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Background-—Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced
heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit
are unclear.

Methods and Results-—In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy,
autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell
types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3
activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte-specific constitutively active FoxO3
mutant (caFoxO3flox;aMHC-Mer-Cre-Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust
increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in
cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19-kDa interacting
protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3flox;aMHC-Mer-Cre-Mer
mice with Bnip3-null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality
triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors.
Consistent with involvement of FoxO3-driven activation of the ubiquitin-proteasome system, we detected time-dependent
activation of the atrogenes program and sarcomere protein breakdown.

Conclusions-—In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that
governs both the autophagy-lysosomal and ubiquitin-proteasomal pathways to orchestrate cardiac muscle atrophy. ( J Am Heart
Assoc. 2013;2:e000016 doi: 10.1161/JAHA.113.000016)
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A striking feature of the heart is its ability to remodel in
response to changes in environmental demand.

Indeed, the heart is a remarkably plastic organ, capable of

growing or shrinking in response to a variety of stimuli.1 In
recent years, significant strides have occurred in decipher-
ing the progrowth mechanisms of cardiac hypertrophy,
yet little is known regarding mechanisms that govern
cardiomyocyte atrophy. Unveiling those mechanisms has
relevance to a number of clinically important conditions,
including bed rest, mechanical support therapy, cancer,
glucocorticoid use, and prolonged weightlessness. Further,
activation of antigrowth pathways in the hypertrophied heart
may be a means to renormalize cardiac mass, improve
ventricular relaxation, and diminish excessive filling pres-
sures, which together contribute to the widespread syn-
drome of heart failure with preserved ejection fraction.
Support for this concept derives from clinical studies in
which regression of the cardiac mass is associated with
reduction of adverse cardiac events.2,3

Mechanical unloading of the failing ventricle with a
ventricular assist device (VAD) has emerged in recent years
as a major therapeutic option. Atrophy of the diseased and
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typically hypertrophied, left ventricle (LV) is a hallmark feature
of VAD therapy. In rare instances, substantial reverse
remodeling and recovery of ventricular performance are seen.
However, underlying mechanisms are unknown. Regardless,
regression of pathological hypertrophy is consistently seen,
and activation of catabolic processes is likely to contribute.

Here, we set out to decipher mechanisms of cardiomyo-
cyte atrophy elicited by mechanical unloading of the LV. As
part of this, we have focused on FoxO (Forkhead box-
containing O family) transcription factors, proteins implicated
in the control of numerous cellular processes, including cell
cycle regulation, differentiation, metabolism, proliferation, and
survival.4–6 Specifically, we dissected the contribution of
catabolic events elicited by mechanical unloading and the
upstream, transcriptional circuitry that governs their expres-
sion.

Materials and Methods

Heterotopic Cardiac Transplantation
Surgical transplantation of the heart was accomplished as
described previously.7 Briefly, the ascending aorta and pulmo-
nary artery of a donor mouse heart were sutured to the inferior
abdominal aorta and inferior vena cava, respectively, of a same-
strain recipient. In this way, the recipient animal’s native heart
perfuses the donor ascending aorta in a retrograde fashion,
maintaining the aortic valve closed and directing arterial blood
into the coronary circulation. The donor LV is therefore
mechanically unloaded but well perfused. After perfusing the
donor heart, venous blood exiting the coronary sinus is ejected
from the right ventricle into the vena cava to be recirculated
back into the recipient circulation. The successful rate of these
surgeries is about 90% in our laboratory. Additional detailed
Materials and Methods are available at http://jaha.ahajournals.
org/content/2/2/e000016.full.

Statistical Methods
Averaged data (expressed as mean�SD) were analyzed with
the unpaired Student t test for 2 independent groups, paired t
test for dependent data, and 1-way ANOVA followed by post-
hoc tests, such as Bonferroni. For statistical comparisons, a P
value <0.05 was considered statistically significant. Normality
tests were conducted via the Shapiro–Wilk and Anderson–
Darling statistics. Assessment of skewness and kurtosis and a
quantitative inspection of the closeness of the mean and the
median were also used to establish normality. As normality
was confirmed (Tables S1), results are presented from
parametric statistics. However, all results were confirmed
with nonparametric tests. All statistical analyses were
performed using Sigma Stat (version 3.1) software.

Results

Cardiac Myocyte Autophagy and FoxO3 Are
Activated by Mechanical Unloading
Atrophy of cardiac muscle is observed in the setting of
mechanical unloading, including that elicited by bed rest,
prolonged weightlessness, or VAD therapy. In the case of the
latter, the failing heart undergoes significant structural and
functional changes, including declines in ventricular mass.8 To
begin to tease out mechanisms contributing to these clinically
important changes, we used a model of heterotopic cardiac
transplantation. In this model, the heart of 1 mouse (donor) is
surgically anastomosed to the abdominal aorta and vena cava
of another mouse (native) (Figure 1A). Donor hearts subjected
to mechanical unloading did not manifest evidence of injury,
and circulating levels of cardiac biomarkers (creatine kinase
MB, troponin T) were not detected. Donor hearts, however,
manifested a time-dependent decrease in heart mass
(Figure 1B and 1C). On microscopic analysis, myocyte
cross-sectional areas were decreased by 28% (P<0.01) at
day 7 (Figure 1E). Terminal deoxynucleotidyl transferase–
mediated dUTP nick end labeling assay (TUNEL) assays were
negative, ruling out a significant increase in apoptosis or other
cell injury process associated with DNA fragmentation.

Growth or atrophy of the heart is a consequence of an
orchestrated balance between anabolic and catabolic events.1

Indeed, the heart’s extraordinary capacity for plasticity
derives from robust progrowth and antigrowth capabilities,
each of which can be activated rapidly. Consistent with a
significant contribution of autophagy, an evolutionarily con-
served mechanism of regulated cellular cannibalization, we
detected an abundance of autophagosomes on electron
microscopic examination in unloaded LV (Figure 1D).
Increased levels of LC3-II were detected in protein lysates
harvested from LV subjected to 4, 7, and 14 days of
unloading, indicative of increased autophagosome formation
in atrophying hearts (Figure 1F and 1G). Also indicative of
activated autophagic flux, levels of Beclin 1, a protein involved
in both early and late autophagosome processing events,9

were elevated (Figure 1H).
Studies of skeletal muscle atrophy have uncovered a

central role of FoxO factors as master regulators of atrophy-
induced catabolic pathways.10 To test for a role of FoxO in
unloading-induced cardiac atrophy, we probed for the phos-
phorylated, transcriptionally inactive isoform of FoxO3. Here,
we uncovered evidence for increased FoxO3 activity as
assessed indirectly by decreased levels of FoxO3 protein
phosphorylated at Thr32 (Figure 1I and 1J). Consistent with
FoxO3 activation, levels of Bnip3 (Bcl2/adenovirus E1B 19-kDa
interacting protein 3), an established FoxO3 downstream
target, were also increased by mechanical unloading
(Figure 1K and 1L).
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Figure 1. Mechanical unloading of the LV triggers FoxO3 activation and autophagy. A, Schematic diagram of heterotopic cardiac
transplantation. B, Time course of cardiac atrophy after transplantation (n=3). C, Whole heart images of native and donor hearts, as well as
hematoxylin and eosin–stained LV tissue sections, are shown. D, Increased autophagosome abundance in unloaded LV. E, Cardiomyocyte cross-
sectional areas of representative control and unloaded heart pairs following 7 days of unloading, n=200 myocytes per sample from 2 hearts in
each group. F and G, Increased LC3-II levels were observed in donor hearts after unloading. H, Beclin 1 protein levels were increased in unloaded
LV (n=2). I and J, Phosphorylated FoxO3 and total FoxO3 from native and donor hearts after 4 days of unloading. K and L, Bnip3 levels from native
and donor hearts after 4 days of unloading. n=3 to 6. M, Mitochondrial protein levels, including Cox1, VDAC, Cox4, and Mt ND1 in control and
unloaded hearts 7 days after unloading. Experiments repeated 3 times with similar results. N, Mitochondrial DNA (mtDN2) copy number
normalized to nuclear DNA (MX1) in control and unloaded hearts. O, TFAM protein levels in control and unloaded hearts at 2 and 4 days after
unloading (n=3 for each group). P, Quantitative data from O. Q, Phosphorylated FoxO3 levels in failing human LV before and after VAD support,
n=3. LV indicates left ventricle; HW, heart weight; Cox, cyclooxygenase; VDAC, voltage-dependent anion channel; mt ND1, mitochondrial NADH
dehydrogenase 1; MX1, myxovirus resistance 1; TFAM, transcription factor A, mitochondrial; VAD, ventricular assist device; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; HE, hematoxylin and eosin; GFP, green fluorescent protein; Myc, myelocytomatosis oncogene; MOI,
multiplicity of infection; NC siRNA, negative control siRNA; NS, not significant; MuRF, muscle ring finger.

DOI: 10.1161/JAHA.113.000016 Journal of the American Heart Association 3

FoxO3-Dependent Cardiomyocyte Atrophic Remodeling Cao et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



As autophagy is a major mechanism underlying the
elimination of mitochondria, we evaluated levels of 4
mitochondrial proteins, Cox 1 (cyclooxygenase 1), VDAC
(voltage-dependent anion channel), Cox4 (cyclooxygenase 4),
and ND1 (NADH dehydrogenase 1). In each case, we noted
significant declines in steady-state protein levels, consistent
with activation of autophagy (Figure 1M). Levels of the
mitochondrial protein TFAM (transcription factor A, mitochon-
drial) were significantly diminished by day 4 of unloading
(Figure 1O and 1P). Further, quantification of DNA abundance
of a mitochondrial gene (mtND2 [mitochondrial NADH dehy-
drogenase 1]) relative to a nuclear gene (MX1 [myxovirus

resistance 1]) revealed additional evidence of significant
declines in mitochondrial biomass (Figure 1N). In aggregate,
these data suggest that FoxO3-dependent catabolic events
participate in the reverse remodeling that occurs in the
mechanically unloaded LV.

To test for FoxO3-dependent events in human myocar-
dium, we evaluated paired samples of failing human LV
harvested at the time of VAD implantation and at the time of
VAD removal. In the samples (3 pre-VAD, 3 post-VAD), we
observed a trend toward declines in pFoxO3 levels, suggestive
of FoxO3 activation in the mechanically unloaded human
heart (Figure 1Q).
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Figure 1. Continued.
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Cardiomyocyte-Restricted caFoxO3 Transgenic
Mice
These data suggest that unloading-induced activation of
FoxO3 participates in the ventricular remodeling response. To
test this, we engineered a line of compound transgenic mice
that express a constitutively active mutant of FoxO3
(caFoxO3) in cardiac myocytes (Figure S1A). Myc-tagged
FoxO3 was rendered constitutively active by mutations at 3
Akt phosphorylation sites,11 and a 5′ Stop codon was flanked
with loxP sites. Cardiac-specific activation of the FoxO3
transgene was achieved by crossing these mice with a line of
mice expressing Cre recombinase flanked by mutated estro-
gen receptor ligand–binding domains (MerCreMer [MCM])
driven by the aMHC promoter.12 Exposure of these double
transgenic caFoxO3flox;aMHC-MCM mice (hereafter termed
caFoxO3;MCM) to tamoxifen (20 mg/kg IP93 days) was
sufficient to excise the Stop codon and trigger caFoxO3
expression (Figure S1B).

caFoxO3;MCM mice manifested a normal life span and
were indistinguishable from animals expressing either trans-
gene alone and from wild-type (WT) mice. One additional
caFoxO3 transgenic line was identified, analyzed, and yielded
similar results. To test for transcriptional activity of the
transgene following exposure to tamoxifen, we evaluated
multiple downstream targets, finding that protein levels of
p27 and Bnip3 were elevated (Figure S1B and S1C).

Akt is subject to regulation by FoxO transcription fac-
tors.13,14 Indeed, we reported previously that FoxO factors are
capable of targeting calcineurin,15 which, in turn, dephosph-
orylates Akt.16 Consistent with this, we found increased levels
of phosphorylated Akt in caFoxO3;MCM hearts (Figure S1B
and S1C).

To determine the effects of caFoxO3 overexpression on
levels of endogenous FoxO3, we measured both proteins by
immunoblot analysis of lysates harvested from hearts of
caFoxO3;MCM mice and their control littermates. Compound
transgenic animals exposed to tamoxifen manifested an 8-fold
increase in total FoxO3 protein (Figure S1D and S1E).
Transgene expression had little effect on endogenous FoxO3
levels. To determine the efficiency of Cre-mediated recombi-
nation (and, hence, caFoxO3 expression), we isolated adult
cardiac myocytes from caFoxO3;MCM mice and their control
littermates after 2-day treatment with tamoxifen. Immuno-
staining for myc-tagged caFoxO3 demonstrated that 80% to
90% of cardiomyocytes expressed the transgene, as evi-
denced by positive nuclear staining (Figure S1F).

caFoxO3 Provokes Robust Cardiac Atrophy
To evaluate the effects of FoxO3 expression in the heart,
cohorts of mice harboring caFoxO3, MCM, or both (caFoxo3;

MCM) were treated with tamoxifen (20 mg/kg93 days).
Compound transgenic caFoxo3;MCM mice were subjected
to vehicle treatment, as well as an additional control. On day
4, the animals were killed, and hearts were subjected to
necropsy analysis. Animals expressing caFoxO3 manifested
dramatic cardiac atrophy, which was absent from all other
lines (Figure 2A). Within 3 days of transgene activation, heart
weight normalized to body weight (HW/BW) in caFoxo3;MCM
mice (3.3�0.35 mg/g, n=11, P<0.01) was decreased 30%
(�2, n=11, P<0.01) relative to compound transgenics
exposed to vehicle (4.66�0.24 mg/g, n=4) (Figure 2B).
Myocyte cross-sectional areas (measured with ImageJ soft-
ware [National Institutes of Health] and expressed with
arbitrary units) were diminished to a similar degree (30�3%,
n=70, P<0.01), suggesting that myocyte atrophy, as opposed
to cell dropout, was the predominant mechanism underlying
decreased cardiac mass (Figure 2C).

In a second series of experiments, time-course analyses
were performed to determine the natural history of myocyte-
restricted FoxO3 overexpression. These studies revealed
robust and statistically significant declines in HW/BW as
early as 24 hours after the first injection of tamoxifen
(Figure 2D). Coincident with this progressive atrophy pheno-
type, early lethality was observed. Remarkably, survival of
caFoxo3;MCM was 100% on day 4 but declined precipitously
thereafter, such that survival on day 6 was 0% (Figure 2E).
Cardiac function measured by M-mode echocardiography
progressively declined in caFoxO;MCM mice (Figure S2).
Histological analyses of myocardial tissues from hearts on day
4 revealed diminished myocyte size in caFoxO3;MCM mice
and pyknotic nuclei (Figure 2F). Myocardial ultrastructure
revealed disorganized mitochondria and sarcomeres, sugges-
tive of activated catabolic pathways (Figure 2F).

FoxO3-Driven Activation of Cardiomyocyte
Autophagy In Vivo
FoxO transcription factors govern a wide range of processes,
including catabolic events in skeletal muscle10 and neonatal
cardiomyocytes.17 To determine whether FoxO3 activation
confers similar effects in adult cardiac muscle in vivo, we
tested for evidence of activation of autophagic flux mecha-
nisms. First, levels of LC3-II, a marker indicative of auto-
phagosome abundance,18 were evaluated by Western blot of
proteins harvested from caFoxO3;MCM mice and littermate
controls (each exposed to tamoxifen) (Figure 3A and 3B).
Mean data indicated that LC3-II levels were increased 60-fold
(�4, n=7, P<0.01) in caFoxO3;MCM mice relative to litter-
mate controls.

To evaluate further for evidence of autophagic activation,
we crossed the compound transgenic caFoxO3;MCM mice
with mice harboring a green fluorescent protein (GFP)-tagged
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LC3 transgene; these latter “autophagy reporter mice”
provide a reliable means of quantifying autophagy levels and
determining the cellular origin of the LC3 signal.19 Hearts
from animals in which the caFoxO3 transgene had been
activated for 3 days were evaluated by immunohistochemistry
with an anti-GFP antibody and confocal microscopy. We

detected a dramatic increase in GFP-LC3 puncta in caFoxO3;
MCM mice compared with littermates lacking either the
caFoxO3 transgene or the MCM transgene (Figure 3C). And
as the GFP-LC3 construct is expressed under the control of
the cardiac myocyte–specific aMHC promoter, these data
confirm that the signal—indicative of autophagosome
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accumulation—derives from cardiac myocytes. Quantification
of GFP-LC3 puncta revealed 17-fold (�1.5, P<0.01, n=3)
higher levels of GFP-LC3–tagged autophagosomes in hearts
expressing the caFoxO3 protein compared with hearts from
single transgene lines (Figure 3D). Similar findings were
obtained in cardiac myocytes isolated from mice from each of
these lines after 2 days of tamoxifen exposure (Figure 3E).

Detection of double-membrane or multimembrane vesi-
cles is the sine qua non of autophagosome accumulation. In

hearts harboring either the MCM transgene alone or the
caFoxO3 transgene alone (and exposed to tamoxifen), we
detected double-membrane autophagosomes in a predomi-
nantly perinuclear distribution (Figure S3A) consistent with
the expected levels of basal autophagic flux. The appear-
ance and abundance of these vesicles were similar to those
seen in tamoxifen-treated WT mice. In contrast, a vast
abundance of autophagosomes was readily detected in
caFoxO3;MCM mice in which the caFoxO3 transgene had
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been activated for 3 days (Figure S3B through S3E). In
these hearts, autophagosomes were detected in the process
of engulfing a mitochondrion (Figure S3B), after a mito-
chondrion had been completely surrounded (Figure S3C), or
at later stages where vesicular contents had been degraded
(Figure S3D and S3E).

Evidence of Mitochondrial Mass Reduction
Turnover of mitochondria occurs via autophagic degrada-
tion.20 To test further for activation of autophagic mecha-
nisms and effects on mitochondrial biomass, we used dyes
specific for mitochondrial abundance (MitoTraker Green
[MTG] and Nonyl acridine orange [NAO]) or for functionally
intact mitochondria as evidenced by preservation of mito-
chondrial membrane potential (tetramethyl rhodamine methyl
ester [TMRM]). First, we isolated adult cardiac myocytes from
caFoxO3;MCM mice after they had been exposed to tamoxifen
for 2 days. In these hearts, we detected evidence for
significant decreases in both mitochondrial mass (Figure
S3F and S3G) and intact mitochondria (Figure S3H). Exposure
to p-trifluoromethoxy carbonyl cyanide phenylhydrazone
(FCCP), a mitochondrial protonophore that causes mitochon-
drial depolarization, abolished TMRM accumulation in cardiac
myocytes (Figure S3H). Consistent findings were obtained
when we evaluated mitochondrial DNA (mtDNA) in relation to
nuclear DNA. Quantitative real-time (RT)–polymerase chain
reaction (PCR) with 2 independent mitochondrial gene-
specific primers (NADH2, NADH1) relative to 2 independent
nuclear DNA primers (MX1, H19) revealed statistically signif-
icant declines in mitochondrial biomass in hearts expressing
the caFoxO3 transgene (Figure S3I).

FoxO factors are transcriptional coactivators involved in
the expression of numerous genes, including those regulating
autophagy.21 As the autophagic machinery is governed by 32
autophagy-related (atg) genes,22 we set out to test for
possible effects of FoxO3 on atg gene expression. Time
course analysis using quantitative RT-PCR performed on RNA
harvested from heart tissue revealed that Atg8 (gene coding
for LC3) was upregulated significantly as early as 24 hours
after transgene activation (Figure S3J). As expected, no
changes in atg gene expression were seen in tamoxifen-
treated MCM mice (Figure S3K).

Previous studies reported that caFoxO3 increased auto-
phagic flux.23 We thus investigated the impact of FoxO3 on
autophagic flux using an RNA interference knockdown
strategy. Two sequence-independent silent interfering RNAs
(siRNAs) targeting FoxO3 were engineered. Knocking down
endogenous FoxO3 in cardiomyocytes significantly decreased
LC3-II levels at baseline as well as in cells treated with
bafilomycin (Figure S4A through S4C). Together, these data,
coupled with our findings of increased Beclin 1 expression

(Figure 1H) and prior reports in the literature,23 indicate that
FoxO3 activates cardiomyocyte autophagic flux.

Absence of Apoptotic Cell Death in caFoxO3
Hearts
The presence of pyknotic nuclei in caFoxO3-expressing hearts
suggested that mechanisms other than autophagy are active.
To test for the possible involvement of apoptosis, we
examined the tissue sections for evidence of apoptotic
morphology, such as nuclear fragmentation. This was not
detected in either hematoxylin and eosin–stained sections
(Figure 2F) or on electron microscopic studies (Figure S3C).
Immunoblotting for caspases 3, 6, 9, and 12 failed to reveal
caspase cleavage, a marker of apoptosis (Figure S5A and
S5B), whereas positive controls revealed the cleaved iso-
forms. Consistent with this, TUNEL assays on myocardial
tissue sections obtained from caFoxO3;MCM mice and their
control littermates revealed only rare TUNEL-positive
myocytes in all groups (Figure S5C), although they were
readily detected in positive controls. In fact, TUNEL-positive
cells were so rare, and similar across the 3 genotypes, that
rigorous statistical comparisons were difficult to perform.
Together, these data suggest strongly that loss of cardiac
mass in caFoxO3-expressing transgenics is not due to
apoptotic cell death.

Bnip3 Is Required for FoxO3-Driven
Cardiomyocyte Autophagy
In our model of mechanical unloading, we observed robust
increases in Bnip3 (Figure 1K), a proapoptotic BH3-only protein
capable of inducing autophagy, mitochondrial dysfunction, and
turnover in the context of several diseases, including cancer
and cardiovascular disease.24,25 Similarly, Bnip3 was dramat-
ically upregulated in FoxO3-expressing hearts (Figure S1B), so
we set out to evaluate its possible role as a required,
downstream effector of FoxO3-dependent cardiomyocyte
autophagy. First, we characterized the kinetics of Bnip3
expression as a function of FoxO3 activation. Interestingly,
Bnip3 transcript levels peaked at 24 hours, following only a
single dose of tamoxifen (Figure 4A). Bnip3 protein levels were
similarly elevated at 24 hours (Figure 4B and 4C) in close
temporal relation with LC3-II (Figure 4B and 4D).

To evaluate the functional role of FoxO3-driven Bnip3
expression, we used 2 independent siRNA constructs target-
ing Bnip3 in neonatal rat ventricular myocytes (NRVMs) in
culture and examined autophagic activity induced by overex-
pressed caFoxO3. First, we confirmed caFoxO3 expression
(Figure 4E) and evaluated each siRNA reagent for Bnip3
knockdown (Figure 4F). Then, NRVMs were infected with a
caFoxO3-expressing adenovirus after Bnip3 had been
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depleted with either of the 2 sequence-independent siRNAs.
By coinfecting the cells with a GFP-LC3 virus, we quantified
the autophagic activity as GFP-LC3–positive puncta (indicative
of autophagosomes). As expected, FoxO3 expression in
NRVMs elicited significant increases in Bnip3 protein levels
(Figure 4G). Consistent with our in vivo results, overexpres-
sion of FoxO3 increased autophagy in NRVMs, and this
induction of autophagy was significantly suppressed by Bnip3
knockdown (Figure 4H and 4I). Together, these data are

consistent with a model in which Bnip3 is a required
downstream effector of FoxO-driven autophagic flux.

FoxO3-Driven Bnip3 Is Required for Autophagic
Atrophy
To evaluate the role of FoxO3-driven Bnip3 expression in
the cardiac atrophy phenotype of FoxO3-activated mice, we
crossed caFoxO3;MCM mice with Bnip3�/� mice26 to
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quantitative RT-PCR at different time points after tamoxifen injection (n=3 to 5). B, Time course of Bnip3 and LC3-II protein levels after inducing
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generate caFoxO3;MCM;Bnip3�/� animals. Identical to the
protocol used earlier, the FoxO3 transgene was activated (3
tamoxifen injections), and hearts were harvested on day 4.
As expected, FoxO3-driven increases in Bnip3 protein were
absent in Bnip3-mutant hearts (Figure 5A). Remarkably, we
observed dramatic rescue of the atrophy phenotype in
FoxO3-activated hearts depleted of Bnip3 (Figure 5B and
5C). HW/BW ratios revealed a statistically robust, dose-
responsive relationship between Bnip3 alleles and atrophy
rescue (Figure 5C). Measurements of myocyte cross-sec-
tional areas revealed similar findings: Bnip3 allele–depen-
dent rescue of FoxO3-driven cardiomyocyte atrophy
(Figure 5D). Tamoxifen did not alter survival, HW/BW ratios,
or myocyte cross-sectional areas in Bnip3�/� mice harbor-
ing the MCM transgene alone (Figure 5E). However,
remarkably, rescue of the cardiac atrophy response did
not alter the early mortality seen in caFoxO3;MCM;Bnip3�/�

mice (Figure 5E). Ultrastructural analyses confirmed marked
reduction in autophagosome abundance in hearts deficient
in Bnip3 (Figure 5F through 5I). FoxO3-dependent increases
in LC3-II were blunted >50% in Bnip3�/� hearts (Figure 5J
and 5K). These findings suggest strongly that FoxO-elicited
cardiomyocyte atrophy and autophagy require Bnip3 acti-
vation, yet the early mortality phenotype involves mecha-
nisms independent of Bnip3, autophagy, and myocardial
atrophy.

FoxO3-Dependent Activation of the Ubiquitin-
Proteasome System
To test for mechanisms other than autophagy-driven atrophy
that contribute to the mortality phenotype, we reevaluated
cardiac myocyte ultrastructure in caFoxO3;MCM;Bnip3+/+,
caFoxO3;MCM;Bnip3+/�, caFoxO3;MCM;Bnip3�/�, and
MCM;Bnip3+/+ hearts. These studies revealed evidence of
sarcomeric disruption in FoxO3-expressing myocytes, regard-
less of the Bnip3 genotype; shortened sarcomere length,
disappearance of the M line, a diffuse Z line, and disorga-
nized myofibrillar proteins were readily detected (Figure 6A
through 6D). As these sarcomeric elements are targets of
the ubiquitin-proteasome system (UPS) cascade of protein
catabolism, and as FoxO3 is an established activator of
the UPS,10 we set out to test for involvement of UPS
mechanisms.

Ubiquitin ligase–dependent protein ubiquitylation is an
early step in UPS-dependent protein catabolism. Consistent
with activation of the UPS, we found that FoxO3 elicited rapid
increases in the abundances of Atrogin1 and Murf1, 2 major
ubiquitin ligases known to target the sarcomere (Figure 6E).
Consistent with specificity for FoxO3-dependent activation,
Murf3, an E3 ligase that has not been established as a FoxO3
downstream target,27 was not increased (Figure 6E). Cellular

levels of ubiquitylated proteins were increased in
FoxO3-expressing myocardium (Figure 6F and 6G). Finally,
as cardiac troponin I (cTnI) is degraded by the UPS in a
MuRF1-dependent manner,28 we evaluated the levels of this
protein, noting significant FoxO3-dependent declines (Fig-
ure 6H and 6I). Together, these data point to UPS-dependent
catabolic pathways as downstream of FoxO3 activation that
appear to contribute importantly to sarcomere integrity but
not the atrophy phenotype.

To determine the role of UPS mechanisms in the
FoxO3-elicited phenotype, we tested whether proteasome
inhibition could prevent the dramatic declines in cardiac
function and early mortality in these animals. To do this, we
treated mice with epoxomicin 0.5 mg/kg (SQ in 10% DMSO)
starting at the time of transgene activation and ending
simultaneous with the end of tamoxifen treatment (total
3 days). Cardiac function, evaluated by echocardiography
3 days later, was significantly improved in mice treated with
epoxomicin (Figure 6J), and mortality was delayed (Figure S6).
These data, then, suggest that activation of the proteasomal
pathway participates importantly in FoxO-elicited deteriora-
tion in cardiac function.

Discussion
Atrophic remodeling of the LV occurs in numerous clinically
relevant contexts, yet underlying molecular mechanisms are ill
defined. In recent years, mechanical support of the failing LV
has emerged as a major therapeutic strategy, triggering both
beneficial and untoward processes. Here, we present evi-
dence for a critical role of FoxO3, a transcription factor
involved in numerous cellular processes, including catabolic
events. FoxO3 is activated in a model of left ventricular
unloading analogous to that which occurs clinically in patients
subjected to VAD therapy, as well as in samples of unloaded
human myocardium. Forced expression of FoxO3 in cardio-
myocytes was sufficient to recapitulate the autophagic,
atrophic, and mitochondria-depleting phenotypes observed
in mechanically unloaded LV. Importantly, each of these
phenotypes was rescued in hearts in which the gene coding
for Bnip3 was silenced, pointing to a critical role for this Bcl2
family protein. With time, however, FoxO3 overexpression
ultimately provoked sarcomere degradation, LV dysfunction,
and mortality, phenotypes that were not rescued by Bnip3
inactivation. Rather, these latter deleterious events derived
from FoxO3-dependent activation of the UPS and were
antagonized by protease inhibition. Together, these findings
point to FoxO3 as a master regulator of unloading-induced
catabolic processes in the myocardium (Figure S7). They go
on to suggest that beneficial and deleterious remodeling
events can be dissociated for potential therapeutic benefit.
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Myocardial Atrophy
Hemodynamic unloading of the LV, as occurs with bed rest,
prolonged weightlessness, or VAD therapy, can lead to
declines in cardiac mass of as much as 30%. Remarkably,
this myocardial atrophy response is rapid, occurring in just a
few days to weeks.1,29,30 For example, in healthy individuals
subjected to 12 weeks of bed rest, left ventricualr mass index
decreased 15%,31 and 25% declines in left ventricualr mass
have been documented in spinal cord injury patients.32

Clinically, cardiac mass decreases 40% to 50% after the
obstruction of aortic stenosis is relieved, a process that is
accompanied by improvement in heart function.33,34 Astro-
nauts exhibit signs of cardiac deconditioning following
prolonged exposure to zero gravity during spaceflight.31

Marked myocardial atrophy can be observed in patients
treated with VAD therapy.35 Despite the importance of
cardiac atrophy across multiple clinically relevant circum-
stances, relatively little is known about mechanisms govern-
ing the atrophic process.

The 2 major catabolic processes in cardiac muscle are the
UPS and the autophagy-lysosome pathway. Indeed, activation
of these cellular cascades occurs in virtually all forms of
cardiac plasticity; when the heart grows, anabolic pathways
predominate, but when the heart shrinks, catabolic events are
dominant. Importantly, some evidence, including data
reported here, suggests that the relative importance of UPS
and autophagic mechanisms are context dependent, raising
the prospect that specifically targeting them in high-risk
patients may afford benefit.

Myocardial atrophy is also seen in the contexts of nutrient
starvation or cancer cachexia.36 However, rather than being
triggered by hemodynamic unloading, the atrophy response
results from a variety of metabolic events, and the term
“metabolic unloading” has been coined to describe this
response.37 In contrast to mechanical unloading, the UPS
appears to play a dominant role relative to autophagy in
starvation-induced cardiac atrophy. Interestingly, bariatric
surgery in morbidly obese patients normalizes the overfed
state and is associated with improvement in ventricular
function38 and declines in cardiac mass.39 In other words,
removal of excess nutrients, a state of relative starvation,
appears to be beneficial to cardiac function in obese
patients.

Whereas many studies have documented improvement in
pathological cardiac hypertrophy in response to VAD
therapy,40–42 underlying mechanisms are unclear.
Ventricular mass and cardiomyocyte size decrease,8 con-
tractile performance and left ventricular end-diastolic
dimensions trend toward normal,42,43 abnormalities in Ca2+

homeostasis improve,44 extracellular matrix remodels,45 and
b-adrenergic signaling is enhanced.46 In fact, in rare

instances, the unloaded LV can improve sufficiently that
explantation of a VAD is well tolerated.47 However, some
effects of unloading are maladaptive. For example, mechan-
ical unloading with a VAD can lead to disuse atrophy of a
previously hypertrophied ventricle.35 For all these reasons,
there is great interest in elucidating molecular events
governing the remodeling of mechanically unloaded LV.

Molecular Features of Cardiac Atrophy
Muscle atrophy is an active, energy-requiring process whose
mechanisms are just now being deciphered. In skeletal
muscle, atrophy is controlled by pathways requiring activation
of ubiquitin ligases (“atrogenes”).48,49 In fact, in the context of
skeletal muscle atrophy, proteasome-dependent catabolic
pathways predominate.50 With respect to cardiac muscle, a
number of negative regulators of growth—acting either
through suppression of progrowth pathways or through direct
stimulation of protein degradation—have been identified.51

However, the role of the UPS in cardiac atrophy is relatively
less than that of autophagy, an assertion supported by
findings reported here and the fact that MuRF1 levels
increase only modestly in VAD-treated hearts.52 These
findings contrast with skeletal muscle atrophy, where expres-
sion of these ligases increases substantially in the setting of
denervation-induced unloading.53,54

Work reported here seeks to clarify the role of autophagy
in cardiac atrophy. Autophagy has been studied in human
hearts before and after VAD implantation. Unexpectedly,
autophagy appears to be downregulated after VAD placement
and mechanical unloading,55 although we have found evi-
dence of FoxO3 activation. It is established that autophagic
activity is elevated in the failing LV, possibly as an adaptive
mechanism that promotes maintenance of cardiac function.
VAD unloading rescues the failing heart, potentially obviating
the need for high-level autophagic flux. Evidence presented
here reveals that autophagy is upregulated when a normal,
healthy heart is unloaded.

FoxO3-Dependent Governance of Catabolism
Expressed at high levels in the heart, FoxO factors are
characterized by a conserved 110–amino acid DNA-binding
motif called the “forkhead box” or “winged helix” domain.56,57

The FoxO family comprises 4 members (FoxO1, FoxO3, FoxO4,
and FoxO6).56,58 Cardiomyocyte-specific overexpression of
FoxO1 is embryonic lethal,59 and skeletal myocyte–specific
overexpression of FoxO3 triggers severe muscle atrophy.60 In
Caenorhabditis elegans, the ortholog of FoxO, daf-16, controls
dauer formation, a state of developmental arrest in response
to environmental cues such as starvation and overcrowding.61

This finding has led to the discovery of counterbalancing
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interactions between the signaling cascades governed by FoxO
and insulin,16,62,63 which are activated by nutrient deprivation
and surplus, respectively.

FoxO proteins activate the 2 major mechanisms of protein
catabolism in muscle: UPS-dependent degradation and auto-
phagy.10,64 Under conditions of skeletal muscle unloading, for
example, FoxO activates flux through both UPS and autopha-
gic cascades, and the combination triggers muscle shrink-
age.10,64 Some evidence in cultured neonatal cardiomyocytes
suggests that FoxO1 and FoxO3 are capable of triggering
autophagy, as well.17 In a recent report describing reversible
overexpression of caFoxO3 in heart, early mortality was not
observed.65 At this time, an obvious explanation for this
discrepancy with our findings is not apparent, although
technical and/or strain differences may contribute. In any
event, before these 2 studies, nothing was known regarding
the potential involvement of FoxO transcription factors in
cardiac growth and atrophy in vivo or its potential involvement
in mechanical unloading of the LV.

The predominant mechanism of FoxO transcription factor
regulation is by posttranslational modification of FoxO
proteins.6 In other words, the transcriptional activity of these
proteins is regulated by a number of tractable signaling
pathways. Given this, FoxO factors are a target of potential
therapeutic interest in the control of cardiac mass, morphol-
ogy, and function.

Bnip3 as a FoxO3-Dependent Activator of
Autophagy
Autophagy is an evolutionarily conserved catabolic process
whereby cells respond to energy stress by recycling intracel-
lular components.66 In the setting of cardiac stress, activation
of autophagic flux pathways occurs across a spectrum.67 At
one end, low-level constitutive autophagic flux is required for
cell survival. At the other end of the spectrum, overactive
autophagy can deplete a cell of elements required for life,
thereby triggering cell death. In between these extremes, the
actions of autophagic flux are complex and potentially
prosurvival or antisurvival. The regulation of autophagy in
the heart, however, is largely unknown. That said, recent
scientific advances have raised the tantalizing prospect of
targeting the myocyte autophagic reaction as a novel means
of achieving therapeutic gain.68

Bnip3 is a BH3-only Bcl2-family protein known to be a
downstream target of FoxO3.64 A major action of the BH3-
only proteins is proapoptotic, as they interact with and
activate family members of the proapoptotic Bcl2 subfamily,
such as Bax, Bak, and Bok. These molecules form oligomers,
which are inserted into the mitochondrial outer membrane,
leading to the release of apoptotic factors such as
cytochrome C (see review69). However, appreciation of

substantial functional variability among these molecules is
starting to emerge.

Muscle is the body’s largest reservoir of amino acids. From
a teleological standpoint, it is possible to rationalize that BH3-
only proteins such as Bnip3 promote autophagy rather than
apoptosis in muscle cells, as recycling of nutrients in muscle is
needed under stress conditions. Numerous studies have
identified Bnip3 as an effector of autophagy.9,25,70 Some
studies have shown that Bnip3 competes with Beclin 1 for
binding to Bcl2, relieving Beclin 1 of the inhibitory effects of
Bcl2 binding and thereby promoting autophagy.71 In the
present study, Beclin 1 heterozygosity did not reverse the
cardiac atrophy induced by activation of caFoxO3, suggesting
that a single Beclin 1 allele is sufficient to mediate the
augmented autophagy induced by caFoxO3. Alternatively,
there may be other pathways that mediate the autophagy
process. Generation of cardiomyocyte-specific Beclin 1 knock-
outs will be required to elucidate whether Bnip3 acts solely
through activating Beclin 1. This report is the first to establish a
FoxO3-Bnip3-autophagy axis in adult hearts in vivo.

Bnip3 has been demonstrated to function mainly as a factor
induced in response to ischemia72,73; it is barely detectable at
either protein or mRNA levels in normal myocardium, and
germline deletion of Bnip3 has no deleterious effect.26 Our
results support the notion that, as with other BH3-only
proteins, Bnip3 must be regulated precisely, as these proteins
are positioned at the crossroads of cellular life or death.

Overexpression of Bnip3 in the heart shortly after birth
triggers dilated cardiomyopathy starting at 10 weeks of
age.26 This stands in contrast with the cardiac atrophy
phenotype induced by caFoxO3 activated in young adult mice,
even though Bnip3 levels were increased dramatically, as well
as our observation that Bnip3-null mice were resistant to the
atrophy-inducing effect of caFoxO3. These differences may
arise from the established differences between activating and
deactivating cardiac genes conditionally, as opposed to their
being driven by aMHC Cre (ie, expression starting shortly after
birth).74 Nevertheless, the underlying mechanisms remain
unclear. Also, the timing of Bnip3 overexpression could
explain the different cardiac phenotypes. Interestingly, over-
expression of cardiac Bnip3 shortly after birth induced
minimal increases in cardiac apoptosis.26 The status of
autophagy in these mice, however, was not studied. Thus, it is
possible that enhanced autophagy may have contributed to
the gradual development of cardiac dysfunction.

Whether increased expression of Bnip3 in response to
pathological stimuli, such as ischemia or pressure overload, is
beneficial or detrimental remains to be established. Studies
by Diwan et al26 demonstrated that knockdown of Bnip3 in
the heart was associated with beneficial postinfarction
ventricular remodeling and improved contractile performance
but not infarction size, possibly owing to the blunting of a
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Bnip3-dependent autophagic response triggered by ischemia/
reperfusion.75

FoxO3-Dependent Activation of the UPS
FoxO3 is known to promote activation of the UPS; consistent
with this, we detected evidence of late degradation of the
cardiomyocyte sarcomere. No longer viewed as static struc-
tures, sarcomeres are highly dynamic, subject to ongoing,
carefully orchestrated remodeling involving protein synthesis
and degradation. In recent years, it has become apparent that
the UPS is the major mechanism to degrade sarcomeric
proteins in both skeletal and cardiac muscle.28,53,76,77 The
degradation process is initiated by ubiquitination of the
contractile proteins catalyzed by “atrogenes” such as Atrogin1
and MuRF1, both of which are FoxO3 targets (see review78).
Interestingly, cardiomyocyte overexpression of MuRF1 or
Atrogin1 rendered hearts susceptible to pressure-overload
heart failure.79,80 However, cardiac mass was not significantly
different fromWTunder resting conditions. Together, thesedata
are consistent with our finding that the autophagy-lysosomal
pathway is the major contributor to cardiac atrophy in adult
mice triggered by caFoxO3, even though both autophagic and
proteasomal pathways were activated at the same time.

cTnI is a major target of MURF1. Interestingly, we detected
similarities in the cardiac phenotypes and sarcomere abnor-
malities induced by caFoxO3 with those elicited by deletion of
the cTnI gene81 For example, in both contexts, myocyte
ultrastructure is marked by shortened sarcomere length. In our
study, inhibition of the proteasome temporarily improved
cardiac function, suggesting strongly that UPS-mediated deg-
radation of sarcomeric proteins is responsible for the develop-
ment of heart failure and lethality. Also, there was synergistic
development of increased total protein ubiquitination,
decreased cTnI levels, and cardiac dysfunction 72 hours after
the initiation of caFoxO3 expression, followed by death within
24 to 48 hours. Based on these observations, we believe the
cardiac dysfunction and fatality induced by caFoxO3 derived
largely from sarcomere instability and derangement.

Summary and Perspective
Findings reported here uncover FoxO3 as a master regulator of
protein catabolism in the heart, orchestrating an atrophy
response via both autophagy-lysosomal and proteasomal
degradation pathways. Intriguingly, the autophagy-lysosomal
pathway accounted for the majority of the cardiac atrophy
phenotype induced by caFoxO3, whereas sarcomere degrada-
tion by proteasomal activation contributed to the emergence of
cardiac dysfunction. These findings point to the possible
dissociation of adaptive and maladaptive responses in the
unloaded LV. Given that controlled, transient activation of

atrophy-promoting pathways in the pathologically hypertro-
phied heart has been postulated as a means to trigger declines
in cardiac mass and improve symptoms and prognosis, these
findings may lead to therapeutic options with clinical relevance.
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