. The results demonstrated that disruption of DFC was
significantly related to declining cognition performance in
patients with SCD and aMCI. As the EM and EF were impaired,
DFC variability in patients with SCD and aMCI increased in
the left IFG. Moreover, the patients with aMCI exhibited higher
DFC variability with the EM and EF impairment compared with
patients with SCD. This might mean that the increased DFC
variability in the left IFG was to compensate for the impairment
of EM and EF in the progression of preclinical AD spectrum
disorders. Furthermore, EF refers to the cognitive process of goal-
oriented behavior from goal formulation to successful execution
and the processing of results (Miller and Cohen, 2001; Diamond,
2013). The correlation between altered DFC variability in the
left IFG within the ECN and EF confirmed why the ECN is
widely used to investigate themechanism of altered EF in patients
(Brown et al., 2019). Interestingly, patients with SCD and aMCI
showed significant correlations between EM and altered DFC
variability within ECN. A previous study suggested that EM
deficits in patients with aMCI were associated with the right
dorsolateral prefrontal cortex functional network (Yuan et al.,
2016). Our results provided new evidence for the interaction
between impaired EF and memory impairment. Taken together,
the study suggested that DFC in SCD and aMCI was disrupted,
which extended the current understanding of the functional
network and showed the importance of evaluating changes in
DFC in patients with preclinical AD spectrum disorders.

The most significant finding in the current study was that
the best-fitting model in diagnosing and characterizing SCD
and aMCI was based on multivariable models. They combined
altered DFC variability within the triple networks and declining
cognitive function. It can be seen that the multivariable models
had higher AUC values with high sensitivity and specificity
compared with univariate models. The model was highly specific
for aMCI with 98.2% specificity, so the risk of false-positive
errors was very low, suggesting that DFC analysis could be a
reliable potential biomarker for diagnosing patients with aMCI.
Specifically, DFC variability in the left putamen played a vital
role in the diagnosis of SCD, whereas DFC variability of the right
angular gyrus played a major role in the diagnosis of aMCI due
to its higher AUC values. Meanwhile, DFC variability in the right
MFG and left IFG played dominant roles in the differentiation
of SCD from aMCI. That distinction might provide additional
information in research on specific brain region changes in
SCD and aMCI. Additionally, research has indicated that the
classification accuracy of static FC was lower than that of
DFC because time-averaged analysis could not account for
microscopic changes in brain states (Bassett et al., 2013; Allen
et al., 2014; Cordova-Palomera et al., 2017). Studies have shown
that DFC provided significantly more behavioral information
than static FC (Cordova-Palomera et al., 2017; Liegeois et al.,
2019). Thus, such reliable methods will have more value for the
early detection of AD-related pathology.

LIMITATIONS

Several limitations of the present study showed are
acknowledged. First, the patient sample was small, which
may have reduced the generalizability of the results. To avoid
this problem, we applied a non-parametric permutation test to
control the false-positive rate. Moreover, our research group is
continuously recruiting new volunteers, and the NBH-ADsnp
database is constantly updated, which means we will further
verify our conclusions in the future. Secondly, we collected
only 8-min-long data on each participant in the current study,
resulting in inadequate results. We will take advantage of
longer fMRI scan times, such as several hours, to improve the
DFC variability estimates in a future study. Lastly, the lack of
longitudinal research made it impossible to explore disease
transformation in depth. Our research team is following up on
the recruited volunteers regularly, and we plan to further explore
the longitudinal changes in DFC in the future.

CONCLUSION

The current study revealed common and specific DFC variability
abnormalities within the triple networks of patients with SCD
and aMCI. Moreover, altered DFC variability in the left IFG
within the ECN was significantly correlated with cognitive
decline, including EM and EF. More importantly, the best-fitting
model in diagnosing and differentiating SCD and aMCI was a
multivariable model that combined altered DFC variability (right
MTG, left putamen, left insula, and left MFG in distinguishing
patients with SCD and HCs; right AG, right SFG, and left
putamen in distinguishing patients with aMCI and HCs; and
right MFG and left IFG in distinguishing patients with SCD
and aMCI) with declined cognitive function. Therefore, our
findings suggest that the DFC variability analysis, combined with
the triple-network model, can be used as a potential biomarker
of preclinical AD spectrum disorders and may help us to
understand abnormal cognitive function.
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