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Abstract: Cloud computing coupled with Internet of Things technology provides a wide range of
cloud services such as memory, storage, computational processing, network bandwidth, and database
application to the end users on demand over the Internet. More specifically, cloud computing
provides efficient services such as “pay as per usage”. However, Utility providers in Smart Grid are
facing challenges in the design and implementation of such architecture in order to minimize the cost
of underlying hardware, software, and network services. In Smart Grid, smart meters generate a large
volume of different traffics, due to which efficient utilization of available resources such as buffer,
storage, limited processing, and bandwidth is required in a cost-effective manner in the underlying
network infrastructure. In such context, this article introduces a QoS-aware Hybrid Queue Scheduling
(HQS) model that can be seen over the IoT-based network integrated with cloud environment for
different advanced metering infrastructure (AMI) application traffic, which have different QoS levels
in the Smart Grid network. The proposed optimization model supports, classifies, and prioritizes
the AMI application traffic. The main objective is to reduce the cost of buffer, processing power, and
network bandwidth utilized by AMI applications in the cloud environment. For this, we developed
a simulation model in the CloudSim simulator that uses a simple mathematical model in order to
achieve the objective function. During the simulations, the effects of various numbers of cloudlets on
the cost of virtual machine resources such as RAM, CPU processing, and available bandwidth have
been investigated in cloud computing. The obtained simulation results exhibited that our proposed
model successfully competes with the previous schemes in terms of minimizing the processing,
memory, and bandwidth cost by a significant margin. Moreover, the simulation results confirmed
that the proposed optimization model behaves as expected and is realistic for AMI application traffic
in the Smart Grid network using cloud computing.

Keywords: advanced metering infrastructure; cloud computing; Internet of Things; latency; quality
of service; scheduling; Smart Grid; virtual machine

1. Introduction

Recently, Smart Grid [1] has received great attention from researchers in the field of
Information Technology (IT). The research community are developing new applications,
communication protocols, and simulation models in order to add control, intelligence,
automation, and communication capabilities to the existing traditional power grid system.
For example, the new IT infrastructure in the Smart Grid paradigm consists of computing
resources such as computation servers, storage servers, network devices, and Smart Grid
applications [2,3], which are provided as services that perform fault tolerance, self-healing,
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demand response, load balancing, power generation, and optimal supply of electricity
in an efficient and economic fashion in the Smart Grid network. Similarly, the intelligent
smart meters (SMs) [4] at the customer domain (residential, commercial, and industrial)
generate enormous metering data simultaneously to obtain real-time power consumptions,
flexible pricing tariffs, and a monthly bill enquiry from the Smart Grid Utility provider.
However, when the number of AMI application traffic increases between SMs and host
servers in the control center, congestion occurs in the underlying Smart Grid network
and performance degrades due to lack of sufficient computing resources in the existing IT
setup. Using traditional techniques of centralized computing servers, storage, and database
application, tightly coupled with business applications, leads to poor system reliability,
higher cost, and time consumption in making a quick decision on the received real-time
AMI application traffic in the Smart Grid network. Therefore, to fully realize the complex
Smart Grid network in a cost-effective manner, the primary challenges are to improve the
availability, reliability, and efficiency of the computing resources and quality of service
(QoS) of application services, which are most important to be considered in the Smart
Grid network.

In order to cope with these challenges, coupling the Internet of Things (IoT)-based
networks [5,6] with cloud computing [7,8] will play an important role in the development of
an improved Smart Grid architecture. With the induction of these two modern networking
technologies, the residential users (here, SMs) will keep no concerns about the IT resource
allocation (hardware, software) and application services (here, database application) be-
cause cloud computing primarily focuses on providing these services in a flexible and
pay-as per-use manner over the Internet. Organization such as Smart Grid should pay
attention to understand the current usage of cloud resources and increasing traffic rates
(rising workloads) in order to efficiently utilize the actual cloud resources and applications
(business operations). Such strategies enhance the overall network performance in terms
of the agreed QoS and reduced costs (here, paid for cloud services), which are the key
parameters being monitored by both the consumers and Utility provider in order to save
money and time. Although, in the cloud environment, horizontal (e.g., adding more virtual
machines) and vertical (increase size of the CPU, storage, RAM, and bandwidth) scaling are
employed by organizations to handle the growing demands, ensure uptime, and optimize
the network performance. For simplicity, here, the cost of cloud resource [9,10] means the
leasing of cloud resources or paying for the use of cloud services, e.g., database applications,
which consumers pays to the cloud provider. In Smart Grid, QoS provision with agreed
terms and conditions, i.e., service level agreements (SLAs), are set at the time of the smart
meter connection and installation.

For example, many public cloud providers, such as amazon web service (AWS), have
a free tier micro instance called elastic computing cloud (EC2), which provides a limited set
of cloud resources (services) free for 750 h per month for 12 months and do not charge all
inbound traffics. However, AWS charges consumers for bandwidth on an hourly basis for
outbound data transfers such as network-intensive workloads (services), such as IoT, real-
time applications, and other public traffic such as video, audio, and gaming, due to which
consumers pay high monthly bills. Therefore, the optimization of bandwidth is essential to
increase the throughput, eliminate bottlenecks, and reduce substantially the majority of
cloud computing costs both from the perspective of consumers and organizations.

Therefore, in this article, our main focus was to efficiently handle the cloud resources
in order to minimize the cost of its usages and improve the QoS parameters of all intended
AMI application traffic in the Smart Grid network. At this end, motivated by the afore-
mentioned discussion, this article introduces a QoS-aware hybrid queue scheduling (HQS)
model for AMI application traffic in the IoT-based Smart Grid network using cloud com-
puting technology. Our proposed model particularly extended our previous work in [11],
by focusing comprehensively on system implementation, simulation modelling, and cost
reduction in terms of efficiently utilizing cloud resources and ensuring QoS provisioning to
all AMI applications in the Smart Grid. The acronyms used in this articles are described
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in Table 1. In this context, following are some of the significant research contributions of
this article:

1. The relay nodes in the network topology and the control central server in the Smart
Grid network were programmed to differentiate and classify the AMI application
traffic into periodic, normal, and time critical classes based on their packet size, latency,
and priority level.

2. Our proposed optimization model employed three algorithms in order to allocate
the resources in an optimized manner and schedule the AMI application traffic with
co-existence to the public traffic in the Smart Grid communication network.

3. To achieve QoS levels and reliable communication, the proposed QoS-aware HQS
model employed a combination of priority queue (non-preemptive) and first-come,
first-serve scheduling techniques. A priority metric was assigned to each AMI traffic
to prioritize transmission. The priority metric was computed based on the packet
size, latency, and priority level of the AMI application, that is, smaller priority metric
traffic had the highest priority in transmission to meet the latency requirement.

4. We developed an objective function that was mathematically formulated in order to
optimize the cloud resources in such a way to minimize the total cost incurred in the
usage of cloud services.

5. Finally, we analyzed and validated the efficacy of our proposed QoS-aware HQS
model through extensive CloudSim simulation. The simulation results obtained
demonstrate that the objective function is accurately implemented and successfully
minimized the total costs in terms of CPU processing, RAM, and BW in the cloud
computing environment.

Table 1. Acronyms and description.

Acronym Description

AMI Advanced metering infrastructure
API Application programming interface
BW Bandwidth
BWtot Total available bandwidth
BWrem Remaining bandwidth
CCS Control center server
CPU Central processing unit
CBW Cost of bandwidth
CCPU Cost of CPU processing
CRAM Cost of random access memory
Ctotal Total cost
DC Data concentrator
FCFS First come, first serve
HDD Hard disk drive
HTTP Hypertext transfer protocol
HQS Hybrid queue scheduling
IoT Internet of Things
IPSec Internet protocol security
JSON Java script object notation
MIPS Millions instructions per second
NP-PQS Non-preemptive, priority queue scheduling
pesNo Number of processing core
PE Processing element
QoS Quality of service
REST Representational stateless transfer
SQL Structured query language
SM Smart Meter
URL Uniform resource locator
VMM Virtual machine manager
VPN Virtual private network
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The remaining article is ordered as follows. Section 2 elaborates on the related study
about AMI applications, which particularly focused on AMI traffic management and
scheduling schemes employed in the Smart Grid network. Section 3 briefly describes the
problem statement. Section 4 describes in detail the proposed QoS-aware hybrid queue
scheduling model, which includes the AMI application traffic model, network model,
problem formulation, and proposed optimization model for AMI applications with an
operational example. In Section 5, we analyze and validate the CloudSim simulation results.
Lastly, the article is concluded and future work is described in Section 6.

2. Related Work

In recent years, due to the rapid development in IT and wireless technologies, that
is, specifically the IoT-based network supported by the cloud computing environment,
has received great attention from the research community. These networking concepts are
particularly useful in Smart Grid infrastructure to allow things (e.g., SMs) and people in a
residential area to exchange huge amounts of metering data with the Utility control center
in the Smart Grid network. However, due to the resource constraint in the Smart Grid
network, efficient utilization of CPU processing, memory, and network bandwidth with
low cost is essential as well as to fulfill AMI applications requirements such as QoS, which
is a challenging task in these infrastructures. Therefore, we present an in-depth literature
review of existing research topics, covering the most important such as the background of
AMI applications, traffic management, and resource allocation strategies in a cost-effective
manner in the Smart Grid network.

For ensuring QoS through traffic scheduling in the Smart Grid network, multiple
research efforts have been performed in the past. For instance, in our previous work [11],
we proposed an IoT-based hierarchical clustering architecture for AMI applications in
the Smart Grid network. We derived an objective function that was implemented via
different algorithms to maximize network coverage, minimize the infrastructure cost, and
eliminate bottleneck problems in the network topology. In addition, the simulation results
depicted that the scheduling policy optimizes the use of CPU processing in terms of the
execution time of AMI application traffic, which significantly enhances the QoS such as
to maintain reliability and low delay in the Smart Grid network. In [12], the proposed
model was used to classify different Smart Grid application traffics with different QoS
requirements into five traffic classes based on service differentiation unit. In class 1, traffics
were scheduled with non-preemptive priority queue discipline, while other classes were
scheduled with the round robin scheduling scheme. Analytical and simulation results
showed that QoS requirements, such as delay (mean waiting times), for different Smart
Grid traffics were satisfied. Similarly, a traffic scheduling algorithm was proposed in [13],
which classified the Smart Grid application traffic into two different classes, namely event-
driven and fixed scheduling. The scheduling model works in two stage that is, in the first
stage, the bandwidth is efficiently allocated to the traffic in the event-drive class, while the
remaining bandwidth is assigned to the second class to ensure QoS levels such as latency
and bandwidth allocation to other traffics. In order to release congestion and minimize
packet loss ratio in multi-hop wireless mesh networks, the authors in [14] proposed a
new scheduling technique based on random-switching, which uses the load balancing
concept to schedule burst data in the metering data collection tree. The simulation results
showed that the proposed scheme makes metering data collection, traffic distribution, and
traffic forwarding processes more reliable and efficient in the network. The authors in [15]
proposed a packet scheduling algorithm to handle metering traffic in outage conditions.
The proposed scheme considered the hop count from the mesh node to the gateway
node and queue length in the packet scheduling process. Numerical and simulation
results showed that the network’s delay was minimized and that the overall network
reliability was enhanced under emergency situations, such as the exchange of outage
notifications in the network. In [16], the authors addressed the uplink bottleneck in long
term evolution (LTE) networks. To solve this problem, a scheduling policy was employed
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that takes into account the channel quality, traffic priority, and packet delay in order
to send periodic electricity consumption data of SMs, along with users real-time traffic
such as voice calls. The proposed scheduler served a great number of user’s traffic with
coexistence to smart metering traffic in the LTE networks. An optimization scheme in [17]
was proposed for critical data such as critical faults with high arrival rates in the monitored
environment in order to maintain low latency and high reliability, as well as to provide
QoS to critical data with low energy consumption using wireless sensor networks (WSNs)
for Smart Grid applications. Similarly, using WSNs in the Smart Grid network, the authors
in [18] proposed a delay-aware cross-layer (DRX) and fair and delay-aware cross-layer
(FDRX) algorithms for Smart Grid monitoring applications to minimize the delay and
maintain lower collision rates in the communication channel. In [19], a backscattering green
technology was proposed for information exchange and energy signals for wireless sensor
battery recharge in Smart Grid. An asynchronous advantage actor critic (A3C) model using
priority was designed to handle uplink resource allocation to increase the throughput in
the network.

The use of the cognitive radio network (CRN) was investigated as a key wireless
technology in [20–23] for traffic scheduling and the optimization of resources to reduce
interference in the communication channel and optimize bandwidth usage in the Smart Grid
network. In [20], the authors proposed a scheduling algorithm in order to increase network
throughput and preserve priority and stringent delay parameters of real-time Smart Grid
applications, such as transmission line monitoring in rural areas, using cognitive radio (CR)
technology. In [21], a QoS-aware packet scheduling mechanism based on prioritization
and classification in CRNs for Smart Grid applications was proposed to enhance the
transmission quality of secondary users, that is, high-priority as well as increase the system
utilization. Similarly, the work in [22] presented an Adam optimizer scheduling technique
for Smart Grid applications using CR technology to reduce latency, increase network
throughput, and obtain optimal system cost in the Smart Grid. The proposed scheduling
technique was expressed as an objective function that is equal to the sum of throughput
and latency utility functions. In addition, priority classes and sub-classes of Smart Grid
applications based on their latency and throughput parameters were categorized. The
scheduler maintains priority queues for traffic classes. In addition, a traffic scheduling
technique using the priority of various Smart Grid applications, such as meter readings,
multimedia sensing data, and control commands, was proposed in [23] for a CR-based
Smart Grid network. The work specifically focused on CR channel allocation and Smart
Grid traffic scheduling to solve the utility optimization problem in the system.

Different studies researching IoT applications in Smart Grid are presented in [24,25].
In [24], the authors proposed an IoT-based model for meter billing and energy monitoring
applications in Smart Grid. The case study analysis explained that the proposed system
design contributes to prevent electricity shortages and reduce power wastages. IoT-based
applications have been comprehensively analyzed in [25] for Smart Grid and smart en-
vironments such as smart homes, smart cities, smart metering, etc. Nowadays, cloud
environment [26–29] offers promising deployment models and services such as software,
infrastructure, and hardware on user’s requests over the computer networks. In [26],
authors showed the effectiveness and weaknesses of different scheduling and allocation al-
gorithms in the cloud environment using a CloudSim framework. In [27], multiple resource
allocation techniques were proposed in order to increase the QoS and efficiently utilize the
cloud resources. In [28], a simulation model using CloudSim was defined to save time and
money for researchers and organizations by reducing the energy and expense load in the
cloud framework. Similarly, in [29], the authors presented a cloud-based simulation model
using a CloudSim simulator for hosting Smart Grid applications to fulfill their processing,
storage, and network requirements in the cloud infrastructure. Various virtual machine
(VM) allocation policies have been analyzed, taking different VM parameters in order to
make decisions for hosting Smart Grid applications in the cloud environment.
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In the light of aforementioned discussion, we concluded that most of the previous
research works as tabulated in Table 2 and are multi-objective; that is, the existing works
in the literature are considered either to improve the QoS requirement or optimize the
resources using various scheduling approaches for application -specific to the Smart Grid
network. The work in IoT-based cloud computing for resource optimization in a cost-
effective manner for AMI applications in Smart Grid is limited and needs the attention of
researchers. We developed an optimization model based on IoT networking and cloud
computing, which specifically focuses on AMI application traffic modelling, classification,
prioritization, and traffic scheduling, using a hybrid queue scheduling scheme to achieve
both cost minimization and QoS provisioning objectives in the Smart Grid network. The
existing works in the literature do not address both the objectives in the Smart Grid network.

Table 2. Summary of resource optimization strategies for AMI applications in the Smart Grid network.

Literature Problem Specification Resource Optimization
Strategy Applications (Traffic) Network Environment Objective (s)

[11] Coverage Maximization
Dual-head placement

Non-preemptive priority
scheduling AMI IoT-based Cloud

Computing

• Improve QoS and coverage
• Minimize cost

and Runtime

[12] Modeling of Smart Grid
Traffics

Non-preemptive priority
and Round Robin Smart Grid and VoIP Smart Grid • QoS with low delay

• Increase throughput

[13] Resource allocation
approach Two stage traffic scheduling AMI Smart Grid

• QoS with latency
requirement

• Optimize the BW

[14] Network topology
limitation

Random switching traffic
scheduling Smart Grid Wireless Smart Grid

• Minimize packet drop ratio
• Release congestion

[15] Scheduling problem
Multi-gate and single-class
back-pressure scheduling
algorithm

AMI Smart Grid
• Improve network

reliability and delay
performance

[16] Uplink bottleneck Max rate uplink scheduler AMI and real-time
traffic LTE-based Smart Grid • QoS with increased

throughput

[17] Delay optimization
model Inter cluster head scheduling Smart Grid WSN-based Smart Grid

• QoS with low latency,
energy consumption, and
high reliability

[18] Medium access
approaches

DRX and FDRX data
transmission Smart Grid Wireless actor and area

network
• Reduces delay
• Lower collision rate

[19] Uplink resource
allocation

Backscatter communication
model Smart Grid and energy CR-based Smart Grid

• Ensure business
requirement

• Increase performance

[20] Scheduling problem Threshold triggered
scheduling Smart Grid CRN

• Maximize throughput
• Preserve priority and delay

[21] Packet scheduling
mechanism

Channel switch with priority
scheduling Smart Grid CRN • Improves QoS and

• transmission quality

[22] Multi objective
optimization problem

Priority based queues using
weights Smart Grid CR-based Smart Grid • Minimize latency

• Maximize throughput

[23] Utility optimization
problem

Priority based traffic
scheduling and CR
channel allocation

Smart Grid CR-based Smart Grid
• Low dropping rate
• Increases throughput

[24] Energy meter billing
and monitoring

Message queuing telemetry
transport Energy usages IoT-based

• Minimize energy wastage
• Prevent energy shortage

[25] Energy internet based
IoT application A case study approach AMI and Smart Grid IoT systems

• Highlight challenges and
future opportunities of IoT
applications in Smart Grid

[26] CPU allocation and
scheduling

Optimized Round Robin
(RR) and FCFS Cloud tasks Cloud Computing

• Shrink costs
• Increase IT quality

[27] Optimum resource
allocation

QoS based resource
allocation (QRA) Cloud request Cloud Computing

• Faster response time
• Low cost and energy

[28] Resource allocation Modified priority scheduling Cloud applications Cloud Computing • Save time and money

[29] Simulation modeling of
Smart Grid

Space-shared and
time-shared VM policies Smart Grid Cloud Computing • Minimize cost of CPU,

RAM, and BW

Proposed Cost minimization
strategy

Hybrid queue
scheduling (HQS) AMI IoT-based Cloud

Computing
• QoS and
• cloud costs minimization
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3. Problem Statement

In residential areas (urban), a large number of SMs are deployed at the consumer
premises in the Smart Grid network, since SM-based applications generate a huge amount
of metering data that need to be transmitted to the software-defined control center in a
timely and reliable manner over the public IP-based network in the Smart Grid. However,
the relay devices (here, SMs and DCs) used in the communication network have limited
built-in resources (CPU, RAM, and BW) to accommodate such a high volume of traffic with
required QoS levels in the communication network. For instance, power control commands
(PCC) will be immediately transmitted within the recommended latency boundary (1 s)
during peak load hours in the Smart Grid communication network; that is, it requires
network access within a short time period, hence calling for priority-based transmission.
In the absence of an active queue management mechanism in these devices, data packets
will be dropped or even delayed in such a situation; thus, a queue contention solution
is required. In addition, the available BW requires careful handling of the network both
for end-users and AMI applications intending to improve the QoS levels. This problem is
mathematically formulated in Equation (1) as follows:

NSM

∑
i=1

λi(t) > µj(t) ∀ i ∈ NSM, ∀ j ∈ NCH or ∀ j ∈ CCS (1)

where i = 1 . . . . . . NSM are the total SMs, λi is the packet arrival rate (Poisson distribution)
from SMs, and µj is the service rate (here, RAM of finite size, processing power, and limited
BW), that is, exponentially distributed in these devices at time “t”.

From the perspective of the cloud-based control center, the exchange of metering
data (e.g., power consumptions) plays a vital role in making complex decisions to balance
electricity generation and distribution in the overall Smart Grid architecture. Therefore,
suitable resource handling and scheduling schemes are required for AMI application traffic
in these devices that aim to ensure that needful buffer space and BW is available, such that
congestion is avoided and dropping rates of data packets are minimized in peak load hours.
Since cloud provides these services (resources) on a pay as-per use basis, cost minimization
needs to be considered from the business perspective of both the end-user and organization.

Hence, in the light of the above discussion, we attempted to resolve the optimization
problem through a QoS-aware HQS model aiming to ensure the required QoS levels and
the efficient utilization and allocation of limited resources in a cost-effective manner during
the processing of complex computations at the cloud-based CCS in the Smart Grid network.

4. Proposed QoS-Aware Hybrid Queue Scheduling (HQS) Model

This section presents details about our proposed QoS-aware hybrid queue scheduling
model for AMI applications in the Smart Grid network, which includes the sub-sections:
AMI applications traffic model, network model with the main clustering topology (as
shown in Figure 1), problem formulation, and proposed optimization model, such that
resources are handled efficiently and the QoS requirements of each AMI application is
maintained. A walk-through example is presented that clearly illustrates the working of
the proposed optimization model in this article.

4.1. AMI Applications Traffic Model

The Smart Grid network consists of multiple applications such as Substation automa-
tion, demand response (DR), distribution automation (DA), and AMI, which consists of
interval meter read (IMR), on-demand meter read (ODMR), electric vehicle (EV) charging,
etc., where each has different traffic characteristics such as packet size, latency, data sam-
pling frequency rate, reliability, and BW. Further, Smart Grid applications are classified
into two different traffic types, namely deterministic and event-driven, as summarized in
Table 3 below.
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Figure 1. A simplified IoT and cloud-based hierarchical architecture of Smart Grid.

Table 3. Characteristics of Smart Grid applications [2].

Traffic
Type

Smart Grid
Application

Packet Size
(Bytes)

Latency
(Seconds)

Sampling Frequency
(Per Day)

Bandwidth
(Kb/s)

Reliability
(%)

Deterministic IMR 1600–2400 <4 h 4–6 (Residential)
12–24 (Commercial)

10–100
500 backhaul 99–99.99

Event-
Driven

ODMR 100 <15 as needed 10–100 99–99.99

EV charging 100 2 s–5 min 2–4 9.6–56 99–99.99

Substation
Automation 100 15–200 ms as needed 9.6–56 99–99.99

On-demand DR 100 500 ms–1 min 1 per event 14–100 99

Real Time DR 100 500 ms–1 min as needed 14–100 99

DA 100 20–200 ms as needed 9.6–100 99–99.99

In this article, we only considered AMI applications from the SM perspective and
presented how our proposed QoS-aware HQS model classifies various AMI-specific traffic
(metering data) that is generated or received by the SMs into two different traffic classes,
namely non-critical and time-critical, based on characteristics such as packet size, latency,
and priority level. These characteristics may be pre-configured by the Utility administrator
in all SMs and on other network devices before their deployment in the residential areas.
The network model will support these traffic classes [3] with required communication
characteristics, as listed in Table 4 below. Moreover, the non-critical traffic class consists of
AMI applications such as IMR, ODMR, ODMRR, and billing information. IMR represents
the customer electricity load profile (consumptions) typically sampled after every fixed
time interval (e.g., 15–60 min), which can be mathematically expressed in Equation (2)
as follows:

IMR =:
n

∑
a=1

kWhah (2)
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where a = 1, . . . , n. represents the household appliances, and kWhah represents the
electricity consumptions of an individual household appliance in kilo Watt per hour. The
time interval depends upon the Utility provider. The IMR can be used later to prepare
the consumer electricity bill, which may be shared with consumers through the billing
information application. Similarly, ODMR is the meter reading request sent to the SM
by the Utility provider, while on-demand meter reading response (ODMRR) is the SM
response sent to the Utility provider that may be used in load forecasting and DR programs.
On the contrary, the time-critical traffics consist of remote-control command (RCC), power
control command (PCC), EV charging, and outage alert (OA) applications. Moreover, RCC
includes commands such as remote disconnect\reconnect of devices, PCC consists of load
control signals, EV charging shares electric vehicle charging information, and OA consists
of messages such as outage detection sent to the Utility provider about the unavailability
of electricity at the customer head-end. Among the two traffic classes, time-critical requires
priority-based transmission due to its stringent latency and throughput requirements,
while the non-critical could tolerate a delay of a few minutes in transmission in the Smart
Grid network.

Table 4. Characteristics of AMI applications [3].

Traffic Class
(TC)

AMI
Application

(ToA)

Packet Size
(Pkt_Size)

Latency
(LR)

Sampling
Frequency
(Per Day)

Traffic
Type

Traffic Flow(
λup /λdown)

Priority Level
(PL)

Non-critical

IMR 250 Bytes 5–60 min 12–24 (Residential)
4–6 (Commercial) Deterministic uplink 3

ODMR 100 Bytes <15 s as per need
Event-
driven

downlink

2ODMRR 100 Bytes 30 s 5 days
uplink

Billing info 100 Bytes s or min as per need

Time-critical

RCC 100 Bytes 1 s as per need

Event-
driven uplink 1

PCC 100 Bytes 1 s as per need

EV charging 100 Bytes <15 s 2–4

OA 50 Bytes 3 s as per need

Once all the AMI applications are classified and their data sources (here, SMs) are
identified, then the total traffic estimated for an AMI application can be expressed in
Equation (3) [30] as:

AMI Traffic Estimation =:
n

∑
i=1

(PSi + OSi) × (NSM)i (3)

where PS is the payload size, OS represents the overhead size of an SM, and NSM is the
number of SMs that generated the ith AMI application, whereas the traffic arrival rate λi
(Poisson process) at the ith device can be characterized [31] below as:

λi =:


ρi
(
λup + λdown

)
+ λup if i is a SM

ρi
(
λup + λdown

)
, if i is a Router

NSM × λdown, if i is a DC
(4)

where ρi represents the shortest path to the ith device acting as relay node (here, CH), λup
denotes the mean transmission rate from each SM to the DC (uplink), λdown denotes the
mean transmission traffic from the DC to each SM (downlink), and NSM is the number
of SMs connected to a DC in a given residential area. In addition, λup and λdown can be
calculated as:

λup or λdown =
BWi

Pkt_sizei
(5)
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where BWi is the bandwidth (bits per second), and Pkt_sizei is the packet size of the ith
AMI application. However, if the ith device retransmits the packet due to collision, then
the actual traffic rate λ
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is the mean service rate (here, BW) as given below:

µi =:
BWout

Pkt_sizei
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where BWout is the output BW allocated to an AMI application and is formulated as:

BWout =: α
q

∑
i=1

BWi (8)

where α is a constant factor between 0 < α < 1, and q represents the corresponding queue
identifier that is allocated to each traffic class. Therefore, with an AMI traffic classification
and traffic estimation (i.e., transmission rate) in hand, we needed to design an optimization
model that will ensure the stringent QoS requirements (e.g., BW, latency, and throughput)
and the reliability (e.g., accuracy and low packet errors) of each AMI application in the
cloud-based Smart Grid network.

4.2. Network Model and Assumptions

The network model needed to be redesigned for the proposed model, which consists of
smart meters (SMs) and data concentrators (DCs) at the lower level and a central router and
main central control server (CCS) at the top level of the hierarchical IoT-based Smart Grid
architecture. All these network components are pre-programmed (software defined) by
the Utility operator in order to communicate with each other using default channel access
methods in the underlined communication technology. A logical network topology for the
proposed model is depicted in Figure 1 at the lower level in the hierarchical architecture.
Further, the whole residential area was divided into IoT-based disjoint clusters using a
modified K-means clustering method [11,32] (though clustering is not the focus in this article),
where each cluster consists of a cluster-head (CH) and cluster-members (SMs). A CH
operates similar to a traffic controller and scheduler to allocate resources and exchange the
AMI application traffic between the cluster members and the DC in a single hop manner.
In other words, each CH facilitates the communication between cluster-members and DC
in a controlled manner to ensure the QoS levels of different AMI applications. The DC is
directly connected over the Internet to the main CCS. For simplicity, we defined the total
clusters as: K, cluster-members as: NSM, cluster-head as: cK, number of active CHs as:
NCH, and number of DC as: NDC in the network model. Before discussing further, let us
summarize the essential components of the network model as follows.

4.2.1. Smart Meter

In Smart Grid, SMs [33] are typically installed at low altitudes in homes and buildings
and play an important role in making decisions such as the demand and supply of electricity
in Smart Grid. These SMs measure the power consumption of the home appliances at
fixed-time intervals, as well as on demand, and exchange these measurements with the
Utility provider via a shared communication network. Each SM has an IEEE 802.15.4g [34]
interface used for intra-cluster communication as well as to enable the CHs to communicate
directly with the DC. However, each SM has limited functionality due to built-in resources
(CPU, RAM, and BW) in the Smart Grid network.
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4.2.2. IPSec Tunnel

The cluster members communicate locally and across the public IP network (Internet)
with the main CCS using IPSec tunneling to ensure secure connectivity in the Smart Grid
network. IPSec tunneling helps to provide security functions to AMI application traffic such
as privacy and integrity, protection against non-repudiation, and replay attacks. Further,
IPSec establishes secure connections via VPN between the pre-defined network devices
(here, SMs, DCs, and the central router) and CCS of the Utility control center to limit the
inbound and outbound traffic. VPN makes the IP address hidden which makes it harder
for a flooding DDoS attack [35] to locate and target the Smart Grid network.

4.2.3. Data Concentrator

Usually, DCs [36] are typically installed and mounted on top of poles in residential
areas. The DC concentrates the metering traffic via CHs and forwards it to the main CCS for
further storage and processing via the Internet. The DC has a higher processing capability,
buffer space, and channel capacity and a longer radio range compared to the SMs in the
Smart Grid network.

4.2.4. Wide Area Network (WAN)

WAN interconnects the DCs to the main CCS via a bi-directional communication
network that has a long-range communication and high network capacity (BW). WAN is
the backbone network used to transmit the AMI application traffic, employing different
technologies (e.g., optical fibre, wireless radio, LTE, etc.) [37], which have longer distance
coverage and higher data rates. In this article, we opted to use LoRaWAN [38] as the WAN
technology between the DCs and the central router at the control center head-end.

4.2.5. Central Router

A central router, if present at the control center premise, facilitates the continuous
exchange of metering traffic between the DCs and cloud applications deployed on top of
the main CCS in the Smart Grid network.

4.2.6. Control Center

The control center is a centralized component in the Smart Grid network that enables
instant access to important resources (software and hardware) inside the Utility provider
that creates a global view of the Smart Grid network (hierarchical architecture). This is why
it is also termed the software-defined data center (SDDC) in the Smart Grid architecture.
The control center includes a software system, referred to as the metering data management
system (MDMS) [39,40], built on top of the main CCS, that performs complex computations
(e.g., validation, analysis, and estimation) and stores the received metering data for long-
term into a database application that contains data about the meters, their consumers,
electricity bills, and other network devices. In particular, cloud services are deployed over
the main CCS. To access the cloud services (e.g., database application), communication
between the main CCS and SMs are established through specific RESTfull APIs over the
Internet. Here, the message broker in the cloud framework manages the exchange of
AMI application traffic (web request) between SMs and the database application. Further,
necessary business logic and traffic rules (scheduling policies) are applied on received
traffic that describe the clear scope and network behavior of the Smart Grid network. We
made the following few assumptions in the design of our network model:

1. Only one DC at the centre of the residential area was considered.
2. Each device was assigned a unique IP address and meter registration ID.
3. Each device was authentic, and the CCS was fully trustworthy.
4. Every device was capable of computing the priority metric.
5. Finally, we considered that queuing delay was negligible, as we dealt with very low

data rates.
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4.3. Problem Formulation

Considering the optimization problem in Section 3, we focused on allocating a guar-
anteed number of resources such as CPU, RAM, and BW in a cost-effective manner; these
are required by the AMI application traffic at the cloud-based CCS in order to ensure the
QoS levels and improve the overall system performance of the Smart Grid network. The
notations used in this section are already described in Table 1.

To optimize these limited resources, the optimization problem becomes a cost mini-
mization problem. Therefore, the overall cost minimization problem can be formulated in
the form of an objective function in Equation (9) as follows:

minimize
K

∑
k=1

Q

∑
q=1

NSM

∑
i=1

(CCPU + CRAM + CBW)k
I,q (9)

Subject to:
K

∑
k=1

NSM

∑
i=1

λi
k ≤ µ

i
k ∀ i ∈ NSM, ∀ Ck ∈ NCH (9a)

K

∑
k=1

Q

∑
q=1

NSM

∑
i=1

Qk
q

λk
i
≤ I ∀ i ∈ NSM, ∀ Ck ∈ NCH, ∀ q ∈ Q (9b)

K

∑
k=1

3

∑
q=1

NSM

∑
i=1

BIk
i,q ≤ BWtot ∀ i ∈ NSM, ∀ Ck ∈ NCH, ∀ q ∈ Q (9c)

K

∑
k=1

NSM

∑
i=1

IWk
i,4 ≤ BWrem ∀ i ∈ NSM, ∀ Ck ∈ NCH, ∀ 4 ∈ Q (9d)

BWrem ≥ 0 ∀ i ∈ NSM, ∀ Ck ∈ NCH, ∀ 4 ∈ Q (9e)

In Equation (9), the total cost is expressed as a sum of each resource cost: CPU
processing, RAM, and BW, where K represents the total number of clusters in the network
model, Ck denotes the corresponding CH, NCH denotes the number of cluster heads, Q
is the number of priority queues created at each device, and NSM represents the number
of cluster-members in each cluster. The objective function in Equation (9) intends to
reduce the total system cost in terms of CPU processing (CCPU), buffer space (CRAM), and
bandwidth (CBW) through the optimal allocation of these resources during the transmission
of AMI applications in the Smart Grid network by ensuring constraints (9a)–(9e), whereas
constraint (9a) ensures that the average traffic arrival rate (λk

i ) at a device should be less
than or equal to the average service rate µk

i at that device to minimize traffic losses or traffic
retransmission later. Next, constraint (9b) satisfies that the AMI traffic is transmitted in the
recommended latency (LR) range in terms of the average traffic arrival rate and a particular
queue length (Qk

q), respectively. Constraint (9c) ensures that the guaranteed output BW is
allocated to all AMI traffic in the corresponding queues (Q). Finally, constraint (9d) and (9e)
ensures that the remaining portion of bandwidth (BWrem), i.e., non-negative, is allocated to
other public traffic that exists in the communication network, where BWrem is expressed in
(9f) below as:

BWrem = BWtot −
K

∑
k=1

3

∑
q=1

NSM

∑
i=1

BWk
i,q (9f)

4.4. Proposed Optimization Model

In this section, we provide details about the proposed optimization model (QoS-aware
HQS model) for AMI applications in this article that intends to guarantee the QoS levels
and reliability of different AMI traffics so that costs incurred in the cloud resource usage are
minimized and that the system performance is improved. As mentioned in Section 4.2, we
particularly focused on implementing the resource allocation and scheduling techniques
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in CHs, DC, and the main CCS during the transmission of AMI applications. Assuming
that these network devices have received the AMI traffic, there must be a mechanism to
determine their arrival order, accommodate buffer space (RAM), and allocate BW on a
priority basis before transmitting towards their destination in the Smart Grid network.
Therefore, the following necessary operations would be performed on the AMI traffic:

• The received traffic is classified into two traffic classes based on their characteristics.
• Further traffic characterization is employed to handle BW allocation.
• Different queues (M\M\1) are created based on priority levels of these traffic classes,

and AMI traffics are accommodated in these corresponding queues in a sorted order.
• A combination of queue scheduling schemes is used to serve AMI traffics based on

their priority metric assigned in these queues.

where the priority metric (Pk
i, q) of the ith AMI application traffic in the qth queue at

the kth device can be computed as:

Priority metric
(

Pk
i, q

)
=: (Pkt_Size × LR × PL)i (10)

where Pkt_Size represents the packet size, LR is the latency, and PL denotes the priority
level of the ith AMI application. These traffic characteristics are listed in Table 4, and
usually PL values are set by the network operator of the Utility provider. For clarity,
PL assists in the creation of priority queues (qth) in order to avoid conflict of the queue
allocation; that is, the queue contention of AMI application traffic requires priority-based
transmission without delay and packet loss, whereas the priority metric (Pk

i, q) computed in
Equation (10) above assists in scheduling the AMI traffic in priority queues. In the proposed
optimization model, four queues (Q = 1, . . . , 4) were created in buffer space at each device.
The incoming traffic from time-critical class applications such as RCC, PCC, EV charging,
and OA were accommodated into queue1 (Q1), which has the highest priority level, while,
traffic from the AMI applications such as ODMR, ODMRR, and billing information from a
non-critical class were placed into queue2 (Q2), which has the 2nd highest priority level.
Further, queue3 (Q3) was reserved for IMR application, which may tolerate delay up to
a few minutes during transmission and has the lowest priority level 3 in the AMI traffics.
Queue4 (Q4) was assigned to other public traffics. To serve these queues, we acquired a
hybrid queue scheduling model which operated as follows: First, non-preemptive priority
queue scheduling (NP-PQS) was applied to Q1 and Q2 using the priority metric for each
AMI traffic to ensure that time-critical traffic will be served first ahead of non-critical traffic
due to their tight latency boundary. Most importantly, NP-PQS is more useful for making
decisions on the order of traffic arrivals, which determines the priority level, RAM, and
BW allocation at the output link when congestion is experienced. In contrast, the FCFS
scheduling method (default) was applied to Q3, as the priority metric of all AMI traffics
are the same. Finally, other public traffic in Q4 were served after all AMI traffics were
scheduled and served.

As discussed above, we presented three algorithms to bring in practice the proposed
optimization model in order to solve the constraints of objective function. Below is the
pseudo code used in Algorithm 1 to classify the incoming AMI application traffic listed in
Table 4 at various devices in the hierarchical Smart Grid network.

Algorithm 1 begins with the assumption that three flags are added to the application
layer header in each packet using Line 3. In line 4, certain variables are initialized, including
a two-dimensional array (Q[4][S]) where four rows are created for four priority level queues,
and S represents the queue length in the buffer space. The incoming packets (Pkt) are read
in the next line of code according to the arrival pattern as defined in Equation (5) until the
loop condition remains true. Lines 6–14 are used to classify and assign the priority level
to each traffic class. This traffic differentiation can be conducted through the use of traffic
class (TC) and type of application (ToA) flags, which were already added in the packet
header. Next, incoming packets are placed into their respective queues based on priority
level (PL) and front (F) and rear (R) pointers in unsorted form using Lines 15–31. Finally,
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Algorithm 1 ends and returns the priority queues as output in the next lines of code. Once
traffic classification and queue formation are completed, next we present Algorithm 2 to
transmit and process both traffics (AMI and public) from these queues through queue
scheduling schemes (NP-PQS and FCFS) using the priority metric. The pseudo code in
Algorithm 2 is given below:

Algorithm 1: for classification of AMI applications traffic

Input: K, NSM, Pkt, S
1 Begin
2 insertTC, ToA, andPLflags into application layer header of Pkti
3 set n, i = 0; j = 1; ; Q[4][S] = ϕ; R1...4 = F1...4 = −1; ctr = ′start′;
4 L : while ctr ! =′ stop′ do
5 read ∑K

k=1 ∑NSM
i=1 Pktk

i,jusing Equation (5)
6 if Pkti.TC ==′ Time−Critical′ and Pkti.ToA ==′ RCC′ or ′PCC′ or ′EV charging′ or ′OA′ then
7 PL ← 1
8 else if Pkti.TC ==′ Non−Critical′ and Pkti.ToA ==′ ODMR′ or ′ODMRR′ or ′Bill Info′ then
9 PL ← 2
10 else if Pkti.TC ==′ Non−Critical′ and Pkti.ToA ==′ IMR′ then
11 PL ← 3
12 else
13 PL ← 4
14 end if
15 switch (PL) do
16 case 1 : queue(Pkti, R2, F1, 0) break;
17 case 2 : queue(Pkti, R2, F2, 1) break;
18 case 3 : queue(Pkti, R3, F3, 2) break;
19 case 4 : queue(Pkti, R4, F4, 3) break;
20 end switch
21 get ctr
22 end whie
23 void queue (Pkt, R, F, n) then
24 if R >= S then
25 Display “Queue Overflow”
26 else
27 if R == −1 then R = 0
28 Q[n][R] = Pkt
29 R ++
30 if F == −1thenF = 0
31 end if
32 Return Q[4][S]
33 End

Output : Save incoming packet Pkti in corresponding Queues

Algorithm 2 begins with the initialization of necessary variables in Line 2. Before the
transmission of AMI application traffic, Lines 3–14 are used to sort out the first two queues
in ascending order using the bubble sort method using the priority metric. However,
if more than one data packet has the same priority metric, then they are processed in
the order in which they have arrived in these queues. Next, if the queue is not empty,
using Line 15, a TCP\IP connection setup is initiated and established between the CH
and DC in Lines 15–19 using notations such as connection status (ConST), connection
request (ConRQ), and connection reply (ConRP). First, the time-critical traffic from queue-1
is scheduled and processed, and then queue-2 is scheduled with NP-PQS, respectively.
Similarly, queue-3 with IMR traffic and queue-4 with public traffic is scheduled with
FCFS scheduling, respectively. The output bandwidth is allocated to the outgoing packet
in Line 29. After successful transmission acknowledged with the (ACKRP) message, the
packet is removed from the corresponding queues, and the connection is terminated with
connection termination (ConTR) in Lines 30–33. However, if the connectivity fails, the CH
request will be either stored in the buffer state until it is time for the live (TTL) session to
expire, or it will try again using Lines 35–36. The algorithm returns nothing (null value) in
lines 38–41 if the queue is empty. Algorithm 2 returns the outgoing packet as the output
and ends in Line 41–42. Further, a similar procedure was adopted at the DC to transmit
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the AMI application traffic over the Internet towards the main CCS for further analysis
and processing. Lastly, Algorithm 3 is presented, which helps to simulate the proposed
optimization model using the CloudSim framework at the control center side. The pseudo
code is given below:

Algorithm 2: for prioritization and transmission of AMI applications traffic

Input: Q [4][S], Row, S, K, CH, DC
1 Begin
2 set Pkti,j = ϕ; Row = 0; Col = 0; Prio_metric = 0;
3 void SortPriorityQueue (Q[][], Row, Col) then
4 for (i = 0; i < Row; i ++) do //only first and second row (queue) will be sorted
5 for (j = 0; j < Col; j ++) do
6 for (n = 0; n < Col − j− 1; n ++) do
7 Calculate Prio_metric i,n and Prio_metric i,n+1using Equ.10 for Q[i][n] and Q[i][n + 1] respectively
8 If Prio_metric i,n > Prio_metric i,n+1then
9 swap (Q[i][n], Q[i][n + 1])
10 else if Prio_metric i,n == Prio_metric i,n+1 then
11 Display “Do nothing and proceed to next queue item”
12 end if
13 end for; end for; end for
14 Call SortPriorityQueue (Q[][], 2, S)
15 ifQ[Row][Col] ! = ϕ then
16 if ConST → DC =′ Disconnect′ OR !receive (ConRP)← DC then
17 send (ConRQ)→ DC
18 CHk ← receive(ConRP)
19 if ConRP == ′Allowed′then
20 for (i = 0; i < 4; i ++) do
21 for (j = 0; j < S; j ++) do
22 if i ! = 2 then
23 NP−PQS(Q [i][j])→ Pkti,j
24 send

(
Pkti,j

)
→ DC

25 else
26 FCFS(Q[i][j])→ Pkti,j
27 send

(
Pkti,j

)
→ DC using Equation (7)

28 end if
29 Allocate bandwidth BWout using Equation (8)
30 Q[i][j].remove()
31 end for; end for
32 CHk ← receive (ACKRP)
33 send(ConTR)→ DC
34 else
35 Retry or wait for CHkuntilTTL == 0; usingEquation(6)
36 end if
37 else
38 Display “Queue is empty”
39 Return Null;
40 end if
41 Return Pkti,j
42 End

Output: Save outgoing packet Pkti,j in the corresponding output interface

Algorithm 3 works in three parts to implement and simulate our objective function
expressed in Equation (9). In the first part, important variables are initialized in Line 3, and
incoming packets are read through Lines 4–8 until the loop condition remains true. Further,
Algorithm 1 is called to classify and accommodate the AMI traffic into corresponding
queues to satisfy constraint (9a). In the second part, Algorithm 2 is called in Line 9 to sort
out the AMI traffic based on priority metric in the corresponding queues so that constraint
(9b) is fulfilled. In the third part, Lines 10–38 are used to set up the cloud environment with
scheduling algorithms (NP-PQS and FCFS) at the CCS to ensure constraints (9c)–(9e). The
processed CloudletList is returned as output in Line 39, which shows that the optimization
problem has been solved, i.e., resource utilization costs are minimized in an efficient manner,
which results in saving money and time in the Smart Grid network.
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Algorithm 3: for simulation of QoS-aware HQS model at the cloud-based CC server

Input: K, NDC, NSM, Pkt, Row, S, RAM, HDD, BW
1 Begin
2 set n = i = j = 0; Q[Row][S] = ϕ; CloudletList = HostList = ϕ; ctr =′ start′; pesNo = 1;
3 while ctr ! =′ stop′ do

4 read ∑K
k=1

NDC
∑

j=1

NSM
∑

i=1
Pktk

i,jusing Equation (5)

5 call Algorithm 1 to classify and queue the incoming packets
6 get ctr
7 end whie
8 call Algorithm 2 and use Lines 2–14 to sort queue 1 & 2 respectively
9 ifQ[Row][S] ! = ϕ then
10 HostList = new Host(HostID, RAM, HDD, BW, PE(mips), new VMSchedularSpaceShared(PE))
11 Datacenter = new Datacenter(Name, Arch, OS, VMM, new VMAllocationPolicySImple, (HostList), HDD, 0)
12 Broker = new DatacenterBroker(“Broker”, BrokerID)
13 VMList = new VM(VMID, mips, BrokerID, size, RAM, BW, pesNo, VMM, new CloudletSchedulerSpaceShared())
14 Broker ← VMList (VM)
15 ifCloudletList == ϕthen
16 set Name← Pkt.ToA; Priority← Pkt.PL
17 CloudLetList = New Cloudlet(ID, Name, pesNo, Length, Filesize, OutputSize, Priority, new UtilizationModelFull())
18 repeat Pktn ∈ Q[Row][S] do
19 Map : Pktn → CloudLetn
20 CloudLetn ← BrokerID
21 CloudLetn ← VMID
22 switch (CloudLetn.Priority)do
23 case 1 : NP− PQS(CloudLetn) break;
24 case 2 : NP− PQS(CloudLetn) break;
25 case 3 : FCFS(CloudLetn) break;
26 case 4 : FCFS(CloudLetn) break;
27 end switch
28 CloudLetList.add(CloudLetn)
29 n ++
30 Untill n ≤ Q.Length− 1
31 else
32 Display “Queue is empty (nothing to process on server CPU)”
33 Return Null;
34 end if
35 Broker.submit(CloudletList)
36 start cloudsim.simulation()
37 stop cloudsim.simulation()
38 Return CloudletList
39 End

Output: Save incoming packet in the corresponding Queues and show the output as CloudLetList (requests)

4.5. A Walk-Through Example

In this section, we briefly present the working of our proposed optimization model to
clarify the concept and validate the findings extracted from a small-scale residential area, as
visualized in Figure 2. The IoT-based [33] Smart Grid hierarchical architecture is composed
of SMs, DC, and the main CCS. In the clustering topology, SMs are configured to submit
IMR data at fixed time intervals (e.g., 60 min) regularly and other metering data as needed
to their respective CHs, which then transmit them to the DC. The DC forwards them to the
main CCS over the Internet to access remote cloud services such as database application.

Therefore, an IoT-based architectural style (stateless client\server model) was adopted
in designing the network model and applications via a set of RESTful APIs that are imple-
mented using JavaScript-Node.js software. REST is a request-response IoT communication
model, which is deployed to provide network connectivity to on-premise SMs and make
available the cloud applications over the Internet as web services. This is why these SMs
are also known as REST clients, which communicate with the main CCS, also referred
as a REST server, using unique IP addresses in the TCP\IP network. The RESTful APIs
support various HTTP methods such as POST, GET, PUT, and DELETE to manipulate
a resource (software and hardware) of cloud environment. Multiple queries are passed
(pushed) via a set of RESTful APIs (web services) [41] using HTTP protocol to exchange
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metering data in a standard format (JSON) between SMs and the main CCS with minimum
efforts. Today, REST APIs are regarded as the “language of Internet”, as they are relatively
easier to implement, test, and maintain, which makes them a better choice in the deploy-
ment of real world IoT communication models. Further, RESTfull APIs are language- and
platform-independent, which works on top of HTTP-based standards and easily works
with firewalls. Therefore, for any change in the firmware upgrade, configuration, etc., of
the network devices, engineers need no manual intervention to change the parameters of
the proposed model.

Figure 2. A walk-through example of QoS-aware HQS model using cloud computing.

However, the devices in an IoT-based Smart Grid network are mostly resource-
constrained, having limited CPU processing, RAM and BW capabilities, and different
operational behaviour. REST architecture uses HTTP-based protocol, which requires exten-
sive computational and memory capabilities to provide resources in the IoT-based Smart
Grid network. Thus, it will be difficult for devices with limited resource capabilities to
support HTTP-based RESTful APIs. Therefore, our proposed optimization model was
employed aiming to optimize the resource allocation with QoS provisioning to AMI applica-
tions in the underlying IoT network. In the following example, we show that the metering
data of seven SMs are listed in Table 5 and data were uploaded via a set of HTTP-based
RESTful APIs methods to the cloud-based CCS (REST Server), as visualized in Figure 2.
The received metering data were processed in real time and stored in a database application
that was created in the Microsoft SQL server for future usages and analytics.

For instance, in Table 5 above SM1, (REST client) uses the HTTP-based POST method
to submit request (R1), that is IMR data in a JSON string (packet) with associated properties
and values by creating the URL: (http://192.168.1.1:9000/MeterReadAPI/NormalRead) in a
browser as shown in Figure 3 below.

http://192.168.1.1:9000/MeterReadAPI/NormalRead
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Table 5. An example of metering data exchanged via RESTful APIs.

SM ID REST
API

AMI
Application Detail of Request (Rn) Date and Time Season and

Hour Type
Packet
(Bytes) Latency Priority

Level

SM 1 POST IMR
(Non-Critical) R1 = Current read 543

18 August
20211

6:30:11 PKT

Summer
Peak 250 60 min 3

SM 2 POST RCC
(Time-Critical) R2 = Hardware Crash 18 August 2021

15:20:26 PKT
Summer

Peak 100 1 s 1

SM 3 GET ODMR
(Non-Critical) R3 = Current Read? 18 August 2021

14:17:39 PKT
Summer

Peak 100 <15 s 2

SM 4 POST IMR
(Non-Critical) R4 = Current read 820 18 August 2021

14:05:41 PKT
Summer

Peak 250 60 min 3

SM 1 GET RCC
(Time-Critical)

R5 = = Remote
Disconnect

18 August 2021
13:27:54 PKT

Summer
Peak 100 1 s 1

SM 5 POST OA
(Time-Critical) R6 = Outage Detection 18 August 2021

13:15:56 PKT
Summer

Peak 50 3 s 1

SM 3 POST ODMRR
(Non-Critical) R7 = Current read 234 21 August 2021

12:31:16 PKT
Summer
Off-Peak 100 30 s 2

SM 6 DELETE RCC
(Time-Critical) R8 = Hardware Crash 21 August 2021

12:31:18 PKT
Summer
Off-Peak 100 1 s 1

SM 3 POST OA
(Time-Critical) R9 = Outage Restoration 21 August 2021

12:31:33 PKT
Summer
Off-Peak 50 3 s 1

SM 7 GET RCC
(Time-Critical) R10 = OS Update 21 August 2021

11:44:13 PKT
Summer
Off-Peak 100 1 s 1

Figure 3. An example of the JSON packet generated by a smart meter (SM).

Similarly, a RESTful API status line with code (HTTP\1.0 200 OK) in data acknowledge-
ment (response) indicates that the POST request is received successfully at the cloud-based
REST server. A different status code requires retransmission of the POST request. Now, the
received requests are processed according to the proposed optimization model based on
Algorithms 1, 2 and 3, respectively. The time-critical requests (R2,R5,R6,R8,R9,R10) having
the highest priority level of 1 are stored in queue1 (Q1), and the non-critical requests (R3,
R7) with the priority level of 2 are assigned to queue2 (Q2). Similarly, the remaining non-
critical requests (R1,R4) are placed into queue3 (Q3), which has the lowest priority level of
3. Further, Q1 and Q2 are scheduled through the NP-PQS method based on the priority
metric of each request, which is computed upon packet size, latency, and priority level, as
expressed in Equation (10) and shown in Table 6 below. In addition, Q3 is scheduled on an
FCFS basis. Public traffic is not considered in this example.
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Table 6. Output of the proposed optimization model.

SNO. AMI Application/Request (Rn) Priority Metric Description

1 R5 100 R5 will be processed 1st
2 R6 100 R6 . . . . . . . . . . . . . . . 2nd
3 R9 100 R9 . . . . . . . . . . . . . . . 3rd
4 R2 150 R2 . . . . . . . . . . . . . . . 4th
5 R8 150 R8 . . . . . . . . . . . . . . . 5th
6 R10 150 R10 . . . . . . . . . . . . . . . 6th
7 R3 1000 R3 . . . . . . . . . . . . . . . 7th
8 R7 6000 R7 . . . . . . . . . . . . . . . 8th
9 R1 2,700,000 R1 . . . . . . . . . . . . . . . 9th
10 R4 2,700,000 R4 . . . . . . . . . . . . . . . 10th

In this fashion, the resources are allocated in an optimized manner to these requests in
order to ensure the QoS levels in terms of latency and throughput at the cloud-based REST
server. The benefits of our proposed optimization model are that it is easier to design and
can be deployed to any region in the Smart Grid network in a cost-effective manner.

5. Simulation and Performance Evaluation

This section presents details about the simulated cloud computing model for AMI
applications by using the CloudSim simulator. The simulation results obtained show the
correctness and effectiveness of our proposed optimization model.

5.1. Simulation Model

The CloudSim [26] simulator was used to simulate and estimate the performance of
our QoS-aware HQS model as mathematically expressed in Equation (9). Further, CloudSim
is a de facto and open-source Java-based platform (API) that allows the researcher and
cloud developers in the simulation, experimentation, and modeling of the computing
server (hardware) as Infrastructure as a Service (IaaS) [42] and services in the cloud envi-
ronment. There are many cloud simulation tools, and among them, 18 [43] are extensions
or derivatives of CloudSim. In addition, CloudSim incurs no installation and maintenance
cost, is easy to use, is scalable, and helps to evaluate bottlenecks in earlier stages before
deployment over the real-world cloud systems of both public and private cloud providers.

Since the cloud infrastructure provides “pay as per usage” services, it is necessary to
optimize the resources in order to assess RAM, BW, and CPU processing for the control
center to the SMs network communication. This can be accomplished via optimal resource
allocation and scheduling algorithms in order to reduce money (cost) and time for organi-
zations in cloud environment. The CloudSim classes are extended and modified for the
proposed optimization model, and details are given in Table 7 below.

Table 7. Details of the simulated Cloud.

Cloud Classes Value

Data Centre 1
Physical host 1
Broker 1
VM 2
Cloudlets 100–500

More precisely, a Data Centre was created and configured that has enough processing,
storage, RAM, and BW capabilities to store and process metering data from multiple
residential areas into a cloud-based database application. Further, Data Centre manages
one host (physical server). Each host consists of a single or multiple CPU cores that are
characterized by processer speed (i.e., MIPS), RAM, physical storage (i.e., HDD), and BW.
An allocation policy in the Host decides how many CPU cores, CPU shares, and memory
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will be allocated to a designated VM. The Cloud simulation parameters are set on a personal
laptop with configuration details, as given in Table 8 below.

Table 8. Configuration details of the Host in a Data Centre.

Cloud Server Configuration

Architecture X64
Processor (CPU) Intel(R) Core™ i5-8250M CPU@ 1.60 GHz 1.80 GHz
Processor speed (MIPS) 1000
RAM 8 GB
HDD 1000 GB
BW 50 Mbps
Operating system Windows 10 Pro

One broker and two VMs were created for the Data Centre. The VM were assigned to
the broker and each VM had the following configurations:

• VMM: “Xen”;
• VM RAM: 1 GB;
• VM processor speed: 300 MIPS;
• VM Scheduling policy: Time-shared;
• VM Image size: 512 MB;
• VM BW: 10 Mbps.

We created a pool of cloudlets that are defined in CloudSim as jobs\tasks in order
to respond to specific incoming REST requests (AMI traffics) from REST clients. These
incoming requests are managed by a broker with publish\subscribe protocols. Each
cloudlet has the following configurations:

• File input size: 300 kb;
• Instruction length: Random (100–40,000);
• File output size: 300 kb.

We varied the number of cloudlets randomly according to the number of incoming
REST requests that were received by the VMs. The CPU core allocation is managed by
a VM Scheduler class that implements either the default time-shared or space-shared
policy and can be modified to implement custom CPU allocation policies. The broker
executes each cloudlet on VM according to a provisioning policy (e.g., space-shared) on
resources of the physical Host in the Data Centre, since our cloud-based simulation model
uses the CloudSim tool that requires a Java Runtime Environment (JRE) working in the
cloud computing system. In addition, the CloudSim tool has no support for GUI, so an
IDE such as Eclipse is required for the simulation model development in Java Language.
Further, since CloudSim has no hardware constraint but a computer system with dual-core
processing, 1 GB storage and 2 GB RAM will be good enough to run the simulation model
with complex cloud scenarios. However, due to a lack of CloudSim support for distributed
and parallel execution in memory systems, our simulation model is susceptible to support
these execution techniques.

5.2. Simulation Results and Discussion

To evaluate the performance of our proposed optimization model (detailed in Section 4.4),
we used a simulated cloud model. We used varying number of cloudlets in order to compute
the cloud resources such as RAM, CPU, and BW demanded by each cloudlet. Moreover,
the simulation results were quantified and compared to make sure that objective function
developed for the AMI applications behaved as expected. After running the simulation
model (detailed in Section 5.1), we obtained the following simulation results.
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Objective Function: The Cost Minimization

During this simulation, we tried to validate the effectiveness of our proposed optimiza-
tion model to achieve objective function, or the cost minimization, which is mathematically
formulated using Equation (9) to demonstrate the optimal utilization in terms of RAM, BW,
and CPU processing during the overall execution of cloudlets in the cloud environment.
For this, in each simulation run, we took five sets with different ranges of cloudlets each
consisting of 100, 200, 300, 400, and 500 cloudlets. In addition, each simulation run was
carried over different settings of VMs and cloudlets having random lengths acquired by
the queue scheduling schemes, i.e., FCFS [7], Priority-Based [8], and QoS-aware HQS in
this article, whereas the cost incurred per cloud resource (CPU, RAM and BW) in each VM
can be defined by the following three Equations (11)–(13), respectively.

CCPU(VMi) =

(
Actual used CPU(MIPS)by Cloudlets

Total CPU(MIPS)
in VMi

)
∗CostPerMIPS (11)

CRAM(VMi) =

(
Actual used RAM by Cloudlets

Total RAM capacity
in VMi

)
∗CostPerRAM (12)

CBW(VMi) =

(
Actual used BW by Cloudlets

Total BW capacity
in VMi

)
∗CostPerBW (13)

Ctotal(VMi) = (CCPU + CRAM + CBW) in VMi (14)

We set CostPerMIPS to 3.0 per second, CostPerRAM to 0.05 per megabyte, and
CostPerBW to 0.1 per mega bit per second. Equation (14) presents the total cost, which
is the sum of the CPU processing cost, RAM cost, and BW cost incurred during the
scheduling and processing of cloudlets in VMs. The results obtained in each simulation
run are tabulated in Table 9 below.

Table 9. Cost of cloud resources in QoS-aware HQS Model compared with state-of-the-art
scheduling schemes.

Simulation
Run

Number of
Cloudlets

FCFS (Basic) [7] Priority-Based [8] QoS-Aware HQS Model

CPU RAM BW CPU RAM BW CPU RAM BW

1 100 50 0.88 5 40 0.68 3 30 0.49 1
2 200 100 1.76 10 80 1.37 6 60 0.98 2
3 300 150 2.64 15 120 2.05 9 90 1.46 3
4 400 200 3.52 20 160 2.73 12 120 1.95 4
5 500 250 4.39 25 200 3.42 15 150 2.44 5

The simulation results shown in Figure 4 below are detailed above in Table 9. Figure 4
depicts the effect of different cloudlet ranges on the VM CPU processing cost. As the
cloudlet size increases from 100 to 500, the cost of VM CPU processing is increased due to
the number of instructions increased in cloudlets, i.e., more instructions will be transferred
to VM CPU cores for processing. For example, for 100 cloudlets in 2 VMs hosted by 1 Host,
the CPU processing cost incurred by FCFS is 50, while it is 40 in a Priority-Based scheme
respectively. Similarly, the cost of CPU processing for 100 cloudlets by the QoS-aware HQS
model is 30, which is less expensive than the other two scheduling algorithms. Further, we
noticed the same less CPU processing cost with 200, 300, 400, and 500 cloudlets compared
to other scheduling algorithms.
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Figure 4. VMs CPU processing cost vs. number of cloudlets.

Figure 5 renders the plot of VM RAM cost against a different set of cloudlets. The
comparison of VM RAM cost incurred in the cloudlet execution reveals that the RAM cost
was greater in the FCFS and Priority-Based scheduling scheme than our proposed scheme.
For example, when the number of cloudlets are 100 (at RAM = 1024), the QoS-aware HQS
scheme incurs 0.49 VMs RAM cost, which is 23.9% of the total VM RAM cost, as compared
with the FCFS, which is 0.88 (42.92%), and Priority-Based is 0.68 (33.17%). Similar VM
RAM cost trends have been deduced for cloudlet sets consisting of 200, 300, 400, and 500.

Figure 5. VM RAM cost vs. number of cloudlets.

Figure 6 plots the effects of VM BW cost on processing different sets of cloudlets.
As the number of cloudlets increases, the cost of BW is much higher in the FCFS and
Priority-Based scheme than in our proposed QoS-aware HQS scheme. The reason behind
lower cost in terms of BW is that as we employed traffic classification and prioritization
for AMI application traffic, which efficiently utilizes the BW and results into lower cost
of BW. For example, at Cloudlets = 100, the BW cost of our proposed QoS-aware HQS
scheme is 3× times lower than the Priority-Based and 5× times lower than the FCFS-based
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scheduling scheme. This is due to the FCFS and Priority-Based scheme sharing a single
queue for all traffic, which leads to a queue contention problem. As a result, forwarding
traffic flows may not be able to obtain enough BW, i.e., loss of BW occurs due to traffic
contention, which increase the use of BW and its cost in resources. These simulation results
confirm the effectiveness of our proposed scheme in this article.

Figure 6. VMs bandwidth cost vs number of cloudlets.

Similarly, Figure 7 below depicts the overall cost comparison based on Equation (14)
in percentile form, e.g., our proposed model significantly reduced cost to 24% compared to
the other existing schemes, which shows its effectiveness and successful achievement of
the objective function, as expected in the cloud-based Smart Grid network.

Figure 7. Overall VM cost comparisons.

By comparing all these simulation results, we can deduce that our proposed optimiza-
tion model efficiently utilized the cloud resources as expected, since it incurred lower costs
in terms of CPU, RAM, and BW such that the cost minimization objective was successfully
achieved and the target QoS requirements of all AMI application traffic were satisfied.
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6. Conclusions and Future Work

In this article, we presented a novel optimization model for AMI application traffic in
the Smart Grid network. The proposed optimization model relies on an IoT-based network
coupled with cloud computing, which enables the Utility control center to remotely monitor
and access the SMs in urban areas. SMs in the Smart Grid network generate a large amount
of metering data (traffics) that heavily rely on adequate network infrastructure, including
enough memory, storage, computing servers with higher processing, and bandwidth
capabilities to cope with the target QoS requirements in the Smart Grid network. Therefore,
we mainly focused on the optimal cloud resource allocations, which is the optimization
problem. For this, we defined an objective function, a mathematical model, in order to
reduce the costs incurred in terms of CPU processing, memory, and bandwidth during
a wide number of system loads (cloudlets). To achieve this, we developed a QoS-aware
HQS scheme which classified the AMI application traffic into two different traffic classes,
namely time-critical and non-critical. In addition, the traffic from these classes were queued
into four different priority queues, namely critical queue, normal queue, periodic queue,
and public traffic queue with priority levels 1, 2, 3, and 4, respectively. Priority metric
was computed based on the packet size, latency, and priority level of each traffic and was
assigned to traffic in each queue. First, the NP- PQS scheme was used to schedule the
traffic from the critical and normal queue, respectively, while the FCFS queueing discipline
was applied to the periodic queue and public traffic queue, respectively. The proposed
optimization model was implemented on a CloudSim simulator. Moreover, the efficiency
and performance of our proposed optimization model was quantified and compared with
other state-of-the-art scheduling scheme costs via simulation results. Finally, the simulation
results confirmed that the proposed optimization model showed better cost reduction in
terms of VM CPU processing, VM RAM, and VM BW on various lengths of cloudlets, as
compared with the existing schemes. This cost evaluation is beneficial for researchers and
organization in making decisions from a business perspective regarding deploying AMI
applications on cloud frameworks, as it saves lots of time and money. At the end, we can
deduce that the optimization model we developed for the AMI applications in the Smart
Grid network behaves as expected.

Future Work—Our proposed optimization model integrates the emerging IoT technol-
ogy with the cloud computing for client-server communication of AMI applications traffic
in the Smart Grid network. The IoT framework is vulnerable to various security threats
and becomes a challenging task to uncover malicious activities involving things such as
consumers, SMs, DCs, and computing servers connected via the Internet in the world of
the IoT-based Smart Grid. Therefore, lightweight security features are necessary to restrict
malicious objects from establishing multiple connections with the network devices at a
given time to avoid limited resource exhaustion (e.g., misconfiguration of firmware, etc.)
and a DDoS attack. How our proposed scheme can address these security threats is a topic
to be investigated in future work.
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