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Background: Early detection and prompt intervention for clinically deteriorating events are

needed to improve clinical outcomes. There have been several attempts at this, including

the introduction of rapid response teams (RRTs) with early warning scores. We developed a

deep-learning-based pediatric early warning system (pDEWS) and validated its

performance.

Methods: This single-center retrospective observational cohort study reviewed, 50,019 pe-

diatric patients admitted to the general ward in a tertiary-care academic children's hospital

from January 2012 to December 2018. They were split by admission date into a derivation

and a validation cohort. We developed a pDEWS for the early prediction of cardiopulmo-

nary arrest and unexpected ward-to-pediatric intensive care unit (PICU) transfer. Then, we

validated this system by comparing modified pediatric early warning score (PEWS), random

forest (RF); an ensemble model of multiple decision trees and logistic regression (LR); a

statistical model that uses a logistic function.

Results: For predicting cardiopulmonary arrest, the pDEWS (area under the receiver oper-

ating characteristic curve (AUROC), 0.923) outperformedmodified PEWS (AUROC, 0.769) and

reduced the mean alarm count per day (MACPD) and number needed to examine (NNE) by

82.0% (from 46.7 to 8.4 MACPD) and 89.5% (from 0.303 to 0.807), respectively. Furthermore,

for predicting unexpected ward-to-PICU transfer pDEWS also showed superior perfor-

mance compared to existing methods.

Conclusion: Our study showed that pDEWS was superior to the modified PEWS and pre-

diction models using RF and LR. This study demonstrates that the integration of the

pDEWS into RRTs could increase operational efficiency and improve clinical outcomes.
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At a glance commentary

Scientific background on the subject

Early detection and prompt intervention for clinically

deteriorating events are highly required to improve

clinical outcomes. For this purpose, early warning scores

were developed and rapid response teams are intro-

duced. However, there have been some limitations to be

effectively operated.

What this study adds to the field

In this study, we developed a deep-learning-based pe-

diatric early warning system (pDEWS) for detecting

clinical deteriorating events, which outperformed pre-

viously used early warning scoring systems. This study

demonstrates that the use of the pDEWS could be

promising to improve clinical outcomes.
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Hospitalized children are inevitably susceptible to clinical

deterioration, which leads to potentially devastating conse-

quences [1]. The early detection of prodromal signs of clinical

deterioration for prompt intervention is important to improve

clinical outcomes [2e4]. There have been several attempts to

address this, including the introduction of rapid response

teams (RRTs) in hospitals [5e9]. However, it is still challenging

to efficiently operate an RRT. There are several afferent and

efferent components, such as prompt tracking and detection

of the early signs of clinical deterioration, proper triggering of

team activation, and timely qualified intervention. In terms of

the afferent limb of RRTs, most institutions have their own

criteria including concerns from physicians, nurses, and

family members or subjective assessment with or without

systematic early warning scores (EWSs) [10e15]. However, an

effective RRT operation has several barriers associated with

personnel factors, including interpersonal differences in

knowledge, awareness, training level, confidence, cultural

background, hierarchies, inaccurate recording of data, and

erroneous calculation of EWSs [16e18].

Recently, there has been a marked evolution in the field of

artificial intelligence and machine learning (ML), which can

use a huge amount of data, extract essential information, and

find and learn significant patterns. It has rapidly revolution-

ized and changed numerous aspects of daily life so much so

that sometimes it has been used to replace a human [19,20]. In

medicine, it has shown remarkable performance in several

healthcare domains, including cancer diagnosis, triage de-

cisions and classification in emergency departments, and

precise prediction of critical events [21e24]. However, there

are few studies on the use of ML in pediatric critical care.

In this study, we aimed to develop a deep-learning-based

pediatric early warning system (pDEWS) and evaluated its

performance in predicting cardiopulmonary arrest and un-

expected ward-to-pediatric intensive care unit (PICU) trans-

fers in general-ward-hospitalized pediatric patients and its
effectiveness as an afferent limb of RRT operations compared

to other prediction models.
Methods

Study population

We conducted a retrospective observational cohort study of

pediatric patients admitted to the general ward of Asan

Medical Center Children's Hospital between January 2012 and

December 2018. This is a tertiary academic children's hospital

with 176 beds for general ward inpatients and a 25-bed

multidisciplinary medical-surgical PICU. This study was

approved by the institutional review board of Asan Medical

Center, Seoul, Korea (2019e0137). The requirement for

informed consent was waived due to the retrospective nature

of the study. We excluded patients with measured and

recorded data lengths of less than 30 min, no vital sign data

measured 24 h before events, and missing demographic data,

and patients with do-not-resuscitate orders. Patient infor-

mation was anonymized and de-identified before analysis.

The study population was split into derivation and validation

cohorts according to the admission period: the derivation

cohort consisted of patients admitted from January 2012 to

December 2016 and the validation cohort consisted of patients

admitted from January 2017 to December 2018. All patients

were only included in either the derivation or validation

cohort; thus, the cohorts were mutually exclusive.

Data collection and processing for ML

In this study, we defined critical events as cardiopulmonary

arrest or unexpected ward-to-PICU transfer. Unexpected

ward-to-PICU was defined as “PICU admission due to acutely

deteriorating clinical conditions”, which excluded PICU ad-

missions for routine scheduled postoperative care or sched-

uled procedures. We collected data including age, sex, the

occurrence of events, exact time and location of event oc-

currences, length of hospitalization, and five time-stamped

basic vital signs (systolic blood pressure (SBP), diastolic

blood pressure (DBP), heart rate (HR), respiratory rate (RR), and

body temperature (BT)) measured during the period from

admission to either event occurrence or discharge, from

electronic medical record (EMR) sources. For data cleaning,

considering the possibility of errors by clinical providers when

generating EMR data, we set vital signs that were extremely

outside their age-adjusted normal range as missing values. In

cases of missing data, we used the most recently measured

values. Also, if there were no past values, we used the median

value of the corresponding vital sign. The ranges of outliers

and missing rates of each variable are presented in Table A.1.

Development of the pDEWS

We developed a pDEWS using Python 3.0 and the TensorFlow

13.1 package. While designing the pDEWS, we considered that

the structure of the data are a time-series data. In otherwords,

the order of the data is important information for themodel to

effectively predict the outcome. Therefore,we chose recurrent

https://doi.org/10.1016/j.bj.2021.01.003
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neural network with long short-term memory units (LSTM)

which is one of the most powerful choices of deep learning

models in addressing sequential data. Also, in real practice,

the physician attends the electronic medical record data in

reverse time order. Thus, we have used bidirectional LSTM

instead of traditional LSTM to provide additional context to

the network. Furthermore, we have assumed the number of

layers and the number of hidden units as hyperparameters

and tuned them using 10% of the derivation cohort data. As a

result, pDEWS consists of three bidirectional recurrent neural

network layers with LSTM units, three fully connected layers

with rectified linear units, dropout and batch normalization

on each fully connected layer, and a softmax layer at the end

to output a score between zero and one.

We tested the model configuration by using 10% of the

derivation dataset. We have changed the learning rate, num-

ber of batch sizes, the rate of dropout, number of output di-

mensions, number of layers, and the length of the window.

The hyperparameterswere selected through a randomsearch,

which is known to be the most effective hyperparameter

tuning method in the context of deep learning. In particular,

the performance of the model was sensitive to the learning

rate: we started from 0.3, 0.2, 0.1, 0.01, and 0.001 and found

that 0.001 was the most effective. Furthermore, we found that

the complexity of the model and the regularization methods

were effective in training the deep learning model. For iden-

tifying the optimal complexity of the model, we evaluated the

output dimension (16, 32, 64, 128, and 256) and the number of

layers (1, 2, 3, 4, and 5). Furthermore, we tested the window

length by incrementing the length using 1,5, 10, 20, 30, 50, and

100. Finally, we found that the model was most effective at a
Fig. 1 The development process of the deep-learning-based pediat

BN: batch normalization; BI-LSTM: bidirectional-long short-term

blood pressure; DBP: diastolic blood pressure; BT: body temperatu
window length of 20. Although window lengths of 30 and 50

were similar to that of 20, we decided to set the length to 20

measurements since it requires more data. Thus, the LSTM

units used time-series data from the previous 20 consecutive

serial data as an input [Fig. 1]. We defined the prediction

window for events as the interval from 0.5 to 24 h before the

events. For patients with an event, the vital sign data within

the prediction window were labeled as “event” and others

were labeled as “non-event”. Then, the pDEWS was trained

using data from five time-stamped basic vital signs from the

derivation cohort by Adam optimization with default param-

eters and with binary-cross entropy as a loss function [25,26].

Each time we changed one of the parameters we trained our

model for 1000 epochs and selected the model with the

highest area under the receiver operating characteristic curve

(AUROC) in the validation data. For tuning the machine

learning models (i.e., logistic regression (LR) and random for-

est (RF)) we used grid search and similarly selected the model

with the highest AUROC in the validation data.

Test of pDEWS performance and statistical analysis

Data analysis was performed using the Statistical Package for

the Social Sciences (SPSS version 21.0 for Windows; IBM,

Armonk, NY) and a scientific computing package (SciPy 1.0;

community-driven project sponsored by NumFOCUS). We

validated the newly developed pDEWS using a validation

cohort, which was not used in the development of the pre-

diction system. Model performance was assessed based on

discrimination using the AUROC and area under the

precisionerecall curve (AUPRC). AUROC is measured from a
ric early warning system using five vital signs. Abbreviations:

memory; HR: heart rate; RR: respiratory rate; SBP: systolic

re.
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Fig. 2 A flow diagram for patient inclusion and exclusion.
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plot of sensitivity against 1-specificity. Compared with the

AUROC, the AUPRC is suitable for verifying false-positive rates

with varying sensitivity and shows precision (i.e., 1-false

alarm rate) against recall (i.e., sensitivity). It was calculated

assuming a skewed large domain of true negatives. We also

evaluated the positive predictive value (PPV ¼ true positive/

(true positive þ false positive)), negative predictive value

(NPV¼ true negative/(true negativeþ false negative)), positive

likelihood ratio (PLR ¼ sensitivity/1 e specificity), negative

likelihood ratio (NLR ¼ 1 - sensitivity/specificity), F-score (2 x

(precision x recall)/(precision þ recall)), net reclassification

index (NRI), mean alarm count per day (MACPD), and number

needed to examine (NNE) [27e32]. The NRI is used to compare

the improvement in prediction performance gained.

We also compared the performance of the pDEWS to that of

other conventional ML methods, such as RF- and LR-based pre-

diction models and themodified PEWS score. RF and LR are the

representative models in machine learning. RF is an ensemble

model of multiple decision trees. Each tree is constructed by

computing theentropyof eachclass, inotherwords, bychoosing

the feature which can most effectively split the dataset into

different classes. After multiple trees are constructed, each of

themoutputsaclasspredictionandtheclasswiththemostvotes

becomes the final prediction value. LRmodels the probability of

each class by combining input values linearly usingweights and

transforms the output into a binary value using a logistic func-

tion.ThemodifiedPEWSwasdefinedasascore including thefive

vital sign parameters (HR, RR, SBP, oxygen saturation, and tem-

perature) of the original PEWS [11] [Table A.2].
Results

Study population

Among the 51,536 patients admitted, 1,518 were excluded.

Finally, 50,019 patients were included [Fig. 2]. The derivation

cohort included 28,857 patients, with 75 cases of cardiopul-

monary arrest and 337 cases of unexpected ward-to-PICU
transfers. The validation cohort included 21,162 patients

with 37 cases of cardiopulmonary arrest and 346 cases of

unexpected ward-to-PICU transfers. Most parameters showed

a significant difference between the derivation and validation

cohorts, which showed that the two cohorts comprised pop-

ulations with different characteristics [Table 1].
Validation of the pDEWS

The pDEWS yielded an AUROC of 0.923 (95% CI, 0.918e0.929)

and 0.911 (95% CI, 0.906e0.917) in predicting cardiopulmonary

arrest and unexpected ward-to-PICU transfers, respectively.

These were larger than those of the RF model, the LR model, or

the modified PEWS [Fig. 3]. The AUPRCs of the pDEWS in pre-

dicting cardiopulmonary arrest and unexpected ward-to-PICU

transfers was 0.039 (95% CI, 0.036e0.045) and 0.155 (95% CI,

0.144e0.167), respectively. These were also larger than those of

the RF model, the LR model, or the modified PEWS [Table 2].

We evaluated the sensitivity, specificity, PLR, NLR, PPV,

NPV, F-score, MACPD, and NNE by each cut-off value for the

prediction of cardiopulmonary arrest [Table 3] and unex-

pected ward-to-PICU transfers [Table 4]. Given that the cut-off

value of the pDEWS was 95, it showed the best F-score, cor-

responding to the most acceptable PPV and NPV for clinical

integration. It also showed an acceptable MACPD (9.8 for car-

diopulmonary arrest and 9.5 for unexpected ward-to-PICU

transfers) with the highest PLR and NLR and acceptable

specificity and sensitivity for both critical events.

In the paired comparison at the same specificity to the

modified PEWS and prediction models using RF or LR, the

pDEWS showed superior performance than others with the

highest sensitivity, PLR, PPV, F-score, and NRI, and the lowest

NLR and NNE, in both critical events. In predicting cardiopul-

monary arrest, the pDEWS showed improvements in the

sensitivity of up to 237.5%, in PLR of up to 518%, and in an NLR

of up to 94.2% compared to the modified PEWS [Table 5]. In

terms of unexpected ward-to-PICU transfers, the maximum

improved sensitivity, PLR, and NLR were 2118.1%, 2793.1%, and

89.7% compared to the modified PEWS, respectively [Table 6].

https://doi.org/10.1016/j.bj.2021.01.003
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Table 1 Baseline characteristics of the study population.

Baseline characteristics Derivation cohort (n ¼ 28857) Validation cohort (n ¼ 21162) p-value

Total admissions, n 28857 21162 e

Vital sign data set, n 978684 797172 e

Admissions with unexpected PICU transfer 337 346 <0.001
Vital sign data set, n 2849 2541 e

Admissions with in-hospital cardiac arrest, n 75 37 <0.001
Vital sign data set, n 2230 1175

Male, n (%) 16155 (56.0) 11597 (54.8) 0.008

Age, year (mean ± SD) 6.08 ± 5.73 6.29 ± 5.54 <0.001
Length of stay, median (IQR) 3.62 (1.7e6.7) 3.67 (1.7e7.6) <0.001
Initial vital signs, mean ± SD

Systolic blood pressure (mmHg) 106.61 ± 13.41 105.16 ± 13.27 <0.001
Diastolic blood pressure (mmHg) 65.23 ± 12.31 65.52 ± 11.20 0.008

Heart rate (bpm) 116.12 ± 25.27 115.31 ± 24.28 <0.001
Respiratory rate (breaths/min) 28.60 ± 8.87 27.95 ± 8.43 <0.001
Body temperature (C) 36.67 ± 0.53 36.68 ± 0.50 0.003

Lactate 2.70 ± 2.41 2.73 ± 2.50 0.875

SpO2 94.54 ± 11.10 94.34 ± 10.91 0.894

Vital signs within 24 h before outcome, mean ± SD

Systolic blood pressure (mmHg) 86.23 ± 22.65 84.91 ± 21.69 0.174

Diastolic blood pressure (mmHg) 46.72 ± 16.06 48.99 ± 13.78 <0.001
Heart rate (bpm) 134.24 ± 31.44 141.85 ± 31.48 <0.001
Respiratory rate (breaths/min) 33.80 ± 10.65 30.98 ± 9.74 <0.001
Body temperature (�C) 36.40 ± 0.92 36.18 ± 1.22 <0.001
Lactate 3.64 ± 3.76 2.50 ± 2.11 <0.001
SpO2 81.01 ± 21.49 90.54 ± 15.48 <0.001

Total vital signs, mean ± SD

Systolic blood pressure (mmHg) 103.81 ± 15.37 102.62 ± 14.71 <0.001
Diastolic blood pressure (mmHg) 61.36 ± 13.25 61.66 ± 12.52 <0.001
Heart rate (bpm) 114.49 ± 27.15 113.36 ± 25.82 <0.001
Respiratory Rate (breaths/min) 27.72 ± 8.78 27.70 ± 8.38 0.083

Body temperature (C) 36.72 ± 0.61 36.74 ± 0.61 <0.001
Lactate 1.93 ± 2.12 1.82 ± 1.92 <0.001
SpO2 94.96 ± 9.68 94.81 ± 9.04 <0.001

Causes of admission, n (%) <0.001
For operation 4601 (21.7) 6928 (24.0)

Hemato-oncologic disorders 4619 (21.8) 5099 (17.7)

Cardiac disorders 2957 (14.0) 3975 (13.8)

Neurologic disorders 2147 (10.1) 3765 (13.0)

Renal disorders 1361 (6.4) 2472 (8.6)

Gastrointestinal disorders 1755 (8.3) 1826 (6.3)

Respiratory disorders 1026 (4.8) 1995 (6.9)

Endocrinologic/genetic disorders 1714 (8.1) 1056 (3.7)

Infectious diseases 572 (2.7) 1224 (4.2)

Others 410 (1.9) 517 (1.8)

Abbreviations: n:number; PICU:pediatric intensive care unit; SD: standard deviation; IQR: interquartile range.
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The pDEWS provided a much lower MACPD for both car-

diopulmonary arrest and unexpected ward-to-PICU transfers

under the same sensitivity than the modified PEWS or pre-

dictionmodels with RF or LR [Fig. 4]. It markedly reduced false

alarms in the detection of cardiopulmonary arrest by 82.0%

(from 46.7 to 8.4 MACPD), 64.5% (from 23.7 to 8.4 MACPD), and

68.7% (from 26.9 to 8.4 MACPD) compared to the modified

PEWS and prediction models by RF or LR, respectively. In the

detection of unexpected ward-to-PICU transfers, the pDEWS

showed a reduction in false alarms by 100% (from 3.5 to 0.0

MACPD), 66.3% (from 9.2 to 3.1 MACPD), and 100% (from 0.1 to

0.0 MACPD) compared to the modified PEWS and prediction

models by RF or LR, respectively. The pDEWS also showed the

highest sensitivity at the same NNE compared to the modified
PEWS and prediction models by RF or LR [Fig. 5]. In particular,

pDEWS showed at most 89.5% (from 0.303 to 0.807) at a NNE of

43, 43.3% (from 0.335 to 0.591) at a NNE of 52, and 51.2% (from

0.288 to 0.591) at a NNE of 52 compared to the modified PEWS

and prediction models by RF or LR, respectively for detecting

cardiopulmonary arrest. Furthermore, in the detection of

unexpected ward-to-PICU transfers, the pDEWS showed at

most 98.7% (from 0.011 to 0.89) at a NNE of 87, 13.0% (from

0.701 to 0.806) at a NNE of 54, and 15.3% (from 0.697 to 0.823) at

a NNE of 58 compared to the modified PEWS and prediction

models by RF or LR, respectively. The cumulative percentage

of deteriorating patients for either critical event wasmarkedly

larger in the pDEWS than in the modified PEWS or prediction

models by RF or LR at the same cut-off level [Fig. 6].

https://doi.org/10.1016/j.bj.2021.01.003
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Fig. 3 Areas under the receiver operating characteristic curves for the prediction of (A) cardiopulmonary arrest and (B)

unexpected ward-to-pediatric intensive care unit transfer. Abbreviations: AUROC: area under the receiver operating

characteristic curve; pDEWS: deep-learning-based pediatric early warning system; modified PEWS: modified pediatric early

warning score; RF: random forest; LR: logistic regression.
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Discussion

We developed pDEWS with only five vital sign parameters

using deep learning, which showed good performance in

predicting cardiopulmonary arrest and unexpected ward-to-

PICU transfers in general-ward-hospitalized pediatric pa-

tients within 24 h before an event.

Most EWSs comprise several domains of physiologic and

laboratory data [11e13,33]. It may be beneficial to integrate

more components, which could provide more information for

a more precise prediction. Based on this concept, several

previously developed indexes or algorithms have integrated

even 25 variables ormore [10,34]. However, this could increase

the possibility of more missing values or an increased risk of

erroneous calculation or other human-related limitations,

resulting in providing inaccurate information and decreasing

the predictability and performance of the EWSs.

The pDEWS comprises 5 vital signs, which are essential

data in most hospitalized patients. Thus, the pDEWS is easily
Table 2 Areas under the precisionerecall curves for the predic
pediatric intensive care unit transfer.

Cardiopulmonary arrest

pDEWS 0.039 (0.036e0.045)

RF 0.019 (0.018e0.023)

LR 0.018 (0.017e0.021)

Modified PEWS 0.010 (0.009e0.012)

Abbreviations: AUPRC: area under the precisionerecall curve; PICU: pedia

warning system; RF: random forest; LR: logistic regression; modified PEW
applicable to any patient admitted to any hospital regardless

of that institution's characteristics, without correction or

compensation according to institutional references (like other

laboratory data), with a relatively lowmissing rate. Vital signs

are also relatively objective data usually measured by in-

struments that are not influenced much by observer discrep-

ancies or subjective assessments, unlike other symptoms or

signs.

In this study, we compared the pDEWS to the modified

PEWS, which included only vital sign parameters of the orig-

inal PEWS. The excluded parameters were capillary refill time,

pulse, and loss of consciousness, which are thought to be

somewhat subjective. In the case of bolus fluid and oxygen

therapy, we thought these parameters were related more to

the medical personnels’ assessments and decisions for some

interventions. According to the aim of this study, which was

to evaluate and compare the performance of predicting crit-

ical events and effectiveness as an afferent limb for RRT

activation, we also excluded these bolus fluid or oxygen
tion of cardiopulmonary arrest and unexpected ward-to-

AUPRC (95% CI)

Unexpected ward-to-PICU transfer

0.155 (0.144e0.167)

0.083 (0.076e0.095)

0.051 (0.047e0.057)

0.008 (0.008e0.009)

tric intensive care unit; pDEWS: deep-learning-based pediatric early

S: modified pediatric early warning score.

https://doi.org/10.1016/j.bj.2021.01.003
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Table 3 Performance of the deep-learning-based pediatric earlywarning system for prediction of cardiopulmonary arrest at
different cut-off levels.

Cut-off Sen Spec PLR NLR PPV NPV F-score MACPD NNE

5 0.956 0.597 2.372 0.074 0.003 1.000 0.007 439.5 285.7

10 0.933 0.683 2.944 0.098 0.004 1.000 0.009 345.9 230.4

15 0.923 0.736 3.496 0.105 0.005 1.000 0.010 288.3 194.2

20 0.911 0.774 4.029 0.114 0.006 1.000 0.012 247.4 168.6

25 0.897 0.803 4.552 0.128 0.007 1.000 0.013 215.7 149.4

30 0.878 0.827 5.076 0.147 0.007 1.000 0.015 189.5 134.0

35 0.856 0.847 5.606 0.170 0.008 1.000 0.016 167.4 121.5

40 0.842 0.865 6.226 0.183 0.009 1.000 0.018 148.3 109.5

45 0.820 0.880 6.856 0.204 0.010 1.000 0.020 131.4 99.5

50 0.795 0.894 7.506 0.229 0.011 1.000 0.022 116.4 91.0

55 0.771 0.907 8.267 0.252 0.012 1.000 0.024 102.6 82.7

60 0.739 0.918 9.049 0.285 0.013 1.000 0.026 89.9 75.6

65 0.698 0.930 9.925 0.325 0.014 1.000 0.028 77.6 69.0

70 0.652 0.940 10.944 0.370 0.016 0.999 0.031 65.8 62.7

75 0.609 0.951 12.462 0.411 0.018 0.999 0.035 54.1 55.2

80 0.554 0.962 14.401 0.464 0.021 0.999 0.040 42.7 47.9

85 0.504 0.972 17.802 0.511 0.026 0.999 0.049 31.6 38.9

90 0.437 0.982 23.842 0.573 0.034 0.999 0.063 20.6 29.3

95 0.327 0.991 38.359 0.679 0.054 0.999 0.092 9.8 18.6

Abbreviations: Sen: sensitivity; Spec: specificity; PLR: positive likelihood ratio; NLR: negative likelihood ratio; PPV: positive predictive value; NPV:

negative predictive value; NRI: net reclassification index; MACPD: mean alarm count per day; NNE: number needed to examine.

b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 1 5 5e1 6 8 161
therapy parameters as the modified PEWS had only vital sign

parameters, similar to the pDEWS. The pDEWS outperformed

the modified PEWS in all compared metrics.

The pDEWS demonstrated the largest AUROC (0.923 (95%

CI, 0.918e0.929) and 0.911 (95% CI, 0.906e0.917) in predicting

cardiopulmonary arrest and unexpected ward-to-PICU

transfers, respectively) compared to the modified PEWS and
Table 4 Performance of the deep-learning-based pediatric early
PICU transfer at different cut-off levels.

Cut-off Sen Spec PLR NLR

5 0.964 0.442 1.727 0.081

10 0.939 0.595 2.321 0.102

15 0.917 0.684 2.902 0.121

20 0.894 0.743 3.480 0.142

25 0.870 0.787 4.084 0.166

30 0.842 0.822 4.719 0.192

35 0.819 0.849 5.426 0.213

40 0.798 0.871 6.198 0.232

45 0.776 0.890 7.059 0.252

50 0.754 0.906 8.048 0.271

55 0.729 0.920 9.165 0.295

60 0.704 0.933 10.504 0.317

65 0.678 0.944 12.155 0.341

70 0.647 0.954 14.127 0.370

75 0.616 0.963 16.744 0.399

80 0.580 0.971 20.093 0.432

85 0.538 0.978 24.993 0.472

90 0.481 0.986 33.348 0.526

95 0.406 0.993 54.309 0.599

Abbreviations: Sen: sensitivity; Spec: specificity; PLR: positive likelihood ra

negative predictive value; NRI: net reclassification index; MACPD: mean a
prediction models by RF or LR. These were also comparable

to those of other previously reported EWSs [11,35e37].

However, statistically, cardiopulmonary arrest and unex-

pected ward-to-PICU transfers are relatively rare critical

events. In case the number of negative cases overwhelms

those of event cases, the false positive rate (false positive

cases/total real negative cases) does not decrease
warning system for the prediction of unexpected ward-to-

PPV NPV F-score MACPD NNE

0.005 1.000 0.011 610.2 181.8

0.007 1.000 0.015 442.9 135.5

0.009 1.000 0.018 346.7 108.6

0.011 1.000 0.022 282.4 90.7

0.013 0.999 0.025 234.5 77.5

0.015 0.999 0.029 196.9 67.2

0.017 0.999 0.033 167.0 58.6

0.019 0.999 0.038 142.7 51.4

0.022 0.999 0.043 122.1 45.2

0.025 0.999 0.049 104.5 39.8

0.029 0.999 0.055 89.0 35.1

0.033 0.999 0.062 75.3 30.7

0.037 0.999 0.071 63.0 26.7

0.043 0.999 0.081 52.1 23.1

0.051 0.999 0.094 42.1 19.6

0.060 0.999 0.110 33.4 16.5

0.074 0.998 0.130 25.3 13.5

0.096 0.998 0.161 17.4 10.4

0.148 0.998 0.217 9.5 6.7

tio; NLR: negative likelihood ratio; PPV: positive predictive value; NPV:

larm count per day; NNE: number needed to examine.
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Table 5 Comparison of performance in the prediction of cardiopulmonary arrest at the same specificity.

Cut-off Sen Spec PLR NLR PPV NPV F-score NRI MACPD NNE

Modified PEWS �1 0.927 0.320 1.362 0.228 0.002 1.000 0.004 740.7 496.5

pDEWS �0.36 0.996 0.320 1.465 0.013 0.002 1.000 0.004 0.0016 740.2 461.8

RF � 9.7 0.987 0.320 1.451 0.039 0.002 1.000 0.004 0.0002 740.7 466.1

LR � 7.8 0.986 0.320 1.452 0.042 0.002 1.000 0.004 0.0027 739.9 466.0

Modified PEWS �2 0.706 0.679 2.199 0.432 0.003 0.999 0.006 350.3 308.1

pDEWS �9.6 0.934 0.679 2.909 0.096 0.004 1.000 0.004 0.0010 350.7 233.1

RF � 34.5 0.926 0.679 2.885 0.109 0.004 1.000 0.008 0.0015 350.2 235.0

LR � 30.8 0.912 0.679 2.844 0.129 0.004 1.000 0.008 0.0016 350.1 238.4

Modified PEWS �3 0.494 0.877 4.015 0.576 0.006 0.999 0.012 134.7 169.2

pDEWS �44.1 0.824 0.878 6.738 0.200 0.010 1.000 0.020 0.0049 134.2 101.2

RF � 65.8 0.704 0.878 5.749 0.337 0.008 1.000 0.017 0.0033 134.2 118.4

LR � 62.8 0.719 0.877 5.886 0.319 0.009 1.000 0.017 0.0038 134.0 115.7

Modified PEWS �4 0.303 0.957 7.121 0.728 0.010 0.999 0.020 46.7 95.8

pDEWS �78.1 0.573 0.958 13.539 0.446 0.020 0.999 0.038 0.0095 46.9 50.8

RF � 86.5 0.435 0.958 10.418 0.589 0.015 0.999 0.029 0.0054 46.1 65.8

LR � 87.1 0.399 0.957 9.565 0.627 0.014 0.999 0.027 0.0042 46.0 71.5

Modified PEWS �5 0.162 0.988 13.195 0.848 0.019 0.999 0.034 13.6 52.2

pDEWS �93.3 0.369 0.988 31.666 0.638 0.045 0.999 0.080 0.0252 13.3 22.3

RF � 94.1 0.217 0.988 19.139 0.792 0.028 0.999 0.049 0.0075 12.6 36.2

LR � 94.9 0.209 0.988 17.996 0.800 0.026 0.999 0.046 0.0062 12.9 38.5

Modified PEWS �6 0.050 0.997 15.968 0.952 0.023 0.999 0.032 3.5 43.3

pDEWS �98.4 0.152 0.997 60.377 0.849 0.082 0.999 0.107 0.0476 3.0 12.1

RF � 97.6 0.098 0.997 39.763 0.904 0.056 0.999 0.071 0.0226 2.8 17.9

LR � 98.0 0.083 0.997 35.257 0.918 0.050 0.999 0.062 0.0161 2.7 20.1

Modified PEWS �7 0.008 0.999 13.875 0.992 0.020 0.999 0.011 0.6 49.7

pDEWS �99.8 0.027 1.000 85.750 0.973 0.113 0.999 0.044 0.0516 0.4 8.8

RF � 99.6 0.012 0.999 52.815 0.988 0.073 0.999 0.020 0.0115 0.3 13.7

LR � 99.2 0.025 0.999 48.353 0.975 0.067 0.999 0.036 0.0115 0.6 14.9

Abbreviations: pDEWS: deep-machine-learning-based pediatric early warning system; PEWS: pediatric early warning score; RF: random forest;

LR: logistic regression; Sen: sensitivity; Spec: specificity; PLR: positive likelihood ratio; NLR: negative likelihood ratio; PPV: positive predictive

value; NPV: negative predictive value; NRI: net reclassification index; MACPD: mean alarm count per day.
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dramatically, limiting the ability of the AUROC to evaluate

performance. Instead, the AUPRC could be better suited for

these kinds of imbalanced data, as it considers the fraction of

true positive cases among positive predictions, suggesting

that the AUPRC is more important and informative than the

AUROC [30]. Therefore, we also compared our results using

the AUPRC, which also showed the superiority of the pDEWS.

In addition, we used various statistical metrics such as

sensitivity, specificity, PLR, NLR, PPV, NPV, F-score, MACPD,

NNE, NRI, and the detection of the cumulative percentage of

deteriorating patients over time. In particular, likelihood

ratios are independent of event prevalence and could be

more informative than other metrics to evaluate such rare

events. The MACPD and NNE provide possible alarm count

data, which could be useful in effectively operating RRTs in

clinical practice. Our results showed that the pDEWS per-

formed better in predicting critical events earlier and more

accurately with fewer false alarms than the modified PEWS

or prediction models by RF or LR.

These results could be partly explained by the power of

deep learning. Deep learning uses multiple computational

layers of non-linear processing units. It learns representations

of data using a general-purpose learning procedure with
multiple levels of abstraction, which are not designed by

humans. The most important element of the deep learning

process is feature learning. During the training process, a deep

learning model learns intricate structures of datasets and

determines how to change the internal parameters, which are

used to compute the representation in each layer. It auto-

matically identifies and learns features or representations

needed for given tasks, such as classification and detection,

using a large amount of raw data. Therefore, it is useful in

finding complex relationships in high-dimensional data (such

as vital signs) without information loss [38e40].

Previously, it was reported that subtle physiologic changes

occur before a clinically deteriorating critical event [17,41e43].

However, these might be too subtle for easy detection with

standardmonitoring or intermittent personal evaluation tools

at various time intervals. In contrast, deep learning could find

patterns in these clinical antecedents, including subtle

changes before critical events such as cardiopulmonary arrest

and unexpectedward-to-PICU transfers, which could increase

the chances of proper timely intervention.

Furthermore, in comparison to other ML methods, such as

LR or RF models [38,39,44,45], these conventional ML methods

are limited in processing data in their raw form. They are

https://doi.org/10.1016/j.bj.2021.01.003
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Table 6 Comparison of performance in the prediction of unexpected ward-to-PICU transfer at the same specificity.

Cut-off Sen Spec PLR NLR PPV NPV F-score NRI MACPD NNE

Modified PEWS �1 0.775 0.320 1.140 0.702 0.004 0.998 0.007 741.9 274.9

pDEWS �2.7 0.977 0.320 1.437 0.072 0.005 1.000 0.009 0.0020 742.2 218.2

RF � 32.0 0.963 0.320 1.416 0.115 0.005 1.000 0.009 0.0021 742.1 221.3

LR � 17.9 0.956 0.320 1.406 0.137 0.004 1.000 0.009 0.0025 741.9 222.9

Modified PEWS �2 0.572 0.679 1.780 0.630 0.006 0.998 0.011 351.1 176.4

pDEWS �14.6 0.917 0.679 2.855 1.223 0.009 1.000 0.018 0.0036 352.2 110.3

RF � 42.9 0.835 0.679 2.601 0.243 0.008 0.999 0.016 0.0031 351.7 121.0

LR � 39.8 0.841 0.679 2.621 0.234 0.008 0.999 0.016 0.0033 351.6 120.0

Modified PEWS �3 0.410 0.877 3.326 0.673 0.011 0.998 0.021 135.3 94.9

pDEWS �41.4 0.792 0.877 15.010 0.380 0.020 0.999 0.039 0.0098 136.6 49.5

RF � 54.6 0.701 0.877 5.721 0.341 0.018 0.999 0.035 0.0083 135.5 55.5

LR � 68.3 0.691 0.877 5.613 0.352 0.018 0.999 0.034 0.0074 136.1 56.6

Modified PEWS �4 0.230 0.957 5.410 0.804 0.017 0.997 0.032 47.1 58.7

pDEWS �71.8 0.636 0.958 15.010 0.380 0.046 0.999 0.086 0.0302 48.2 21.8

RF � 64.1 0.501 0.957 11.967 0.520 0.037 0.998 0.069 0.0207 47.2 27.0

LR � 86.3 0.381 0.957 9.048 0.646 0.028 0.998 0.052 0.0116 47.0 35.5

Modified PEWS �5 0.071 0.988 5.812 0.940 0.018 0.997 0.029 13.6 54.7

pDEWS �92.1 0.456 0.989 39.731 0.550 0.113 0.998 0.181 0.0995 14.1 8.8

RF � 74.6 0.293 0.989 25.090 0.715 0.074 0.998 0.119 0.0575 13.7 13.4

LR � 94.9 0.246 0.989 20.600 0.762 0.062 0.998 0.099 0.0452 13.8 16.1

Modified PEWS �6 0.011 0.997 3.363 0.991 0.011 0.997 0.011 3.5 87.0

pDEWS �98.4 0.244 0.997 97.297 0.757 0.238 0.998 0.241 0.2352 3.6 4.2

RF � 80.0 0.165 0.997 55.723 0.837 0.151 0.997 0.158 0.1547 3.8 6.6

LR � 98.4 0.139 0.997 45.836 0.864 0.128 0.997 0.133 0.1281 3.8 7.8

Modified PEWS �7 0.000 0.999 0.000 1.000 0.000 0.997 N/A 0.6 N/A

pDEWS �99.6 0.086 0.999 159.795 0.914 0.339 0.997 0.137 0.4977 0.9 2.9

RF � 87.5 0.000 0.999 N/A 1.000 N/A 0.997 N/A 0.0006 0.0 N/A

LR � 99.8 0.031 0.999 89.537 0.968 0.223 0.997 0.055 0.1828 0.5 4.4

Abbreviations: pDEWS: deep-machine-learning-based pediatric early warning system; PEWS: pediatric early warning score; RF: random forest;

LR: logistic regression; Sen: sensitivity; Spec: specificity; PLR: positive likelihood ratio; NLR: negative likelihood ratio; PPV: positive predictive

value; NPV: negative predictive value; NRI: net reclassification index; MACPD: mean alarm count per day.
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based on fixed assumptions of data behavior. Their perfor-

mance is highly dependent on careful engineering and

considerable domain knowledge to design a feature extractor

that transforms the raw data into a suitable internal repre-

sentation; the shallow classifier then classifies the data based

on represented features. Thus, they are limited in discovering

the intricate structures in high-dimensional data without in-

formation loss. Compared to conventional ML methods, the

pDEWS outperformed these methods, consistent with previ-

ous reports [38,39].

Deep learning could also minimize human handling,

thereby decreasing both human error and manpower re-

quirements. Considering the busy nature of general wards,

the limited number of medical personnel compared to the

number of hospitalized patients, and the barriers for RRT

activation, score generation using real-time EMR vital sign

data by automatic calculation and automatically triggering

alarms by setting cut-off values for RRT activation are desir-

able to increase accuracy and efficacy [17].

Since RRTs were introduced into clinical practice, they

have been reported to significantly reduce in-hospital critical

events [46e49]. In contrast, there are also reports about the

challenge of increased alarms, related alarm fatigue, and
additional workload [18,50]. Our results of PLR, NLR, and

MACPD indicate that the pDEWS is promising in reducing false

alarms, with more true alarms and true-negative alarms, and

in generating a lower MACPD at the same sensitivity

compared to othermodels, which could be helpful to decrease

alarm fatigue and workload, and for effective use of limited

medical resources. In addition, as we provided predicted

metrics by each cut-off value of the pDEWS, these could be

adjusted and determined according to specific individual sit-

uations, such as acceptable alarm number and feasible RRT

response workload.

This study has some advantages. To our knowledge, this is

the first report on a pDEWS for cardiopulmonary arrest and

unexpected ward-to-PICU transfers in general-ward-

hospitalized pediatric patients using only five vital signs. Pe-

diatric patients in general wards have less useful physiologic

data and are exposed to more unsafe and risky situations if

critical events occur compared to patients in a PICU. There-

fore, the pDEWS could be helpful in early detection, prompt

intervention, prevention of rescue failure, and improvement

of clinical outcomes. We used deep learning to develop a

pDEWS, which is better than other conventional ML methods

and showed better performance. In validating the pDEWS, we

https://doi.org/10.1016/j.bj.2021.01.003
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Fig. 4 Comparison of mean alarm count per day at the same sensitivity for (A) cardiopulmonary arrest and (B) unexpected ward-

to-pediatric intensive care unit transfer. Abbreviations used: MACPD: mean alarm count per day; pDEWS: deep-learning-based

pediatric early warning system; modified PEWS: modified pediatric early warning score; RF: random forest; LR: logistic

regression.

b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 1 5 5e1 6 8164
evaluated it using various statistical metrics and also reported

its own calibration data, which proved its better performance

and usefulness.

Despite its advantages, there are several limitations to

this study. First, this was a single-center retrospective

observational cohort study of pediatric patients admitted to

a tertiary academic children's hospital: there could be

possible selection bias due to missing data, and its general-

izability is limited. Further large-scale multicenter validation

studies are required to ensure that this model is widely

applicable and useful. Second, although we used LSTM units

with 20 consecutive data inputs, ML is strongly dependent on

data quality, and so missing data could affect accuracy.
Third, machine learning memorizes the derivation set

characteristics, which may result in overfitting issues and

could affect prediction systems. Fourth, as many previous

studies have pointed out, deep learning is known as a “black

box” because rather than having rule-based decision criteria

based on a domain knowledge, the decision boundary is

‘learned’ using universal approximation function by finding

regularities in the given dataset. It is often criticized due to

its non-transparent and non-traceable algorithm. Recently

there have beenmany approaches to solve these problems by

developing explainable AI or inherently interpretable ML

models. However, in this study, we were unsure of the

method could possibly summarize what might be going on

https://doi.org/10.1016/j.bj.2021.01.003
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Fig. 5 Comparison of sensitivity at the same number needed to examine for (A) cardiopulmonary arrest and (B) unexpected

ward-to-pediatric intensive care unit transfer. Abbreviations used: NNE: number needed to examine; pDEWS: deep-learning-

based pediatric early warning system; modified PEWS: modified pediatric early warning score; RF: random forest; LR: logistic

regression.

Fig. 6 Cumulative percentages of deteriorating patients with (A) cardiopulmonary arrest and (B) unexpected ward-to-pediatric

intensive care unit transfer. Abbreviations: pDEWS: deep-learning-based pediatric early warning system; modified PEWS:

modified pediatric early warning score; RF: random forest; LR: logistic regression.
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Table A2 Modified pediatric early warning score.

Item sub-scores

2 1 0 1 2

Age-specific items

<3 months

HR <90 90e109 110e150 151e180 >180
RR <20 20e29 30e60 61e80 >80
SBP <50 50e59 60e80 81e100 >100

3e12 months

HR <80 80e99 100e150 151e170 >170
RR <20 20e24 25e50 51e70 >70
SBP <70 70e79 80e100 99e120 >120
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under the hood of our time dependent LSTM networks. Due

to these reasons, we omitted model interpretability in the

current study. Although the pDEWS only uses five vital signs,

which could be helpful for healthcare providers to guess

intuitively the reason for prediction, clear interpretability of

the pDEWS remains as a problem that must be solved in the

future. Fifth, we used the modified PEWS, which excludes

some clinical data and differs from the original PEWS, which

could affect its performance results. In the future, further

large-scale multi-center external validation studies are

required to more accurately assess the performance of the

pDEWS.
1e4 years

HR <70 70e89 90e120 121e150 >150
RR <15 15e19 20e40 41e60 >60
SBP <75 75e89 90e110 111e125 >125

4e12 years

HR <60 60e69 70-110- 111e130 >130
RR <12 12e19 20e30 31e40 >40
SBP <80 80e90 90e120 120e130 >130

>12 years

HR <50 50e59 60e100 101e120 >120
RR <8 8e11 12e16 15e24 >24
SBP <86 85e101 100e130 131e150 >150

O2 saturation (%) <85 85e95 >95
Temperature <35 35 < 36 36 >38.5-< 40 >40
Conclusion

The pDEWS showed good performance in the accurate pre-

diction of cardiopulmonary arrest and unexpected ward-to-

PICU transfers in general-ward-hospitalized pediatric pa-

tients compared to the modified PEWS and prediction models

by RF or LR. The implementation of the pDEWS could provide

more precise and timely detection of critical events and an

automatic triggering call for RRT activationwith a reduction in

false alarms and related workload, which could be helpful to

more efficiently operate RRTs and improve clinical outcomes.

Abbreviations: HR: heart rate (beats/min); RR: respiratory rate

(breaths/min); SBP: systolic blood pressure (mm Hg).
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Appendix A
Table A1 Ranges of outlieroutliers and missing rates of
variables in the deep-learning-based pediatric early
warning system.

Variable Outlier range Missing rate (%)

Minimum Maximum Derivation
cohort

Validation
cohort

Respiratory

rate

0 300 0.198 0.151

Heart rate 0 300 0.215 0.182

Systolic blood

pressure

10 300 0.275 0.229

Diastolic blood

pressure

10 175 0.275 0.229

Body

temperature

24 45 0.128 0.120

Saturation 10 100 0.786 0.773
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