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Abstract
The fetal hypothalamus-pituitary-adrenal (HPA) axis is at the center of
mechanisms controlling fetal readiness for birth, survival after birth and, in
several species, determination of the timing of birth. Stereotypical increases in
fetal HPA axis activity at the end of gestation are critical for preparing the fetus
for successful transition to postnatal life. The fundamental importance in fetal
development of the endogenous activation of this endocrine axis at the end of
gestation has led to the use of glucocorticoids for reducing neonatal morbidity
in premature infants. However, the choice of dose and repetition of treatments
has been controversial, raising the possibility that excess glucocorticoid might
program an increased incidence of adult disease (e.g., coronary artery disease
and diabetes). We make the argument that because of the critical importance
of the fetal HPA axis and its interaction with the maternal HPA axis,
dysregulation of cortisol plasma concentrations or inappropriate manipulation
pharmacologically can have negative consequences at the beginning of
extrauterine life and for decades thereafter.
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Cortisol is arguably the most important hormone for organizing 
maturation in late gestation. The discovery that, in sheep, interrup-
tion of the fetal hypothalamus-pituitary-adrenal (HPA) axis prevents 
spontaneous parturition1,2 initiated a series of important studies on 
the role that cortisol plays in the coordination of fetal readiness for 
extrauterine life. The mechanism of parturition and the role that the 
fetal adrenal plays in primate species are complicated compared 
with ruminants and other large animals. But, although cortisol does 
not directly initiate parturition in the human, it does have other 
critically important actions in the human: actions that were first dis-
covered in the sheep model. Perhaps the most impactful discovery 
was that fetal sheep that were premature but otherwise treated with 
glucocorticoid were less likely to die in respiratory distress3. The 
mechanism of this effect involves a direct action of glucocorticoid 
on the fetal lung, accelerating terminal development and stimulating 
the production of pulmonary surfactant4–6. This discovery, rapidly 
translated to the human7,8, has resulted in the widespread antenatal 
administration of glucocorticoids to pregnant women threatening 
premature labor9,10. This clinical practice has been an effective strat-
egy for reduction or elimination of ventilator assist of the premature 
infant after birth. In addition to its effect on the lung, cortisol plays 
an important role in accelerating development of the fetal gastroin-
testinal tract11 and liver12. Recent evidence also supports a role for 
cortisol in the development of the fetal cardiovascular system13 and 
heart14. Similar to its effect in other systems, cortisol helps ready the 
fetal cardiovascular system for the transition to extrauterine life.

A central tenet of endocrinology is that circulating concentrations 
of hormones are controlled: that there is a set point around which 
negative feedback mechanisms maintain concentrations within a 
range15,16. For a hormonal system as important as the fetal HPA 
axis, understanding those mechanisms that govern the increases in 
fetal adrenocorticotropic hormone (ACTH) and cortisol becomes 
critically important for understanding the timing of birth, readiness 
for birth, and survival of the newborn. This most often involves the 
elucidation of influences, both positive and negative, that determine 
the trajectory of fetal ACTH secretion. For example, Thorburn 
and colleagues discovered a dynamic increase in the sensitivity of 
the fetal adrenal cortex to ACTH that can account for much of the 
increase in circulating cortisol concentrations prior to birth17. Sev-
eral laboratories have investigated changes in circulating molecular 
forms of immunoreactive ACTH (resulting from partial or complete 
processing of the parent molecule pro-opiomelanocortin), alter-
ing the effective biological activity of this pituitary hormone18–21. 
New evidence suggests that peripheral interconversion of cortisol 
and cortisone is also an important variable that can contribute to 
changes in circulating concentrations of cortisol22. Balancing the 
stimulation of the axis are mechanisms that prevent over-activity 
of the axis. The late-gestation fetal sheep has a cortisol negative 
feedback mechanism that is remarkably sensitive to small changes 
in plasma cortisol concentration23–27. In the final days and hours 
of fetal life, this negative feedback sensitivity falls dramatically, 
allowing greater increases in fetal HPA axis activity28.

Although nearly every variable within the fetal HPA axis has been 
studied to some extent, we are not close to fully understanding the 
interplay between the normal fetal developmental patterns, the influ-
ence of fetal and maternal stress, and the modulatory influence of 

infection on the timing of parturition and the survival of the newborn. 
A danger in the translation of basic endocrinology to clinical prac-
tice has been an under-appreciation of untoward actions of hor-
mones when they are present in unnaturally high concentrations. 
A clear example of this is the use, in practice, of antenatal steroid 
administration to women threatening preterm labor. First approved 
by a National Institutes of Health (NIH) consensus panel as a sin-
gle treatment or a small number of repeated treatments7, the pro-
cedure was modified by practicing physicians so as to administer 
glucocorticoid weekly from as early as 22 to 24 weeks’ gestation29. 
Forgetting the basic rule of endocrinology—that control mecha-
nisms prevent excessively high, as well as excessively low concen-
trations of hormones—can create unintended problems. Weekly or 
biweekly antenatal maternal betamethasone treatment resulted in 
the birth of babies that were more likely to be growth-restricted29–31. 
Studies in animal models indicate that multiple doses of gluco-
corticoid can have negative neurodevelopmental outcomes. Using 
the sheep model, Newnham and colleagues clearly demonstrated 
that excessive treatment with glucocorticoid dramatically impacts 
fetal brain growth and development32,33. This laboratory and others 
have also demonstrated negative effects of excessive glucocorticoid 
on fetal somatic growth34,35. Recent evidence in the baboon model 
reveals sex-specific effects of antenatal betamethasone on learning 
and attention in the offspring36. Recent work has suggested that the 
effects of excess glucocorticoid can be codified in the epigenome 
of the infant, theoretically with effects that could last a lifetime37,38. 
On balance, however, the long-term biological cost of multiple 
treatments is not clear. Clinical trials have not demonstrated long-
term growth or major neurosensory disabilities but have indicated 
an increased likelihood of attention deficit in children who were 
exposed to multiple doses of glucocorticoid before birth39. Arte-
rial stiffness, however, was increased in 14- to 26-year-old subjects 
exposed to two to nine weekly doses of betamethasone40. In rec-
ognition of the potential risks of multiple antenatal glucocorticoid 
treatments, a second NIH consensus statement recommended a 
single treatment41. As a result of the revised recommendations, the 
incidence of multiple treatment has been reduced.

The fetus is an organism that is distinct from, yet dependent on, 
its mother. The circulation of the fetus does not admix with the 
circulation of the mother, and the fetus in late gestation has the 
capacity to synthesize its own hormones. However, by virtue of the 
fact that the fetal and maternal blood is separated by one or more 
layers of cells in the placenta (depending on the species and there-
fore the general structure of the placenta), there is a molecular com-
munication between mother and fetus. This communication is most 
obvious with regard to blood gases. Fetal growth and development 
depend on the oxygen and nutrients supplied by the mother via 
trans-placental passage. However, in addition to hormones synthe-
sized within the placenta (e.g., chorionic gonadotropin and chori-
onic somatomammotropin), there is endocrine communication. An 
important example of this communication is the influence of mater-
nal adrenal cortical hormones on the fetus, perhaps a mechanism by 
which the fetus is informed about maternal stress.

The placentas of many species, including the human, rodent species, 
and the sheep, express the enzyme 11β-hydroxysteroid dehydroge-
nase types 1 and 2 (encoded by the genes HSD11B1 and HSD11B2), 
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which interconvert cortisol and cortisone (or, in rodent species, cor-
ticosterone and 11-dehydrocorticosterone)42–45. The predominant  
reaction in placenta is oxidation (cortisol to cortisone and corticos-
terone to 11-dehydrocorticosterone, mediated by the type 2 enzyme 
isoform). Because cortisone and 11-dehydrocorticosterone have 
low affinity for the glucocorticoid and mineralocorticoid recep-
tors (GR and MR, respectively), some of the active glucocorticoid 
in the maternal circulation is inactivated upon passage into the 
fetal circulation. Although this is a partial barrier for the natural  
glucocorticoids, it is not complete. Some of the cortisol that was 
converted to cortisone upon transplacental passage is converted 
back to cortisol by the type 1 11β-HSD isoform in target tissues, 
such as lung46,47, brain48, and heart49–51. As shown in the chronically 
catheterized fetal sheep model, elevation of maternal cortisol con-
centration to levels typical of stress increases fetal plasma cortisol 
concentrations and inhibits fetal ACTH secretion via a negative 
feedback mechanism52. Synthetic glucocorticoids, such as dexam-
ethasone or betamethasone, are not substrates for 11β-HSD and 
therefore are not inactivated when passing through the placenta.

The passage of natural glucocorticoid across placenta from mother 
to fetus raises the question of whether maternal stress is detrimental 
to the fetus. There is recent interest in the potential “programming” 
effects of maternal stress on the pattern of development in the 
fetus53. There are known glucocorticoid effects on gene methyla-
tion and histone modification that can have long-lasting effects on 
the physiology of the offspring. Perinatal programming of the HPA 
axis has been reviewed elsewhere54. If “programming” can result 
from alterations in the genome, however, can it also result from a 
more immediate effect of hypercortisolemia that bends the arc of 
development? In other words, what are the more immediate conse-
quences of maternal stress?

The literature is rife with reports of poor pregnancy outcome when 
the pregnancy is complicated by maternal stress: low socioeconomic 
class, partner abuse, and violence55–57. It is not known whether 
these negative effects on the pregnancy are caused entirely, or even 
partly, by the maternal cortisol stress response, but there is evidence 
that suggests that cortisol is at least partly to blame. For example, 
women with Cushing disease have a higher incidence of stillbirth 
that is associated with obstructive hypertrophic cardiomyopathy58. 
The effect of the maternal hypercortisolemia can be reproduced in 
the sheep model (using cortisol administration rates that mimic the 
maternal stress response)59. However, maternal cortisol also has an 
effect on fetal somatic growth, in part secondary to alterations in 
uterine blood flow60. Increases in maternal cortisol also alter fetal 
pulmonary and renal fluid balance mechanisms61. How many of 
these modifications of the pattern of fetal growth and development 
result in increased incidence of morbidity and mortality in postnatal 
life? For example, does chronic maternal stress cause small-for- 
gestation babies62 that are more prone to infant mortality63 or meta-
bolic disease in adulthood? Does cortisol-induced alteration in fetal  
cardiac development underlie the increased incidence of coronary 
artery disease in adults who were small for gestational age at birth64?

As it is detrimental to chronically elevate maternal plasma cortisol 
concentration, it is important to remember that there is a physi-
ological set point for cortisol in maternal blood during pregnancy, 
and that reductions in maternal cortisol below that level could be 
detrimental. Circulating concentrations of cortisol in the human and 
in other species, such as the sheep, are naturally increased in the 
latter half of pregnancy65–67. Stress, as previously discussed, further 
elevates the concentration of cortisol68,69. But the fact that the normal 
set point for cortisol is increased in pregnancy raises the question 
of why this occurs and whether there are species differences with 
regard to mechanism68.

The normal pregnancy-associated increase in maternal adrenal 
secretion of cortisol appears to play an important role on both sides 
of the placenta. Prior to the final stages of fetal life in utero, the 
majority of the cortisol circulating in the fetal blood derives from 
the maternal adrenal glands70. Because cortisol plays an important 
role in developmental processes important for fetal readiness for 
birth, it is likely that the increase in maternal cortisol plasma con-
centrations provides an important source of cortisol to the fetus 
before the fetal HPA axis becomes fully competent. On the other 
hand, reduction in maternal cortisol concentration below the nor-
mal set point, down to the level normally observed in the nonpreg-
nant state, disturbs blood pressure, fluid balance, and uterine blood 
flow, and slows fetal growth66. Although the above-mentioned 
studies were performed in sheep, evidence from human pregnan-
cies is consistent: untreated maternal adrenal insufficiency causes 
premature labor and neonatal morbidity71,72.

It is important to recognize both the importance and the complexity 
of the HPA axis during pregnancy and during fetal development. 
The mechanisms controlling this endocrine axis during pregnancy 
(why is maternal cortisol normally increased during late gestation?) 
and fetal life (what causes the increase in fetal HPA axis activity that 
is important for neonatal survival?) have never been fully solved. 
For example, is the ontogenetic rise in fetal HPA axis activity caused 
secondary to the development of immune cells within the fetal 
brain73? Are there placental signaling molecules (e.g., Corticotropin  
Releasing Hormone [CRH] in primate species) that stimulate fetal 
HPA axis activity74? Are there programmed developmental events 
within the fetal brain that progress without modification by circulat-
ing endocrine signals? We argue that answering these basic questions 
will be important for reducing neonatal mortality and morbidity, for 
improvement of maternal health, and the design of better and smarter 
treatments for women threatening preterm labor, and for the babies 
that are admitted to neonatal intensive care units.
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