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Abstract

The environmental fate of many functional molecules that are produced on a large scale as precursors or as additives to
specialty goods (plastics, fibers, construction materials, etc.), let alone those synthesized by the pharmaceutical industry, is
generally unknown. Assessing their environmental fate is crucial when taking decisions on the manufacturing, handling,
usage, and release of these substances, as is the evaluation of their toxicity in humans and other higher organisms. While
this data are often hard to come by, the experimental data already available on the biodegradability and toxicity of many
unusual compounds (including genuinely xenobiotic molecules) make it possible to develop machine learning systems to
predict these features. As such, we have created a predictor of the “risk” associated with the use and release of any chemi-
cal. This new system merges computational methods to predict biodegradability with others that assess biological toxicity.
The combined platform, named BiodegPred (https://sysbiol.cnb.csic.es/BiodegPred/), provides an informed prognosis of the
chance a given molecule can eventually be catabolized in the biosphere, as well as of its eventual toxicity, all available
through a simple web interface. While the platform described does not give much information about specific degradation ki-
netics or particular biodegradation pathways, BiodegPred has been instrumental in anticipating the probable behavior of a
large number of new molecules (e.g. antiviral compounds) for which no biodegradation data previously existed.
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Introduction

Although polluting emissions of anthropogenic origin have
been a constant feature of human evolution [1], the onset of the
industrial revolution and the more recent development of syn-
thetic chemistry have had a more serious environmental im-
pact. In some cases, the contaminants generated are

intrinsically persistent (e.g. heavy metals) and the only way to
deal with them is through their immobilization or re-speciation
to less toxic forms [2]. In other cases, such as the plethora of
chemicals found in petroleum (a mixture of natural com-
pounds), these have been mobilized by modern industry to
niches and ecosystems where they do not naturally belong,
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producing a harmful shift in their biological balance. This latter
scenario is epitomized, yet by no means limited to, oil tanker
spills [3]. Less conspicuously, many components of fossil fuels
are separated at their source and used as feedstock for the pro-
duction of a large number of materials that form part of our
daily life (polymers, solvents, etc.). Finally, modern synthetic
chemistry further modifies organic molecules to generate thou-
sands of functional molecules for the most diverse applications
(from flame retardants to medications), generating an amazing
range of structures that are often altogether new-to-nature [4].

Whether already part of the biosphere or created by syn-
thetic chemists, time and time again these compounds end up
in the environment, where they come face-to-face with the ex-
traordinary catalytic armory of the microbial community resid-
ing in the niches in which they are deposited. In the best-case
scenario, these contaminants are quickly degraded to less toxic
intermediates or even completely metabolized (or co-
metabolized) to carbon dioxide and water through the catabolic
pathways available to the resident microbial populations. This
is typical of the components of petroleum that, while poten-
tially toxic or difficult to degrade, they have been in the bio-
sphere for long enough to allow the evolution of efficient
biochemical routes that can use them as carbon sources [5].
Things get more problematic when the pollutants involve mole-
cules with chemical bonds that are either rare or only produced
synthetically (e.g. halo-aromatic and nitro-organic compounds,
ionic liquids, etc.). In these cases, it is possible that the corre-
sponding biochemical degradation routes do not exist and thus,
these compounds may remain intact for long periods of time
until evolutionary mechanisms produce a solution to the chal-
lenge represented by their degradation [6].

How living catalysts successfully encounter and act on their
target chemicals in a physicochemical landscape can be defined
by at least six constraints: toxicity, abundance, concentration,
biodegradability, bioavailability, and mobility [7]. While most of
these boundaries are entirely dependent on the specific sce-
nario, biodegradability and biological toxicity can be traced to
the intrinsic chemical structure of the pollutant under consider-
ation. Nevertheless, determining these parameters experimen-
tally is expensive and slow, especially for biodegradability
where the compound must be released into a controlled envi-
ronment and its decay followed over a relatively long period of
time. Therefore, it should come as no surprise that various com-
putational efforts have been made over the past decade to pre-
dict the biodegradability and fate of specific molecules when
released into the environment. Accordingly, the already classic
University of Minnesota Biocatalysis/Biodegradation Database
(UM-BBD) (now located at the Swiss Federal Institute of Aquatic
Science and Technology: http://eawag-bbd.ethz.ch/: [8]) predicts
plausible pathways for the microbial degradation of organic
compounds. The system is based on a set of rules representing
chemical transformations frequently found in reactions de-
scribed in the scientific literature. Other approaches based on
machine learning include the BDPServer system, that tries to
correlate the triplets of atoms found in molecular structures
with their biodegradative fate [9], and the ATLAS platform [10],
a repository of both known and novel predicted biochemical
transformations among biological compounds that contains
�150 000 possible reactions. By the same token, a number of
Quantitative structure-activity relationship (QSAR) methods and
databases are available that correlate structure with biological
toxicity [11, 12]. A second important factor to consider when de-
ciding whether to generate, use, and release a new chemical is
its eventual toxicity for humans. To this end, a number of tools

have been developed for the in silico prediction of the toxicity of
chemical compounds adopting different approaches [see Raies
and Bajic [13] for a review].

To the best of our knowledge, a single tool to predict envi-
ronmental fate that combines intrinsic biodegradability with
toxicity, trained on experimental data of these features, has yet
to be developed. In this context, we present here a merged pre-
dictive platform (BiodegPred) that exploits otherwise scattered
data from a variety of biodegradation- and toxicity-related
resources. Trained on the experimental data available at these
resources, this tool can predict biodegradability and toxicity us-
ing only the chemical structure described in SMILES code as the
input. BiodegPred not only facilitates such predictive exercises
with an extremely simple web-based interface but also it ena-
bles the destiny of collections of structurally unrelated chemi-
cals (e.g. new pharmaceuticals) to be appraised when they are
released into the environment. We show that the tool has a
good predictive performance in cross-validation tests. It also
produces good results in a more demanding scenario involving
chemicals never seen during the training/testing cycles, and
can generate blind predictions for a set of antiviral compounds
of medical interest.

Materials and methods

An overview of the methodology used here is shown in Fig. 1. In
short, different datasets of biodegradable and recalcitrant com-
pounds were obtained from a variety of resources that use dif-
ferent criteria to quantify and define biodegradability. All
compounds available at these resources at the time of retrieval
were taken. For each resource, a support vector machine (SVM)
predictor was trained to discriminate biodegradable from recal-
citrant compounds using a vector representation of these chem-
icals. The performance of the individual predictors was
assessed using a leave-one-out cross-validation and, for all the
resources, an additional set of compounds was retrieved at a
later stage for validation. The final predictors have been made
accessible through a web interface.

Datasets

• UM-BBD. Now EAWAG Biocatalysis/Biodegradation Database

(http://eawag-bbd.ethz.ch/; [8]). For this resource, biodegradabil-

ity was defined as in Gomez et al. [9] and Pazos et al. [14], whereby

a compound is defined as “biodegradable” if it is possible to find

a route from that compound to the Central Metabolism within

the network of chemical reactions contained in the database,

otherwise it is considered “non-biodegradable.” Hence, this data-

set does not reflect experimental criteria of biodegradability but

rather, this is computationally inferred from the biochemical in-

formation available.
• University of Hertfordshire Pesticide Properties DataBase (PPDB,

http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm; [15]). The bio-

degradability criteria here are based on the DT50 for soil degrada-

tion in laboratory at 20�C: “non-persistent” (DT50 � 30) and

“persistent” (DT50 > 30).
• In addition, PPDB compounds with mammalian oral toxicity

information are used to generate the toxicity predictor.

Although toxicity experiments are performed in different

mammals (rat, mice, rabbit, etc.), the results are usually taken

as a proxy for human toxicity. Toxicity classification is based

on the acute oral LD50 in mammals: “low-toxicity”, LD50 > 2000

mg/kg and “high-toxicity” LD50 � 2000 mg/kg. These
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compounds are further divided into the two categories of

annotation confidence used in this resource: Q4 (“verified

data”) and Q3 (“unverified data of an unknown source”) and

two predictors were independently trained for these two

categories.

• Ministry of International Trade and Industry (Japan) MITI-I test

data (NITE, https://www.nite.go.jp/en/chem/qsar/evaluation.

html; [16]). In this case, the criterion is based on the “MITI-I test,”

in which the substance is inoculated and incubated with 30 mg/l

sludge. The biological oxygen demand (BOD) is then measured

continuously over a 28-day test period. If the BOD amounts to

�60% of the theoretical oxygen demand (ThOD), the substance is

considered “ready-biodegradable,” otherwise, it is regarded as

“non-ready-biodegradable.”

The distribution of the cases in all these datasets is shown in
Table 1. All the datasets are slightly unbalanced. We decided
not to balance the data as for relatively large datasets such as
these SVMs have been shown to be quite robust to any

imbalances [17]. Moreover, this imbalance in the databases
probably reflects the true biodegradable/non-biodegradable dis-
tribution in the current chemical space and consequently, the
compounds introduced by the potential users of the system
would have the same distribution.

The datasets used for training/testing were retrieved from
the corresponding resources on January 2012. In order to assess
the performance of the method on an independent validation
set not used during the training/testing cycle we retrieved from
the same resources the new compounds deposited since that
date up to April 2020 (Table 1), except for UM-BBD (see the
“Results” section).

In addition to these datasets with compounds of a known
biodegradation fate, we generated “blind” predictions for a set
of 148 antiviral compounds extracted from Drugbank [18]. We
selected only “antiviral agents” and “small molecules” to avoid
peptides, nucleic acids, etc. The final list, which contained anti-
viral agents at all clinical stages (approved, investigational, and
experimental), was checked to ensure that none of these com-
pounds were in the training/testing datasets used.

Figure 1: Scheme of the methodology. To construct the biodegradability predictor (top), a given database with experimental annotations on biodegradable (green) and

recalcitrant (red) compounds is used. The chemical structures of the compounds are coded as binary fingerprint vectors, which can be represented in a multidimen-

sional space (shown in the figure as a two-dimensional space). A SVM is used to locate the optimal hyperplane maximizing the separation between the two sets of

compounds (blue curve in this 2-D representation). After training, the system can be used to classify a compound submitted by a user (middle panel): the vector repre-

senting the query compound is classified according to the hyperplane generated during training. A similar procedure is performed to generate the predictor of toxicity

(bottom), starting with a database with annotations on toxic (purple) and non-toxic (light green) compounds.
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Compound vector encoding

The chemical structures of these compounds must be repre-
sented as numeric vectors given that machine learning in gen-
eral, and SVMs in particular, can only handle this type of data.
We used OpenBabel [19] to generate the FP2 fingerprints of the
SMILES representation of the compounds obtained from the
original resources. The FP2 fingerprint of a chemical compound
is a binary vector of length 1024 where each component enco-
des the presence of a particular chemical feature in the
molecule.

SVM parameters and training

SVMs are a class of machine learning methods intended for the
binary classification of a set of vectors. These approaches look
for the hyperplane defined by a kernel function that best sepa-
rates the two classes of vectors in the training set. After train-
ing, they predict the class of an unseen case (vector) by just
looking at which side of the hyperplane it falls (Fig. 1). In addi-
tion, the distance to the hyperplane can be used as a predic-
tion’s score, as the further a vector is from the hyperplane
separating the two classes the clearer its classification.

The R package “e1071” serves as an interface for the “SVM”
library [20], and it was used to model and train the SVM models
with the chemical compound data described previously. This
package allows the appropriate kernel to be selected and to fit
the parameters to their optimal values. By evaluating the data-
set complexity, and looking for a balance between effectiveness
and time restrictions, a radial function basis kernel type was se-
lected, defined as k(u, v) ¼ e�c�ju�vj2 [21].

Using the “tune” function of the “e1071” package, we per-
formed a grid search with two classification methods (C-classi-
fication and nu-classification), evaluating a range of values for
gamma (2�10 to 2), nu (2�8 to 0.5), and cost (2 to 220) in the search
for the optimal values of these parameters. For each set of pa-
rameter values, a 10-fold cross-validation was used to assess
the SVM performance: 10% of the cases were removed from the
dataset and used for testing, while the rest were used for

training. Table 2 shows the optimal set of parameters for each
dataset.

Performance evaluation

Once the optimal parameters were set, performance was mea-
sured by applying a leave-one-out strategy: a new model was
constructed with the parameters specified using the full dataset
as training set, except for one compound that was taken as the
test set. The prediction performance for that compound is eval-
uated and the process is repeated for every other compound in
the dataset. Furthermore, we evaluated the relationship be-
tween performance and SVM output score based on the per-
centage of correct predictions with a score equal to or higher
than a given value. This allows a value of reliability to be associ-
ated with a future prediction score.

An “area under the ROC curve” (AUC) analysis [22] was used
to evaluate performance. This analysis quantifies how well a
classifier separates two sets of examples (positives and nega-
tives) based on the score it associates to these. In our case, the
two sets were the corresponding biodegradable and non-
biodegradable compounds for each predictor, and the score is
that generated by the predictor for each compound. A ROC
analysis generates a plot of the true-positive rate (TPR) versus
the false-positive rate (FPR) as the list of examples sorted by the
score is traversed from top to bottom. A perfect classifier, whose
scores situate all positives at the top of the list and all negatives
at the bottom (or vice versa), would lead to an AUC value of 1.0.
By contrast, a random classifier that distributes positives and
negatives uniformly across the range of scores would produce a
value of 0.5.

Web server

A web interface was created for interested users to utilize the
predictors, mainly coded in PHP and JavaScript. It uses the JSME
molecular editor [23] to convert user drawn molecular struc-
tures into SMILES and the BKChem library to generate graphical
representations of molecules.

Table 1: Distribution of the cases in the datasets

Dataset Class 1 Class 2

UM-BBD (710/–) Biodeg. (567/–) No Biodeg. (143/–)
PPDB (620/180) Non-persistent (348/76) Persistent (271/104)
NITE (1433/2024) Ready Biodeg. (517/847) Non-ready Biodeg. (916/1177)
PPDB-Tox Q3 (1219/389) High toxicity (703/200) Low toxicity (516/189)
PPDB-Tox Q4 (596/184) High toxicity (407/65) Low toxicity (189/119)

The number of cases used to train/test the predictor is shown in bold, while the cases retrieved later and used for validation are shown in normal font. Note that

“PPDB-Tox Q4” is contained in “PPDB-Tox Q3” as the latter represents a more relaxed reliability criterion.

Table 2: Optimal classification parameters

Parametertype UM-BDD PPDB NITE PPDB-Tox (Q3) PPDB-Tox (Q4)
C-classification nu-classification C-classification nu-classification C-classification

Gamma 0.015625 0.001953125 0.0625 0.03125 0.0078125
Cost 32 NA 2 NA 4
Nu NA 0.5 NA 0.5 NA

C-classification doesn’t require a value for nu and a cost value doesn’t apply to nu-classification.

4 | Garcia-Martin et al.



Results
Predictor performance

We obtained the ROC plots for the three biodegradability predic-
tors and the PPDB toxicity predictor trained with the Q3 com-
pounds (see the “Materials and methods” section). As can be
seen, all predictors present ROC curves clearly far from the diag-
onal that represents a random prediction (Fig. 2). Indeed, these
curves lay relatively close to the top/left corner of the plot that
would represent the perfect classifier, and the corresponding
AUC values were well situated within the 0.5–1.0 range of a ran-
dom to a perfect predictor: 0.86 for UM-BBD, 0.73 for PPDB, 0.88
for NITE, and 0.79 for PPDB toxicity. The ROC plots also repre-
sent the predictor’s score associated to each region of the curve
on a color scale. Consequently, it is possible to extract the
expected TPR and FPR yielded by the predictor for any given
score. Accordingly, the predictor based on the NITI data and bio-
degradability criteria is that which performed best, followed by
UM-BBD. It should be remembered that UM-BBD is not trained
on experimental biodegradability data but rather, on “assumed”

biodegradability based on the information from chemical
reactions.

Figure 3 shows the same results in terms of precision versus
score plots, where precision is the ratio of the correct predic-
tions out of all the predictions. Thus, for any given predictor’s
score (x-axis), it is possible to extract the fraction of correct pre-
dictions that would be obtained (y-axis). For example, if we take
all the compounds predicted to be “ready biodegradable,” with a
score of �1.0 or better (lower), for NITE we will be right in 90% of
the cases, whereas if we restrict the score to �1.5 or better this
proportion increased to 95%. The corresponding values for
“non-ready biodegradable” compounds were around 92% for a
score �þ1.0 and 97% for a score �þ1.5. Thus, the prediction of
recalcitrant compounds is slightly better in this particular case.
Note that the “precision” performance metric provides informa-
tion on the ratio of true positives relative to all those regarded
as positives for a given score (i.e. all the predictions), yet no in-
formation is given about how many positives are lost (positives
below the score threshold). However, this latter value could be
extracted from other metrics, as well as from the TPR of the

Figure 2: Performance of the predictors. ROC curves represent the performance of the four predictors on the training/testing datasets. The SVM score associated to

each point of the curves is represented in a color code (see right). The “area under the curve” (AUC) quantification of performance is also shown.
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ROC plots (Fig. 2). The counterintuitive decrease in performance
of PPDB in predicting recalcitrant compounds with a very high
score (i.e. precision drops from 0.8 at score ��1.5 to almost 0.0
for the more restrictive score ��2.0) is due to the fact that there
are only 10 compounds in that range and unfortunately, the
compound with the lowest score is incorrectly predicted. Such
variation due to a small number of instances is also evident in
PPDB when predicting compounds with low toxicity.

The corresponding results for PPDB toxicity Q4 are shown in
Supplementary Fig. S1. The performances of the Q3 and Q4 tox-
icity predictors are quite similar, indicating that restricting the
training to a set of compounds with highest toxicity annotation
confidence does not help for this particular dataset.

Although the compounds used for testing were never in-
cluded in the corresponding training due to the cross-validation
procedure (see the “Materials and methods” section), it is always
good practice to include an additional set of examples not used
in the training/testing cycles in order to assess how well the final

predictor can be generalized to other cases. For this validation,
we used the compounds deposited in the same databases after
those that were retrieved in 2012 for the training/testing, i.e. the
compounds deposited between 2012 and 2020 (Table 1). This was
not done for UM-BBD as reproducing the network-based criteria
of biodegradability for these new compounds (see the “Materials
and methods” section) would require re-generating the complete
biodegradation network (see [9, 14]). For PPDB, the results from
this validation with new compounds were worse than those of
the training/testing set, both for the prediction of biodegradabil-
ity and toxicity (Fig. 4), although they were still highly significant.
By contrast, these new compounds were even better predicted
than those used to train/test the predictor for NITE.

“Blind” predictions for antivirals

The proportion of the 148 antiviral agents assigned to each class
by the different predictors is shown in Fig. 5. According to the

Figure 3: Relationship between precision and the SVM score. The precision (fraction of correct predictions) obtained for a given SVM score threshold is shown for the

four predictors. A SVM score of 0.0 represents the boundary between the two classes (biodegradable and non-biodegradable, or high and low toxicity).
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UM-BBD and PPDB criteria, about half of the compounds were
predicted to be biodegradable while the other half were pre-
dicted to persist in the environment. Interestingly, according to
the NITE criteria, only 3 of the 148 antiviral agents would belong
to the “ready biodegradable” category. Regarding the predicted
toxicity, about three-fourth of the compounds were predicted to
be non-toxic in mammals according with the NITE Toxicity Q3
predictor. These antiviral agents are listed in Supplementary
Table S1, including the antiviral’s name, SMILES string, and mo-
lecular structure. The first 19 (from Remdesivir to Vazegepan) of
these antiviral agents are currently being investigated or used
for SARS-2 treatment.

Web server

A web interface was created for interested users to access the
predictors, the main input for the interface being the SMILES
codification of the molecule of interest. If this SMILES string is
not known, it is possible to draw the molecule in a built-in JSME
molecular editor [23] that will generate the corresponding
SMILES code. After introducing the input molecule, the user

selects one or more of the predictors to be applied to it (Fig. 6).
The output of the server is the classification of the molecule
according to the predictors selected, as well as the associated
score and reliability values. The predicted classes are
highlighted in color: red, recalcitrant; green, biodegradable; pur-
ple, toxic; and light green, non-toxic. An image of the input mol-
ecule generated with the BKChem library (http://bkchem.zirael.
org/) is also shown. The web server is freely available at https://
sysbiol.cnb.csic.es/BiodegPred/.

Discussion

Human activities lead to the release into the environment of a
large number of chemicals not previously encountered by na-
ture. Two very important factors that should be considered
when designing new chemicals are their safety, insomuch as
their toxicity to humans, and their environmental fate, i.e.
whether they will be degraded by biotic and abiotic components
in the environment or remain recalcitrant for a considerable
time. The experimental determination of these two features is
expensive and time consuming, especially in the case of

Figure 4: Performance of the predictors in the validation dataset. As in Fig. 2, yet for the compounds in the validation datasets that were not used in the training/testing

cycles.
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biodegradability, as it involves tracking different concentrations
of the compound in a controlled environment over relatively
long periods of time. Consequently, these experiments cannot
cope with the ever increasing number of new compounds that
are being generated. Hence, in silico systems that can predict
these characteristics from the chemical structure of the com-
pounds alone are particularly useful. Even if not perfectly accu-
rate, these systems can give a good initial idea of the potential
toxicity and biodegradability of the compounds, thereby guiding
future experimental work.

Accordingly, we have generated a multi-predictor of com-
pound biodegradability that concomitantly predicts mamma-
lian toxicity. As there is currently no accepted classification of
biodegradable/non-biodegradable compounds (i.e. different
agencies use distinct criteria, mostly based on quantitative
measures), we developed different predictors trained on some
of these diverse criteria. This lack of a definite criterion for clas-
sifying a compound as biodegradable/recalcitrant justifies the
development of a tool which offers to the user an “overview” of
the predictions based on different criteria, so that he/she can in-
terpret the consensus/differences.

These predictors were trained and tested on large datasets
involving hundreds of compounds and they showed good clas-
sification performance. In addition, they also performed well
when validated in datasets built with the newer compounds de-
posited in the same databases, structures that had not been
used during the training/testing process. For the NITE classifier,
the performance in this validation was even superior to that ob-
served during training/testing. However, this performance in

Figure 5: Blind predictions for the antiviral datasets. Fractions of the Drugbank

antiviral agents predicted in each class by the four predictors.

Figure 6: Screenshots of the web interface. In the main interface (left), the user can either enter the SMILES coding of the compound or, alternatively, the JME molecular

editor (right) can be used to interactively draw its molecular structure, that is then converted into smiles. The results window (bottom) shows the classification of the

compound according to the selected predictors.
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validation was worse in the case of both biodegradability and
toxicity for PPDB, which could be due to the newer compounds
deposited in this period having certain peculiarities or a bias to-
ward certain types of chemicals.

After demonstrating that the predictors render good perfor-
mance with compounds of known biodegradation fates and tox-
icity, we generated “blind predictions” by using them to predict
the behavior of compounds of interest for which such informa-
tion is not readily available (at least it is not standardized in
databases). Due to the current COVID19 pandemic, antiviral
agents are a particularly interesting set of compounds, some of
which are currently being used to treat this disease. The differ-
ent tools render different fractions of antiviral agents predicted
to be non-biodegradable, which might be expected given that
the criteria to define biodegradability differ in each, as indicated
above. A potential user facing such apparent inconsistences
should check these criteria carefully and interpret the predic-
tions accordingly. Interestingly, according to the NITE criteria,
that rendered the best performance in our tests, most of these
antivirals belong to the “non-ready biodegradable” class. Most
of these compounds are predicted to be non-toxic in mammals,
as would be expected for such drugs. Nevertheless, it is not
strange to find that some of them are predicted to be “toxic”
since, as explained in the Materials and methods” section, this
list includes experimental antiviral agents and others that are
not yet approved.

As a result, we anticipate that the tool presented here will be
useful both for guiding experimental biodegradation studies
and for informing regulatory bodies when considering the ap-
proval of new active molecules for widespread use. To facilitate
its use, we have developed a freely available web server where
any interested user can generate predictions for his/her mole-
cule of interest.

Data availability

All datasets used in this work are available upon request.

Supplementary data

Supplementary data are available at Biology Methods and
Protocols online.
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Project of the Comunidad de Madrid—European Structural
and Investment Funds (FSE, FECER).
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