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Abstract: To sample from complex, high-dimensional distributions, one may choose algorithms based
on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating
diffusive behavior. Here, I build on an already defined HMC framework, hybrid Monte Carlo on Hilbert
spaces (Beskos, et al. Stoch. Proc. Applic. 2011), that provides finite-dimensional approximations of
measures π, which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert
(path) space. In all HMC algorithms, one has some freedom to choose the mass operator. The novel
feature of the algorithm described in this article lies in the choice of this operator. This new choice
defines a Markov Chain Monte Carlo (MCMC) method that is well defined on the Hilbert space itself.
As before, the algorithm described herein uses an enlarged phase space Π having the target π as
a marginal, together with a Hamiltonian flow that preserves Π. In the previous work, the authors
explored a method where the phase space π was augmented with Brownian bridges. With this new
choice, π is augmented by Ornstein–Uhlenbeck (OU) bridges. The covariance of Brownian bridges
grows with its length, which has negative effects on the acceptance rate in the MCMC method. This
contrasts with the covariance of OU bridges, which is independent of the path length. The ingredients
of the new algorithm include the definition of the mass operator, the equations for the Hamiltonian flow,
the (approximate) numerical integration of the evolution equations, and finally, the Metropolis–Hastings
acceptance rule. Taken together, these constitute a robust method for sampling the target distribution in
an almost dimension-free manner. The behavior of this novel algorithm is demonstrated by computer
experiments for a particle moving in two dimensions, between two free-energy basins separated by an
entropic barrier.

Keywords: Brownian dynamics; stochastic processes; sampling path space; transition paths

1. Introduction

Often, it is important to understand how molecules change conformations. For
example, the folding of proteins is of high interest [1]. One approach is to simulate such
transitions and generate a thermodynamic-relevant ensemble of paths that start in one free-
energy basin and end in another. The molecular motion here is assumed to be driven by
the random thermal motions of the surroundings. This is modeled by Brownian dynamics
with the thermal noise supplied by a heat reservoir operating at the fixed temperature ε.

The evolution of the particle position x is described by the Stochastic Differential
Equation (SDE):

dxt = F(x) dt +
√

2 ε dWt (1)

where dWt is the standard Wiener process. Here, the force (drift) is assumed to be the
(negative) gradient of a potential energy function U(x), namely F(x) = −∂U/∂ x. The
physical potential U(x) must be bounded from below to be physical.

Integrating the SDE forward over time, one assembles a trajectory: the starting posi-
tion may be known, but not the ending point. As shown by Onsager and Machlup [2], the
path probability can be expressed in terms of the path positions. The (negative) logarithm
of this probability has become known as the Onsager–Machlup (OM) functional. As shown
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in Appendix A, the form of the functional depends on how the SDE (Equation (1)) is
discretized. To understand molecular transitions, it would be useful to extract a thermody-
namic distribution of paths that start in one free energy basin and end in another. For such
constrained paths, an effective Hamiltonian can be formed and expressed as:

He f f =
1
2
〈x | L | x〉+ Φ(x), (2)

with the details given in Appendix A. Using this effective Hamiltonian, standard techniques
can be used to sample the probability distribution at an effective temperature εe f f = 2 ε/∆t,
with ε being the physical temperature and ∆t being the time discretization step used in
approximating the SDE.

Performing such path sampling is challenging for several reasons. Firstly, as the time
step used to solve the SDE becomes small, that is as ∆t→ 0, contributions from the high-
frequency modes lead to a divergence when evaluated using the effective Hamiltonian
(Equation (2)). Secondly, at each point along the path, one must have a full description
of the molecule. Thirdly, barriers separating different pathways may be insurmountable.
Thus, it is extremely important to have efficient algorithms to probe the thermodynamic-
relevant distribution of paths. The work by Beskos et al. [3] addressed the first of these
issues using a Hybrid Monte Carlo (HMC) [4] method that augments the path space with
Brownian bridges. One of the advantages is that HMC generates nonlocal moves, alle-
viating the diffusive behavior that plagues other methods [5]. However, in that method,
the velocities form a Brownian bridge, and thus, they scale with the (time) path length.
This growth negatively affects the accuracy of the algorithm. As shown in Section 2, by
creating velocities that form an Ornstein–Uhlenbeck (OU) [6] bridge, one can eliminate
this dependence on the path length, while continuing to treat the high-frequency modes
accurately. In Section 2, the algorithm for the deterministic integration in the Molecular
Dynamics (MD) step is described, as well as the associated error in the effective energy.
In Section 3, an example in two dimensions is described, as well as how the algorithmic
parameters are chosen. In the novel scheme described here, the time step for the determin-
istic, molecular dynamics integration can be increased by at least an order of magnitude
over the previous method [3], leading to a concomitant decrease in computational effort.
In other words, the novel method presented here is at least 10 times faster. This is followed
in Section 4 by the description of the results for sampling paths that contain a transition
from one basin to another. In Section 5, the continuous-time limit of the OM functional is
sampled. As found before [7,8], this form produces unphysical results. The paper ends
with a short discussion of how this new algorithm can be used in calculations employing
the path integral molecular dynamic method and, finally, with some concluding remarks.

2. Time Evolution of the Hamiltonian

In sampling the probability distribution, the effective Hamiltonian, Equation (2),
is augmented by including Gaussian distributed variables that can be identified as the
momentum, with the aim of using a Hybrid (or Hamiltonian) Monte Carlo (HMC) method.
The method is summarized as follows: first, pick the augmented variables from their
known distribution; use them to (approximately) evolve the Hamiltonian flow; and then,
accept or reject the evolved path using the Metropolis–Hastings criterion. The augmented
Hamiltonian is given by:

H =
1
2

〈
p
∣∣∣ (L + A2

ou 1)
−1
∣∣∣ p
〉
+

1
2
〈q | L | q〉+ Φ(q). (3)

The braket notation, introduced in Appendix A, is used to simplify the look of the equations.
Define x = q + lt as the physical path with lt being a term linear in time that allows
x to have the starting point x(0) = x− and the ending point x(T) = x+. Note that
Φ(x) = Φ(q+ lt) and is denoted as Φ(q). The path lt is given by the linear (in t) relationship:
lt = x− + t (x+ − x−)/T. The path p is the momentum conjugate to the path q. The
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distribution of the momentum p is known, but not transparent. However, the distribution
of the velocities is easier to understand, as it corresponds to an OU process, with Aou being
the OU parameter.

To understand how the momenta p are distributed, one begins with the OU process:

dvt = −Aou vt dt +
√

2 ε dWt. (4)

The OM functional for this process is:

Iom ∝
1
2

〈
v
∣∣∣ (L + A2

ou 1
〉
|v > + unimportant constant. (5)

The mass operator can be defined as M = (L + A2
ou 1) and then the momentum as |p >=

M |v >, giving the effective Hamiltonian for the momentum variables as:

Hou =
1
2

〈
p
∣∣∣M−1

∣∣∣ p
〉

(6)

Thus, the velocities will correspond to an OU process with both endpoints being zero, which
is an OU bridge. See Appendix B for the numerical details for constructing realizations of
OU bridges.

Now return to the original Hamiltonian. Equation (3) with some modifications is:

Hα =
1
2

〈
p
∣∣∣M−1

∣∣∣ p
〉
+

1
2
〈q |M | q〉+ α

(
Φ(q)− 1

2

〈
q
∣∣∣ A2

ou1
∣∣∣ q
〉)

. (7)

Note that with α = 1, this Hamiltonian (Equation (7)) has the term 1
2
〈
q
∣∣ A2

ou1
∣∣ q
〉

added
and then subtracted. This algebraic manipulation importantly simplifies the numerical
procedure, as will be shown below. The role (and value) of the parameter α will be
addressed later.

It is convenient to work with the velocities v given by |v >= M−1|p >, which
comprise a bridge being zero at both endpoints. When Aou = 0, the velocities form a
Brownian bridge, with covariance (with t ≥ s) being E (vs × vt) = s(1− t/T) where T is
the length of the path. This gives E v 2

T/2 = T/4, which grows with the (time) length of the
path. In contrast, the covariance of an OU bridge is given by:

E vs vt =
2 ε

Aou

sinh(Aous) sinh(Aou(T − t))
sinh(AouT)

with t ≥ s, (8)

with ε being the temperature. At the midpoint of the OU bridge, E v2
T/2 ≈ ε/Aou when

AouT � 2, which is independent of the path length T. In Appendix B, the numerical
procedure for constructing an OU bridge is described.

Defining φ in terms of Φ as φ(q) = ∂Φ/∂q, the equations of motion are given by:( d
dt |q >

M d
dt |p >

)
=

(
|v >

−M |q >

)
︸ ︷︷ ︸

A

+ α

(
0

A2
ou |q > −|φ(q) >

)
︸ ︷︷ ︸

B

(9)

with |φ(q) >= {φ(q0), φ(q1), φ(q3), ... , φ(qNt)} and with the A and B groupings being
used in the splitting implemented in the numerical algorithms. This method used is
symplectic as it corresponds to a symmetric splitting in a Trotter–Strang [9,10] procedure.

2.1. Splitting: ABA

The numerical implementation of the ABA splitting is given in this section. The
BAB splitting is relegated to Appendices C and D. Schematically, the integration can be
viewed as pictured in Equation (10). The ABA procedure begins with the initial position
and velocity (q0, v0), then during the time interval h/2, these evolve into (qH , vH) using
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Equations (11) and (12). Next is the so-called full step, where the velocity evolves over a
time h changing to wH using Equation (13). The final transformation takes (qH , wH) and
turns them into (q1, v1) during a time interval h/2 using Equations (14) and (15).(

q0
v0

) A(h/2)
======⇒

Half step

(
qH
vH

) B(h)
=====⇒

Full step

(
qH
wH

) A(h/2)
======⇒

Half step

(
q1
v1

)
(10)

Half step, A: {q0, v0} ⇒ {qH , vH} with θ = h
2 :

d
dt
|q >= |v > ⇒ |qH >= cos(θ) |q0 > + sin(θ) |v0 > (11)

d
dt
|v >= −|q > ⇒ |vH >= − sin(θ) |q0 > + cos(θ) |v0 > (12)

Full step, B: {qH , vH} ⇒ {qH , wH} with M = (L + A2
ou1):

M
d
dt
|v >= −α

(
|φ(q) > −A2

ou|q >
)
⇒ M|∆v >= −α h

(
|φ(qH) > −A2

ou|qH >
)

(13)

with |∆v >= |wH > − |vH >.

Half step, A: {qH , wH} ⇒ {q1, v1} with θ = h
2 :

d
dt
|q >= |v > ⇒ |q1 >= cos(θ) |qH > + sin(θ) |wH > (14)

d
dt
|v >= −|q > ⇒ |v1 >= − sin(θ) |qH > + cos(θ) |wH > (15)

Note that the integrations in the half steps are exact, while the full step integration is
approximate. As the numerical algorithm is based on a symmetric splitting of the time
evolution operator, it is symplectic and represents the flow of a shadow Hamiltonian [11,12].
Thus, for a small integration time step h, the energy error will be bounded. In the following
section, the formula for this error is examined.

2.2. “Energy” Error

The deterministic MD integration is preformed over a total time NMD h. For each
time increment, the integration corresponds to the ABA method described above. The
total energy error for the MD integration can be determined from the sum of the errors of
each ABA step. Thus, it is sufficient to find the expression for the energy error in a single
ABA step.

The error of the “energy” in the ABA step is due to the middle (full) Step B, since the
first and third steps reflect exact integrations. The error is given by:

∆E(01) = Φ(q1)−Φ(q0)−
1
2

〈
q1

∣∣∣ A2
ou

∣∣∣ q1

〉
+

1
2

〈
q1

∣∣∣ A2
ou

∣∣∣ q0

〉
+

1
2
〈v1 |M | v1〉 − 1

2
〈v0 |M | v0〉+

1
2
〈q1 |M | q1〉 − 1

2
〈q0 |M | q0〉

(16)

which simplifies to:

∆E(01) = Φ(q1)−Φ(q0)−
1
2

〈
q1 + q0

∣∣∣ A2
ou

∣∣∣ q1 − q0

〉
+

1
2
〈wH + vH |M |wH − vh〉. (17)

Substituting for vH and wH , one transforms the last term using:

〈wH + vH |M |wH − vh〉 = −
h α

sin θ

〈
φ(qh)− A2

ouqH

∣∣∣ q1 − q0

〉
(18)
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The value of α can be chosen to be α = sinc (h/2). With this value of α, the energy error is
given as:

∆E(01) = Φ(q1)−Φ(q0) −
〈

φ(qH)− A2
ou
(
qh − q01

) ∣∣∣ q1 − q0

〉
(19)

with q01 = (q1 + q0)/2. Now, it is clear why α was chosen in this way. The approximate
equations of motion reproduce the flow of a shadow Hamiltonian [11,12]. Evidently, the
flow produced by numerically solving the equations of motion with α = sinc (h/2) is closer
to the actual flow than to the one with unit α.

The full step in the ABA splitting is:

M |∆v >= −α h
(
|φ(qH) > −A2

ou|qH >
)

(20)

The operator M−1 is defined with the boundary conditions such that ∆v is zero at both
the beginning and end of the path. The above is then a matrix equation: with M being a
symmetric, real tridiagonal matrix, with the only nonzero elements given by:

Mi, i = A2
ou +

2
∆t2 Mi, i+1 = Mi+1, i = −

1
∆t2 . (21)

With the vanishing of ∆v at both ends of the path, there are no endpoint corrections to
M. To solve the matrix equation, the standard Gaussian elimination procedure is used
(without pivoting).

3. Numerical Experiments

To explore the efficacy of the HMC method described above, I chose a two-dimensional
example. A particle moving in a potential is given by:

U(x, y) = exp
(
− 2

(
x +

1
2

)2
− 3 (y + 1)2

)
+
(

x2 + y16 − 1
)2

(22)

where x and y are the usual Cartesian coordinates. The first term above is a unit Gaussian
centered at xg = −0.5 and yg = −1. The second term is a trough, with a minimum
of zero and somewhat squarish in shape. A contour plot of this potential is given in
Figure 1. In this figure, note that the white contour corresponds to U(x, y) = 2 and the
dashed line designates the contour U[x, y) = 0.05, which encloses the solid black contour
U(x, y) = 0.001. A saddle point exists near xs ≈ −0.5 and ys ≈ −1 with U[xs, ys) = 1.
A local maximum exists near xm ≈ −0.225 and ym ≈ −0.794 with U(xm, ym) ≈ 1.6.
Connecting the free-energy basins is an energy-barrier-free path that becomes severely
narrowed as it crosses the x-axis. Thus, one can view this potential as consisting of two
basins separated by an entropic barrier if the temperature is not too high.
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Figure 1. Contour plot of the two-dimensional potential. The horizontal axis corresponds to the x
value; the vertical axis, the y axis. The value of the white contour is two and of the dashed contour is
0.05. The solid black contour enclosed by the dashed contour has a value of 0.001. The potential at
the saddle point is approximately unity. The potential at the local maximum is ≈1.6.

3.1. Equilibrium Distribution

In this work, the computer experiments were performed with a temperature ε = 0.05.
The temperature is much smaller than the lowest energy barrier, which is unity at the saddle
point. The equilibrium (Boltzmann) distribution at a temperature ε = 0.05 is displayed in
the next two figures. In Figure 2, this distribution is shown in terms of a density plot. The
narrow channel at the top of the figure connects the smaller basin on the left with the larger
basin (on the right). The lack of an energy barrier is reflected in the (equal) values of the
distribution along the channel.

Figure 2. The equilibrium (Boltzmann) distribution for a temperature ε = 0.05 plotted as a “density”
plot. The black areas denote the higher probability areas. The narrow channel connects the left and
right probability basins. The lack of an energy barrier is seen by the lack of variation in the shading
along the channel. The angle Θ is pictured here.

To quantify the equilibrium distribution, I looked at its values as a function of angle
Θ, which is defined in a clockwise sense, measured with respect to the negative y axis, as
defined in Figure 2. At a temperature ε = 0.05, the left basin has 36% of the weight, and
the remaining 64% is in the right basin. A function P is defined as

P(Θ) = (Z δ)−1
∫ Θ+δ/2

Θ−δ/2
dθ
∫ ∞

0
r dr exp

(
− U(−r sin θ, r cos θ)

ε

)
, (23)

and is plotted in Figure 3 to emphasize the entropic barrier between the two basins.
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Temperature: ϵ 0.05

Left: 36%

Right: 64%

0 0.5 π π 1�� π 2 π
0.

0�1

0�2

0.3

0.4

0.5

0 0.5 π π 1�� π 2 π

0.

0�1

0�2

0.3

0.4

0.5

Angle (Θ)

Figure 3. The function P(Θ) plotted as a function of the angle Θ. See Equation (23) for its definition.
The value of δ = π/40 was used. Notice that the single-peak structure on the left differs from the
twin peaks on the right. This structure is caused by the geometric factor, which arises when the
radius line slices the distribution function.

3.2. Parameter Tuning

Unless stated otherwise, the form of the OM functional used was that corresponding
to the midpoint integration of the SDE as written in Equation (A9). To investigate the
two-dimensional paths that contain a transition between the two basins, one must pick
several parameters; some are physical: the temperature and the path length. For this
problem, the temperature was chosen to be ε = 0.05. This temperature is small compared
to the unit energy barrier. Thus, at this temperature, the narrowness of the channel will be
the limiting factor that impedes basin hopping. The path length T must not be too long nor
too short. For a very short value of T, the motion will become ballistic and uninteresting.
For a very large T, the path will be dominated by intra-basin motion, which is not the
focus of the study. The remaining parameters are those of the algorithm: the time length
of the deterministic integration, the OU bridge parameters, Ax

ou and Ay
ou, and finally, the

value of the algorithmic time step h. The last of these will be determined by requiring the
Metropolis–Hastings acceptance rate to be sufficiently large.

3.2.1. Path Length

The next point to address is how quickly the particle moves from the left to right basins.
To make an estimate of this transition time, I collected information from 10,000 realizations
of Brownian dynamics by performing forward integrations of the two-dimensional SDE.
Each integration started at the same place in the left basin. The results for the number
of attempts residing in the right basin are tabulated as a function of time and plotted in
Figure 4. As one sees, the curve approaches its equilibrium value as the total time reaches
1000. Furthermore, when the elapsed time is 125, over a third of the realizations are in the
right basin. Thus, this latter value is a reasonable time (path length) to use for exploring
doubly constrained paths that contain a transition. In the following sections, paths are
examined that start in the left basin and end in the right basin, while time T = 125 has
elapsed. The path is then described by 125,001 ordered pairs with ∆t = 1.0× 10−3.
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0. 125. 250. 375. 500. 625. 750. 875. 1000.
0.

0.1
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0.5

0.6

0. 125. 250. 375. 500. 625. 750. 875. 1000.
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0.1

0.2
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0.4
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Time (t)

F
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c
ti
o
n

Figure 4. The results of 10,000 forward integrations of Brownian dynamics with temperature ε = 0.05.
All had the same initial conditions (in the left basin). The plot gives the fraction of paths with
positive values of x as a function of time. As the dotted lines indicate, after T = 125, over 35% of the
integrations have ending points in the right well. As the integration time exceeds 1000, the fraction
approaches the equilibrium distribution.

3.2.2. Deterministic Integration Time

One of the advantages of the HMC method is its ability to generate nonlocal moves. To
explore the nonlocality of a proposed move, the correlation function d(x)(n h) is defined by:

d(x)(n h) =

√
∑Nt

i=1

(
xi(n h)− xi(0)

)2

Nt
(24)

with a similar definition for d(y)(n h), where n is the number of the molecular dynamics
steps and Nt is the number of points along the path. In Figure 5, d(x)(τ) and d(y)(τ) are
plotted as functions of τ for two cases, A(x)

ou = A(y)
ou = 0 and A(x)

ou = A(y)
ou = 1. The time

step parameter h was adjusted so that the (energy) errors were comparable, as seen in
Figure 6. Such energy errors will be examined more closely later in the paper. As seen
in Figure 5, both d(x)(τ) and d(y)(τ) level out for τ > 2. Thus, the MD integration time
should be on the order of π/2 to maximize the nonlocality of the move. To avoid any
resonances that might occur if a fixed integration time should be chosen, the length of the
integration is chosen to be uniformly distributed in the interval (π/4, 3π/4) designated
by the gray shaded area in Figure 5.

0 π 2 π 3 π
0.

0.1

0.2

0.3

0.4

0.5

0.6

0 π 2 π 3 π

0.

0.1

0.2

0.3

0.4

0.5

0.6

Time ( )

Figure 5. The correlation functions d(x)(τ) and d(y)(τ) for two runs. For the black curves, the
parameters were Ax

OU = Ay
OU = 1; for the gray curves, Ax

OU = Ay
OU = 0. The functions d(x)(τ) are

almost identical for the two runs: the lower black curve lies on top of the lower gray curve, hiding it.
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0 π 2 π 3 π

-0.1

0.

0.1

0 π 2 π 3 π

-0.1

0.

0.1

Time ( )

Δ
E
ϵ
e
ff

Figure 6. The energy error plotted as a function of MD integration time. The black curves designate

the error for the case A(x)
ou = A(y)

ou = 1; the gray curves for A(x)
ou = A(y)

ou = 0. The time step parameter
for the former case is h = 6.667× 10−4 and for the latter h = 6.667× 10−5. In the latter case, the
smaller h meant that an order of magnitude more computing resources were required to generated
the gray curve, as compared to the black one.

3.2.3. OU Bridge Parameter A(x, y)
ou

To understand how the choice of Ax
ou and Ay

ou affect the sampling behavior, consider
the plots of the correlation functions in Figure 7. As shown in the this figure and in Figure 5,
the y-degree of freedom shows the floppiness that corresponds to the low energy cost of
movement in that direction in either basin. The relative stiffness of motion in the x direction
is a direct result of the restriction due to the narrow channel connecting the two basins.
The floppiness (in the y direction) can be mathematically reduced by increasing the value
of Ay

ou. For the chosen integration times (as designated as a gray rectangle in Figure 7),
values Ay

ou between four and eight put the correlation function d(y)(τ) in the same range
as d(x)(τ). However, decreasing Ax

ou below unity (not shown in the figures) does not alter
the stiffness as its origin is due to the geometry of the connecting channel.

X

Y(1)

Y(2)

Y(4)
Y(8)

Y(16)

0 π 2 π 3 π
0�

0��

0��

0�3

0��

0 π 2 π 3 π

0�

0��

0��

0�3

0��

Time (τ)

Figure 7. The correlation functions d(x)(τ) and A(y)
ou for various runs. For all the runs, A(x)

ou = 1.
From the top, the curves for d(y)(τ) have the values of A(y)

ou of 1, 2, 4, 8, and 16, respectively. The
curves for d(x)(τ) all lie on top of one other; only one is plotted.

3.2.4. MD Time Step Size (h)

For the deterministic integration in the Molecular Dynamics (MD) step, a choice must
be made for the size of the time increment h. The size of h must not be too large nor too small.
In the first case, the errors become large and the acceptance rate becomes unacceptably
small. In the second case, computational resources are wasted. Since the numerical
algorithm is based on a Trotter–Strang [9,10] splitting, for small values of h, the energy
error is bounded, as the energy of a “nearby” Hamiltonian (the shadow Hamiltonian) is
conserved. As shown in Figure 8, for small h, the energy error oscillates as a function of
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integration time τ. In addition, because of the stochastic nature of the integrals, the curves
are noisy, with the noise increasing as h increases.

0 π 2 π 3 π

-0.4

-0.2

0.

0.2

0.4

0 π 2 π 3 π

-0.4

-0.2

0.

0.2

0.4

Time ( )

Δ
E
ϵ
e
ff

Figure 8. The effective-energy error plotted as a function of the MD integration time (τ). The three

curves correspond to runs with values A(x)
ou = A(y)

ou = 1. The gray curve gives the error for the run
with h = 0.002; the black curve, h = 0.001; and the white curve, h = 0.00067.

The value for h can be chosen by requiring the Metropolis–Hastings acceptance rate
to be on the order of 80%. In Figure 9, this acceptance rate is plotted as a function of the
time step h. As can be seen in the plot, the rate is a very steep function of h. Furthermore,
when Ax

OU = Ay
OU = 0, h must be less than 0.0002 to have a substantial acceptance rate,

while when Ax
OU = 1 and Ay

OU = 8, h can be chosen almost two orders of magnitude larger.
Evidently the acceptance rate is sensitive to h as the values of Ax

OU and Ay
OU change.
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Figure 9. The Metropolis–Hastings acceptance rate for two runs. For the curve on the left, the
parameters were Ax

OU = Ay
OU = 0 and for the curve on the right, Ax

OU = 1 and Ay
OU = 8. For both

runs, the number of molecular dynamics steps were chosen to be (1 + η)π/(4 h) with η being a
uniformly distributed random number in the unit interval.

The above highlights the advantage of the novel algorithm presented here. By choos-
ing the OU parameters, Ax

OU and Ay
OU , to be unity, reasonably high acceptance rates can

be achieved by using a value of h 10 times larger than when both OU parameters are
zero. As shown in Figure 5, the nonlocality generated in the MD integration is only weakly
dependent on the OU parameters, but does depend on the total MD integration time. Taken
together, this then leads to a corresponding factor of 10 decrease in the computational
effort by choosing the OU parameters to be unity. As shown in Figure 9, larger values of h
can be used when larger OU parameters are used, leading to even fewer MD steps being
necessary to attain the same MD integration time. This translates into a speedup of a factor
of 10 or more, showing the power of picking nonzero values for the OU parameters and
using the corresponding “optimal” value for h.
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4. Path Sampling

As seen in Figures 2 and 3, in equilibrium, a particle will spend a small fraction
of time in the narrow channel. Thus, the expectation is that a transition path would
consist of motion in one basin or the other with a short transition while in the narrow
channel. In Figure 10, a typical path is displayed: it starts in the left basin, remaining in
it for under 25% of the path length, making a transition, remaining in the right basin for
approximately the last 75% of the path. The boundary conditions influence the shape of
the path, although the time spent in the narrow channel can change during the sampling
procedure. The shown path is the end result of a simulation using Ax

OU = 1 and Ay
OU = 8

after 100,000 Metropolis–Hastings steps.

Left Basin

Channel

Right Basin

0� 2�� �0� 7�� 100� 12��
0

0�� π

π

1�� π

2 π
0� 2�� �0� 7�� 100� 12��

0

0�� π

π

1�� π

2 π

Time (t)

A
n
g
le

(Θ
)

Figure 10. The one-dimensional representation of a typical path. The angle Θ plotted as a function of
time. See Figure 2 for the definition of Θ. At t = 0, the particle starts out in the left basin, makes its
way through the narrow channel at t ≈ 50, and ends in the right basin.

In Figure 11, a summary of the evolution of this simulation is plotted. For these values
of AOU , on average, the particle spends about 70% of the time in the right basin. The
variation of this percentage changes very little (only a few percent) over the course of the
simulation run. In Figure 12, a similar plot is shown for the parameters Ax

OU = 1 and
Ay

OU = 4 and 200,000 Metropolis–Hastings steps, twice as long as used for the results
shown in Figure 11. The pictures are similar, except that the mean percentages are slightly
shifted, and the variation about the mean is larger in the second case. The smaller variation
in the first case is due to the larger value of Ay

OU , which dampens the oscillations, the
floppiness, in the y component. With either parameter set, the path sampling calculations
correctly infer that the free energy of the right basin is larger that of the left basin.
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Figure 11. Results for a calculation with Ax
OU = 1 and Ay

OU = 8. The bottom (black) curve is the
fraction of the path with |x| < 1/2; the middle (gray) curve is the fraction of the path with x < −1/2;
and the top (black) curve is the fraction of the path with x > 1/2.
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Figure 12. Results for a calculation with Ax
OU = 1 and Ay

OU = 4. The bottom (black) curve is the
fraction of the path with |x| < 1/2; the middle (gray) curve is the fraction of the path with x < −1/2;
and the top (black) curve is the fraction of the path with x > 1/2.

Now, consider Figure 13, where the information for the second simulation run is
summarized. Here, the normalized histogram is plotted for the run with Ax

OU = 1 and
Ay

OU = 4. Note that the comparison with the equilibrium histogram is quite close. This
closeness indicates that the calculated ensemble of paths accurately probes the potential
shape of each basin.

0 0.5 π π 1.5 π 2 π
0.

0.1

0.2

0.3

0.4

0.5

0 0.5 π π 1.5 π 2 π

0.

0.1

0.2

0.3

0.4

0.5

Angle ( )

Figure 13. Results for a calculation with Ax
OU = 1 and Ay

OU = 4. The solid black curve is the
histogram of the P(Θ) for the 200,000 Metropolis steps pictured above in Figure 12. The dashed line
represents the histogram that corresponds to the equilibrium distribution.

The results shown in Figures 11 and 12 used an initial path where the fraction spent
in the left basin was less than the fraction spent in the right. This was chosen because the
relative fractions were approximately what was expected from their equilibrium values.
For the next calculation, the starting path had a value for the fraction spent in the left
well of ≈ 80%, much larger than its equilibrium value. In Figure 14, the evolution of the
right and left fractions is shown as a function of the algorithmic steps. In this simulation,
Ax

OU = Ay
OU = 1 and the MD time step was h = 0.003. As indicated, it took about 105 steps

before the left and right fractions became roughly equal and twice that many steps before
the right fraction became significantly larger that the left. The change in the fraction was
due to the movement of the time at which the transition took place and not the creation of
a new pair of transitions. One does see an incipient attempt at the creation of a new pair of
transitions at the ≈325,000th step of the simulation. This attempt is signaled by the spike in
the fraction of the path that is spent in the narrow channel, shown as the dark grey curve.
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Figure 14. Results for a calculation with Ax
OU = Ay

OU = 1. The black curve is the fraction of the path
with x > 1/2; the light gray curve is the fraction of the path with x < −1/2; and the bottom (dark
gray) curve is the fraction of the path with |x| < 1/2.

5. Continuous-Time Limit

Now, I turn to the calculations using the continuous-time limit of the OM func-
tional [13,14]. The Radon–Nikodym derivative is manipulated using the Girsanov theorem
and Ito’s lemma. Displayed in Equation (A11), this is denoted as the Ito–Girsanov measure.
As shown in Figure 15, the results of a simulation using the Ito–Girsanov measure gave
unphysical results. As shown in Figure 16, the paths converge very quickly to objects that
look similar to noisy versions of the Most Probable Path (MPP). Notice that this behavior
happens after only 5000 hybrid steps. The MPP reflects the maximum of the measure
and is dominated by the maxima of the Laplacian (of the physical potential). In the nar-
row channel, the Laplacian reflects the large curvature due to the confining sides. For
calculations using the discrete form of the OM functional, Equation (A4), a very different
behavior is found, as shown in Figure 11. This unphysical behavior is similar to what
was found before [7,8], where the cause was traced back to a buildup of correlations that
were inconsistent with the assumption in the original SDE that the noise is white and
uncorrelated with the particle position.
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Figure 15. Results for a calculation with Ax
OU = 1 and Ay

OU = 4 using Equation (A11) as the effective
Hamiltonian. The black curve labeled “Center” is the fraction of the path with |x| < 1/2; the solid
gray curve is the fraction of the path with x > 1/2; and the dashed gray curve is the fraction of the
path with x < −1/2.
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Figure 16. Results for a calculation with Ax
OU = 1 and Ay

OU = 4 using Equation (A11) as the effective
Hamiltonian. This is qualitatively different from the path plotted in Figure 10.

6. Discussion

This work is related to the recent work of Korol et al. [15], who explored using a similar
approach and applied it to path-integral molecular dynamics. In that work, the authors
suggested that one should use mollified forces. This force mollification is a frequency-
dependent factor that limits the effects of high-frequency internal modes and yet keeps
intact the low-frequency motion. In this current work, this task is performed by the mass
operator, M = L + A2

ou1. Here, Aou can be adjusted to change the crossover between low-
and high-frequency behavior. At high frequencies, the modes revert to the free-particle
motion. This reversion is due to the effects of the L in the mass operator, which dominates
at high frequencies. In the novel method described here, this “force mollification” is folded
into a unified framework, incorporating its effects in a self-consistent manner.

If, instead of the dynamics, one is interested in highlighting particular modes, one
can choose Aou differently for each mode. In particular, when working in normal mode
coordinates, one can choose Aou individually to minimize the size of ∆v in Equation (13),
thereby reducing the numerical errors in the integration.

7. Conclusions

A novel HMC procedure for sampling paths was presented here. This new procedure
is much more efficient than previous methods, resulting in an order of magnitude speedup
for the two-dimensional problem explored. The decrease in computational effort comes
from increasing the size of the MD time increment h by at least an order of magnitude.
The novelty in the procedure lies in the choice of the mass matrix and concomitantly the
velocities that form an OU bridge. Using this new procedure, I successfully examined
transitions across an entropic barrier and found that the method can determine the relative
free energy of the two basins that are not separated by an energy barrier.

Again, using the Ito–Girsanov measure was found to give unphysical results. The
sampling procedure, for the two-dimensional problem examined, converged to paths that
look like noisy versions of the MPP [16] (most probable path), where the vast majority of
the path was trapped in the narrow channel that connected the probability basins. Clearly,
the source for this unphysical feature is the Laplacian (of the physical potential) in the
formula for the measure.

This new algorithm is also useful for calculations using path-integral molecular
dynamics [15] where the effective Hamiltonian has a similar form to that studied here.
The novel procedure presented here naturally folds the “mollification” of forces into the
HMC formalism by a modification of the mass matrix. Thus, this novel procedure includes
this mollifying effect in a self-consistent manner. The parameters {Aou} in this novel
method are able to be tuned individually for each degree of freedom to emphasize different
physical effects.

In addition, this method is able to be adapted for use with the OBABO integration
scheme [17] or with the second-order Langevin method [18].
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Appendix A. Onsager–Machlup Functionals

In this Appendix, the algebraic forms of the OM functionals are delineated. For simplic-
ity, the one-dimensional forms of the equations are written below; the multi-dimensional
generalization is straight forward. First, recognize that different discretizations of the SDE
(Equation (1)) result in different forms of the OM function [19]. Here, two are considered:
the Euler–Maruyama and midpoint methods. The former is given by:

xn+1 = xn + F(xn)∆t +
√

2 ε ∆t ξn+1 (A1)

where ξn is a random Gaussian variate with mean zero and unit variance and ∆t is
the time increment. The original Onsager–Machlup functional is based on this expres-
sion. If one iterates Equation (A1) Nt times, one obtains a sequence of points |x >=
{x0, x1, x2, x3, x4, . . . xnt}, with a probability:

PEM = (2 π)−nt/2
nt

∏
n=1

exp
(
− 1

2
ξ2

n

)
(A2)

Onsager and Machlup recognized that one can rewrite this probability distribution in terms
of the path positions as PEM ∝ exp(−IOM) with:

IOM =
∆t
2ε

nt

∑
n=1

1
2

(
xn+1 − xn

∆t
− F(xn)

)2

(A3)

Defining εe f f = 2 ε/∆t as an effective temperature:

PEM ∝ exp

(
− HEM

εe f f

)

with:

HEM =
nt

∑
n=1

1
2

(
xn+1 − xn

∆t

)2

−
(

xn+1 − xn

∆t

)
F(xn) +

1
2

F(xn)
2

which can be rewritten as:

HEM =
1

2 ∆t2

nt−1

∑
n=2

xn

(
2 xn − xn+1 − xn−1

)
+

nt

∑
n=1

(
1
2

F(xn)
2 −

( xn+1 − xn

∆t

)
F(xn)

)
(A4)

Here, it is convenient to use the bra-ket mathematical notation. Specifically:

∑
n

∑
m

xn Bn, m xm = 〈x | B | x〉 .

By rearranging the order in the sum, the first term in Equation (A4) can be transformed to:

1
2

nt

∑
n=1

(
xn+1 − xn

∆t

)2

=
1

2 ∆t2

nt−1

∑
n=2

xn

(
2 xn − xn+1 − xn−1

)
=

1
2
〈x | L | x〉 , (A5)
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where L is a symmetric, tridiagonal, positive definite matrix. The last term in Equation (A4)
is denoted as ΦEM({x}). The effective Hamiltonian can be written as:

HEM =
1
2
〈x | L | x〉+ ΦEM({x}) (A6)

Another discretization of the SDE (Equation (1)) uses the Stratonovich midpoint [20]
integration and is written as:

xn+1 = xn + F(xmp)∆t +
√

2 ε ∆t ξn+1 (A7)

with xmp = (xn+1 + xn)/2. The effective Hamiltonian is a bit more complicated because of
the Jacobian and again can be put in the form:

Hmp =
1
2
〈x | L | x〉+ Φmp({x}). (A8)

The second term in the equation above is:

Φmp({x}) = −
2 ε

∆t

nt

∑
n=1

ln (det Jn) +
nt

∑
n=1

(
1
2

F(xmp)
2 −

( xn+1 − xn

∆t

)
F(xmp)

)
(A9)

where Jn is the Jacobian matrix, whose elements are:

J(α,β) ∝ δα,β +
∆t
2

∂2U
∂xα ∂xβ

(A10)

and where the Jacobian Jn is evaluated at the midpoint.
Lastly, the continuous-time limit of Equations (A6) and (A8) can be written as:

HIG =
1
2
〈x | L | x〉+ ΦIG({x}) (A11)

with:

ΦIG({x}) =
nt

∑
n=1

G(xn)

where:
G(xn) =

1
2

F2(xn) − ε U′′(xn) (A12)

in one dimension. In higher dimensions, the Laplacian of U replaces U′′(xn).

Appendix B. Constructing Ornstein–Uhlenbeck Bridges

The following describes the method used to construct Ornstein–Uhlenbeck (OU)
bridges. An OU bridge is an OU process that begins and ends at the origin. Consider the
standard OU process for a variable Zi given by the following SDE:

dZt = −A Zt dt +
√

2 ε dWt (A13)

with A being the OU parameter and ε being the temperature.
To form a realization of an OU process, we use the close relationship between HMC

and the Metropolis Adjusted Langevin Algorithm (MALA). To sample the Boltzmann
distribution for a harmonic potential, the Hamiltonian is augmented by auxiliary variables,
which can be viewed as momenta, conjugate to the position variables. In one dimension,
this is given by:

H =
1
2

p2 +
1
2

A x2 (A14)
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The equations of motion are then:

dx
dt

= p and
dp
dt

= −A x (A15)

The HMC procedure is first to form the momentum p0 =
√

ε ξ where ε is the temperature
and ξ is a Gaussian random variate with mean zero and unit variance.

If one integrates the equations of motion over a time h and uses the velocity-Verlet
approximation, one obtains:

x1 = x0 + p0 h− A
2

x0 h2 (A16)

which becomes:
x1 − x0 = −A x0 ∆t +

√
2 ε ∆t ξ (A17)

with ∆t = h2/2. This is then the Euler–Maruyama [21] formula for the OU process.
Within the one-step HMC, one uses the Metropolis–Hastings step to accept or reject the
proposed move:

{x0, p0} → {x1, p1 = p0 −
√

∆t
2

A (x0 + x1)}. (A18)

Such a move may be rejected if the energy error is too large.
However, the equations of motion above can be integrated exactly, which gives:

x1 = x0 cos
√

2 A ∆t + ξ0

√
ε

A
sin
√

2 A ∆t. (A19)

In such a method, no proposed moves will be rejected in the Metropolis–Hastings step.
Thus, these steps can be combined to obtain

xi+1 = xi cos
√

2 A ∆t + ξi

√
ε

A
sin
√

2 A ∆t. (A20)

To first order in ∆t, the above agrees with other expressions for forming a realization
of an OU process. The advantage of the above form is that for any size of ∆t, the path
asymptotically approaches the target Boltzmann (Gaussian) distribution.

Now, the ending point of the OU bridge needs to be addressed. The ending point of
an OU bridge is also zero, but this is not the case for a typical realization of an OU process.
To form a bridge, two OU processes can be combined by the following procedure. Assume
that Z(1) and Z(2) are two different finite realizations of Equation (A13); both starting at
the origin with endpoints z(1)N and z(2)N , respectively. The linear combinations:

Z(3)
± = ±

(
Z(1) cos κ + Z(2) sin κ

)
(A21)

are also realizations of the same OU process. Then, the angle κ can be chosen by tan κ =

−z(1)N /z(2)N , which makes the endpoints of Z(3)
± be z(3)N = 0. With this choice of κ, the OU

processes Z(3)
± are OU bridges. Another way exists in the literature [22] for forming OU

bridges. However, I found it to be numerically unstable due to the need to calculate the
ratios of hyperbolic sines with large arguments.

Appendix C. BAB Splitting: Numerical Integration

In this section, the numerical algorithm is written down for the case when the BAB
splitting is used. The method is schematically described in Equation (A22).(

q0
v0

) B(h/2)
======⇒

Half step

(
q0
vH

) A(h)
=====⇒

Full step

(
q1

wH

) B(h/2)
======⇒

Half step

(
q1
v1

)
(A22)
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Half step, B: {q0, v0} ⇒ {q0, vH} with M = (L + A2
ou1)

M d
dt |v >= −

(
|φ(q) > −A2

ou|q >
)
⇒ M |∆v0 >= − h

2 |Big( |φ(q0) > −A2
ou|q0 >

)
(A23)

with |∆v0 >= |vH > − |v1 >.

Full step, A: {q0, vH} ⇒ {q1, wH} with θ = h

d
dt
|q >= |v > ⇒ |q1 >= cos(θ) |q0 > + sin(θ) |vH > (A24)

d
dt
|v >= −|q > ⇒ |wH >= − sin(θ) |q0 > + cos(θ) |vH > (A25)

Half step, B: {q1, wH} ⇒ {q1, v1} with M = (L + A2
ou1)

M
d
dt
|v >= −

(
|φ(q) > −A2

ou|q >
)
⇒ M |∆v1 >= −h

2

(
|φ(q1) > −A2

ou|q1 >
)

(A26)

with |∆v1 >= |v1 > −|wH >.

Appendix D. BAB Splitting: Energy Error

In the BAB splitting, the error in the effective energy is:

∆E(01) = Φ(q1)−Φ(q0)−
1
2

〈
q1

∣∣∣ A2
ou

∣∣∣ q1

〉
+

1
2

〈
q1

∣∣∣ A2
ou

∣∣∣ q0

〉
+

1
2
〈v1 |M | v1〉 − 1

2
〈v0 |M | v0〉+

1
2
〈q1 |M | q1〉 − 1

2
〈q0 |M | q0〉

(A27)

which simplifies to:

∆E(01) = Φ(q1)−Φ(q0)−
1
2

〈
q1 + q0

∣∣∣ A2
ou

∣∣∣ q1 − q0

〉
+

1
2
〈v1 + wH |M | v1 − wh〉+

1
2
〈vH + v0 |M | vH − v0〉.

(A28)

One can express this in terms of q0 and q1, using Equations (A23) and (A26) and:

|vH >= −|q0 > cot θ + |q1 > csc θ (A29)

|wH >= |q1 > cot θ − |q0 > csc θ (A30)

In the work by Beskos et al. [3], a similar method was constructed for the case where
Aou = 0. In the middle step of the numerical integration (Full Step A), the Crank–Nicolson
method was used. This changes the rotation angle in Equations (A24) and (A25) to θ =

sin−1
(

4 h/(4 + h2)
)

. This in turn modifies the solutions for vH and wH used in Beskos et
al., namely:

|vH > =
1
h

(
|q1 > −|q0 >

)
+

h
4

(
|q1 > +|q0 >

)
(A31)

|wH >=
1
h

(
|q1 > −|q0 >

)
− h

4

(
|q1 > +|q0 >

)
(A32)
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