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Cancer cells reprogram their metabolism to maintain viability via genetic mutations and epigenetic alterations, expressing overall
dynamic heterogeneity. The complex relaxation mechanisms of nuclear spins provide unique and convertible tissue contrasts,
making magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) pertinent imaging tools in both clinics
and research. In this review, we summarized MR methods that visualize tumor characteristics and its metabolic phenotypes on
an anatomical, microvascular, microstructural, microenvironmental, and metabolomics scale. The review will progress from the
utilities of basic spin-relaxation contrasts in cancer imaging to more advanced imaging methods that measure tumor-distinctive
parameters such as perfusion, water diffusion, magnetic susceptibility, oxygenation, acidosis, redox state, and cell death. Analytical
methods to assess tumor heterogeneity are also reviewed in brief. Although the clinical utility of tumor heterogeneity from imaging
is debatable, the quantification of tumor heterogeneity using functional and metabolic MR images with development of robust
analytical methods and improved MR methods may offer more critical roles of tumor heterogeneity data in clinics. MRI/MRS
can also provide insightful information on pharmacometabolomics, biomarker discovery, disease diagnosis and prognosis, and
treatment response. With these future directions in mind, we anticipate the widespread utilization of these MR-based techniques
in studying in vivo cancer biology to better address significant clinical needs.

1. Cancer Metabolism and MR

Cancer cells by definition are highly proliferative and grow
rapidly. Tumors adapt their metabolism to maintain viability,
which is one of the emerging hallmarks of cancer [1]. The
common metabolic alterations include increased glucose
uptake and lactate production, decreased mitochondrial
activity, modulated bioenergetic status and aberrant phos-
pholipid metabolism, accompanied by significant changes in
the tumor microenvironment and structural malformation

in the tumor mass, cellular microstructure, and surrounding
vascular networks.

Knowledge of metabolic patterns in cancer can be imple-
mented not only for early detection and diagnosis of cancer
but also in the evaluation of tumor response to medical
interventions and therapies [2]. Many targeted therapies
alter cancer metabolism, and the changes in endogenous
metabolites in cancer cells may be detectable before changes
in tumor sizes [3–5]. The noninvasive nature of imaging
methods is ideal for detecting early metabolic changes in
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Figure 1:MRI andMRS in imaging cancer.MRI andMRS provide useful information of cancermetabolism and tumor heterogeneity ranging
from anatomical change tomicrovascular development, biophysical characteristics,microstructural deformation, altered cellularmetabolism,
and tumor microenvironment.

cancer following treatment, which could be useful readouts
for monitoring response to therapies [6, 7].

Ideal utilization of molecular imaging is to “dose paint”
the radiotherapy dose administered to each tumor with
reference to positron emission tomography (PET) [8] and
to identify the geographic subregions that drive response to
therapy, subsequent resistance, and relapse during treatment
failure [9, 10]. However, further work has shown that the
interplay between abnormal metabolism, vascularization,
and hypoxia expression in tumors may lead to different maps
of abnormality depending on the functional pathophysio-
logical readout (i.e., perfusion, hypoxia, glucose metabolism,
etc.) [11]. In order to select optimal imaging paradigms to
guide treatment, a deeper understanding of the underlying
biological mechanisms is critical. There is a strong rationale
for investigating whether hypoxic regions should be treated
with differing radiation doses to well-oxygenated tumors,
as well as investigating regional variation based on func-
tional and molecular imaging. This idea represents a major
paradigm shift where images will be composed of arrays of
data arranged spatially in individual voxels [10]. Each voxel is

a cube of data, which summarizes a particular morphologic,
metabolic, or physiologic signal over a volume of around
0.25–5mm [12], depending on modality and subject (animal
or human).

Complex cancer metabolism and associated characteris-
tics have been extensively explored by magnetic resonance
imaging (MRI) and spectroscopy (MRS) using the versatile
relaxation mechanisms of nuclear spins that provide unique
and convertible tissue contrasts. Advances in MR techniques
have enabled noninvasive access to significant amounts of
useful information on cancer metabolism and tumor hetero-
geneity ranging in spatial scales from gross anatomy, bio-
physical characteristics, and functional or metabolic imaging
(Figure 1). It is important to appreciate that these abundant
parameters can be extracted from a single acquisition to
provide general structural data (e.g., size), functional patho-
physiological data (e.g., average bloodflowandpermeability),
and various heterogeneity-based metrics in the tumor. In the
following sections, imaging techniques for evaluating cancer
metabolism and tumor heterogeneity will be reviewed on a
variety of scales.



Contrast Media & Molecular Imaging 3

2. Imaging Morphological Changes and
Tissue Characteristics

Themorphological and tissue characteristics of conventional
anatomic MRI are based on mixtures of two distinct contrast
mechanisms:𝑇1 and𝑇2. Longitudinal relaxation (𝑇1) relies on
a dipole-dipole interaction of adjacent spins, specifying how
fast the longitudinal magnetization is recovered. Transverse
relaxation (𝑇2) refers to the decay rate of transverse magneti-
zation due to the progressive dephasing of excited spins [20].
While initial efforts to quantify tissue 𝑇1 and 𝑇2 were done by
Damadian et al. in the early 1970s [21, 22], current clinical
cancer diagnosis and monitoring are heavily reliant on
qualitative measurements (e.g., 𝑇1- or 𝑇2-weighted images).

Although longer 𝑇1 values were reported in various
tumors as compared to normal tissues [22], tumor lesions
with high-fat content (e.g., lipomas) or a high fibrous content
(e.g., breast cancer) have shorter 𝑇1 values [23]. Due to the
complication and insufficient intrinsic contrast, 𝑇1-weighted
imaging is mostly used with 𝑇1-shortening macromolecules
such as gadolinium (Gd) chelates that can be delivered into
tumor stroma through the surrounding expanded vessels and
capillaries [24].This contrast-enhanced𝑇1-weighted imaging
underpins much of the clinically relevant MRI.

In contrast, most cancerous tissues typically have signif-
icantly longer transverse relaxation rates (𝑇2) than normal
soft tissues without having any exogenous contrast agent. 𝑇2-
weighted imaging, therefore, offers a powerful method for
delineation of the tumor. Moreover, the difference in mag-
netic susceptibility (𝜒) of tumors and normal tissues accel-
erates intravoxel dephasing of transverse magnetization in
tumor and creates off-resonance effects or𝑇∗2 contrast, a com-
bination of spin-spin relaxation (𝑇2) and 𝐵0 magnetic field
inhomogeneity [25].

3. Imaging Microvasculature

Angiogenesis is a key element in the progression of cancer
for both proliferation and metastasis by adequately sup-
plying oxygen and nutrients to the tumor sites [26, 27].
As mentioned earlier, 𝑇1-weighted imaging with exogenous
contrast agents can demonstrate the relative vascularity of
tumor masses as the bolus of contrast agent passes through
the microvasculature. Dynamic contrast-enhanced- (DCE-)
MRI is a 𝑇1-weighted sequence that detects an increase
in signal intensity proportional to contrast concentration
and can measure perfusion in the tissue microstructure by
tracking the first pass of the injected contrast agent with
a kinetic tracer model [28, 29]. Several pharmacokinetic
models have been proposed to extract kinetic parameters [30]
such as 𝐾trans (volume transfer coefficient) and V𝑒 (extracel-
lular volume ratio) that describe tissue vasculature perfusion
and permeability. On the other hand, dynamic susceptibility
contrast- (DSC-) MRI exploits the changes in local suscep-
tibility (𝑇∗2 ) of the injected contrast agents, resulting in a
decrease of signal intensity in areas of higher contrast con-
centration.

Arterial spin labeling (ASL) technique offers sim-
ilar information as conventional dynamic susceptibility

sequences without having any contrast agent by introducing
an endogenous tracer in the form of proximally saturated
spins [31]. Tumor angiogenesis and the tumor grade can
be measured by kinetic analysis of perfusion imaging using
parameters such as tumor blood flow and tumor blood vol-
ume as well as mean transit time [32]. Moreover, tumor vas-
cular permeability and perfusion are reported as biomarkers
of understanding pharmacokinetics and assessing treatment
response to several anti-cancer treatments including anti-
vascular endothelial growth factor (VEGF) treatment (Fig-
ure 2) and radiotherapy [13, 33–36].

4. Imaging Microstructure

Rapid proliferation and change in the morphology of tumors
results in a transformation of endogenous cell-architecture
such as cell density, membranes, sizes, and fluid pools,
leading to altered molecular water diffusion. Diffusion-
weighted MR imaging (DWI) is a noninvasive measurement
of water diffusivity that reflects the cell architecture. With
increasing cell density, the confining effect of membranes
increases and, thus, tumors typically have lower signal on
apparent diffusion constant (ADC) maps than healthy cells
due to restricted water diffusion. ADC captures fluid volume
changes in the intra- and extracellular compartments, and
the literature reports an inverse relationship between ADC
values and tumor grade [37]. Intravoxel incoherent motion
(IVIM) analysis allows for the separation of diffusion and
perfusion parameters from diffusion weighted imaging with
multi 𝑏-values by compartmentalizing fast and slow moving
spins [38]. Although the efficacy of IVIM in cancer imaging
still needs further verification, recent imaging studies have
reported promising utilities of IVIM in characterizing various
tumor types [39, 40] and assessing therapeutic effects [41–
43]. As compared to the Gaussian diffusion model that relies
on monoexponential analysis (e.g., ADC of DWI), diffusion
kurtosis imaging (DKI) captures non-Gaussian factor of
water diffusion, which becomes prominent with larger 𝑏-
values, by including an excess kurtosis term (𝐾) in addition
to the Gaussian apparent diffusion coefficient (𝐷) [44, 45].
Studies have reported that DKI can assess tumor grade and
treatment response [46, 47] as well as improving diagnostic
accuracy [14, 48–50]. Tamura et al., for example, showed sig-
nificantly higher𝐾 and lower𝐷 in prostate cancer than non-
stromal benign prostatic hyperplasia (BPH), implying more
impediments to normal diffusion and greater complexity in
tissue microstructure in the tumors (Figure 3) [14].

Diffusion tensor imaging (DTI) assesses changes in
microstructural anisotropy from water diffusion by applying
several directional diffusion gradients. Measuring fractional
anisotropy (FA) from DTI can detect blockage of the ducts
and lobules by cancer cells in the breast, which increases
the extracellular tortuosity and restriction of the water
movement, causing a reduction of the diffusion coefficients in
all directions and consequently also decreasing the diffusion
anisotropy [51]. DTI also predicts tumor infiltration and
anisotropic pathways of cancer invasion [52, 53], and FA
maps are associated with the diagnostic utility in glioma [54],
pancreatic cancer [55], breast cancer [56], prostate cancer
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Figure 2: Perfusion monitoring using dynamic contrast-enhanced (DCE)MRI in liver metastasis after anti-VEGF treatment (bevacizumab).
DCE-MRI requires the acquisition of (a) time series of signal intensity data converted into (b) a gadolinium contrast agent concentration–time
curve and (c) an arterial input function, 𝐶𝑝(𝑡). (d) Model-fitting enables calculation of bulk transfer coefficient (𝐾trans) and a 𝐾trans map of
extensive liver metastasis overlaid on a slice from 𝑇2-weighted MRI. (e) 𝐾trans reduced three days after treatment with bevacizumab. (f)
Proportion of decrease in 𝐾trans over time (adapted from [13]).

[57], and hepatocellular carcinoma [58]. Susceptibility tensor
imaging (STI) is a new imaging technique that measures
structural anisotropy using directional field perturbation
between tissues with magnetic susceptibility difference and
applied magnetic field [50]. However, repeated 𝑇∗2 -weighted
MR acquisitions with various subject orientations along the
𝐵0magnetic field are required for the directional information,
having STI impractical for clinical use.

Mechanical properties related to the structures are also
significantly altered in cancer. The transformation of cell
architecture in malignant tumors changes their mechanical
properties as a much stiffer structure, during the pathophys-
iological processes of malignancy in aggressive cancer [59].
Tumor-associated fibroblasts are one of the most abundant
stromal cell types in different carcinomas and are comprised
of a heterogeneous cell population [60]. MR elastography



Contrast Media & Molecular Imaging 5

(a) (b) (c)

2.8

0

(d)

3.0

0

(e)

Figure 3: Non-Gaussian water diffusion analysis using diffusion kurtosis imaging (DKI) in prostate cancer. A 73-year-old man (prostate-
specific antigen level, 12.1 ng/mL) with prostate cancer (arrows). (a) 𝑇2-weighted image, (b) diffusion-weighted image (𝑏 = 1500 s/mm2),
(c) apparent diffusion coefficient (ADC) map, (d) diffusivity map, and (e) kurtosis map. Compared with healthy tissue, prostate cancer
in left peripheral zone (indicated by an arrow) showed hypointensity on 𝑇2-weighted image, hyperintensity on diffusion-weighted image,
hypointensity on ADC, lower diffusivity, and higher kurtosis (adapted from [14]).

(MRE; biomarker: stiffness) measures the viscoelasticity of
soft tissues in vivo by introducing shear waves and imaging
their propagation using MRI [15, 61]. The role of MRE in the
evaluation of malignant tumors has been tested in various
cancer types including breast cancer (Figure 4) [62–64],
brain tumor [65], hepatocellular carcinoma [66], and prostate
cancer [67].

5. Imaging Tumor Microenvironment, Cellular
Function, and Metabolism

Pathological tumormicroenvironment, represented by insuf-
ficient oxygenation (hypoxia) [68] and tissue acidosis [69],
is known to contribute to tumor progression and treat-
ment resistance. Hypoxia and acidosis affect the balance of
reducing/oxidizing species. These changes in the aberrant
tissue redox state can impact biological cellular statuses such
as cell proliferation/differentiation and necrosis/apoptosis
[70, 71]. Normalization of the tumor microenvironment is
considered a therapeutic strategy [72] and a series of imaging
technologies have been developed to unravel the hostile
tumor microenvironment.

5.1. Oxygenation. Oxygen is often a limiting resource in the
tumor microenvironment. Since the tissue oxygen level is
dependent on the transportation of red blood cells, cells
that are distant from well-perfused capillaries will be under

hypoxic conditions despite still being supplied with glucose
[73].This gradient can cause a hypoxic environment at almost
60% of the cancer cells [74], limiting oxidative phosphoryla-
tion and promoting the growth of cancer cells. Therefore, a
significant number of studies have been done to image tumor
perfusion and tumor hypoxia, yielding information about the
physiological status of the tumormicroenvironment. Cancer-
associated fibroblasts, on the other hand, suffer from hypoxia
to a less severe extent [75].

Thehypoxicmicroenvironment of tumors can be assessed
using several MR methods that exploit either endogenous
contrast mechanisms or exogenous contrast agents [76,
77]. Due to the differential magnetic susceptibility between
deoxy-hemoglobin and oxy-hemoglobin, 𝑇∗2 and 𝑇


2 (1/𝑇


2 =

1/𝑇∗2 − 1/𝑇2) can be used to estimate blood and tissue
oxygenation [78, 79]. The methods, however, are heavily
dependent on magnetic field inhomogeneities and suscep-
tible to possible errors in the correction of macroscopic
inhomogeneities of the static field (𝐵0). Quantitative suscep-
tibility mapping (QSM) is a more advanced post-processing
technique that calculates quantitative susceptibility (𝜒) from
the perturbed magnetic field map and has been shown to
measure oxygen saturation (SvO2) along cerebral venous
vasculature [80, 81]. Although these susceptibility-weighted
imaging techniques demonstrate the unique potential for
mapping blood depositions and tumoral neovascularity in
brain tumors [82, 83], the utility is so far focused on
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Figure 4: Shear stiffness assessment of breast cancer using MR elastography (MRE). (a) An axial MR magnitude image of the right breast of
a patient volunteer. A large adenocarcinoma is shown as the outlined, mildly hyperintense region on the lateral side of the breast. (b) A single
wave image from MRE performed at 100Hz is shown along with (c) the corresponding elastogram. (d) An overlay image of the elastogram
and the magnitude image shows good correlation between the tumor and the stiff region detected by MRE (adapted from [15]).

venous oxygenation and, thus, limited by spatial resolution.
Similarly, 𝑇∗2 -based blood oxygen level dependent (BOLD)
functional MRI can detect changes in oxygenation in the
vascular compartment but has limitations in quantitative
relationships between response signal intensity and changes
in tumor tissue pO2 [84, 85]. Oxygen-enhanced MRI is
a recently proposed imaging method that detects the 𝑇1-
shortening as a function of tissue oxygen concentrations [86–
88]. The oxygen-enhanced MRI has the potential to provide
noninvasive measurements of changes in the oxygen level
of tissue, as an addition to BOLD imaging. The technique,
however, is often hampered by insufficient sensitivity and the
𝑇1 contrast may be affected by other factors in the tissue
such as an alteration in blood flow and the H2O content of
the tissue [88]. A more quantitative tumor pO2 can be mea-
sured by MR methods that use exogenous contrast agents:
electron paramagnetic resonance imaging (EPRI) [89, 90]

and Overhauser-enhanced MRI (OMRI) [16, 91]. However,
an injection of free radical (trityl OX63) is required before
the imaging (Figure 5).

5.2. Acidosis. Glycolytic metabolism and the hypoxic
microenvironment lead to extracellular acidosis in solid
tumors [69]. The acidification typically starts from the
center of the tumor mass, where vascular perfusion is poor.
The cells at the center of the tumor mass adapt to the new
acidic environment, which can then stimulate invasion and
metastasis [92]. Therefore, the acidic pH distribution is often
used to describe the tumor progression and the hostility
of tumor microenvironment. Dissolution dynamic nuclear
polarization (DNP) provides an unprecedented opportunity
to investigate cellular metabolism in vivo by polarizing MR
detectable substrates (e.g., 13C-labeled substrates) achieving
a dramatic signal enhancement, which facilitates in vivo
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Figure 5: Tumor oxygenation andmicrovascular permeability using Overhauser-enhancedMRI (OMRI). Comparison of𝐾trans maps of Gd-
DTPA and OX63 (radical) in a squamous cell carcinoma (SCC). (a) SCC tumor region can be detected in a 𝑇2-weighted image by using 7-T
MRI. (b)𝐾trans map ofGd-DTPA. (c)𝐾trans map ofOX63 usingOMRI of the same SCC tumor. NoteOMRI/OX63 images were obtained before
the 7-TMRI/Gd-DTPA study. (d) Corresponding pO2 map computed from the same OMRI images for𝐾trans OX63 map. ((e), (f)) Based on the
anatomical image, ROI of SCC tumor was selected and enlarged. Tumor region with low 𝐾trans OX63 values (ROI 1) was relatively oxygenated
and normal muscle tissue, and the region with high 𝐾trans OX63 values (ROI 2) coincided with hypoxia in pO2 image (adapted from [16]).
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Figure 6: Multi-slice assessment of extracellular pH (pHe) of the tumor, kidney, and bladder using acidoCESTMRI and exogenous contrast
agent, iopromide, in a mice model of MDA-MB-231 humanmammary carcinoma. (a)The tumor showed an average pHe of 6.74. (b)The pHe
increased from the renal pelvis (6.54) to the cortex (6.84). (c) The bladder had a pHe of 6.3. The region into which the bladder swells after
injection during infusion could not be fit, indicating that the fitting method used is robust against overfitting (adapted from [17]).

metabolic imaging [93]. Gallagher et al. imaged acidic
extracellular pH in vivo by measuring the balance of
hyperpolarized 13C-labeled bicarbonate and 13CO2 [94].
Following studies have continued to measure extracellular
pH via 13C-bicarbonate as well as novel alternative strategies;
however, they are limited by short in vivo 𝑇1 relaxation times
and low polarization [95–97]. More recently, substrates that
change their chemical shifts with proton binding such as
15N-imidazole or 13C-zymonic acid, a pyruvate derivative,
are suggested as alternative pH sensors that overcome the
problems of short 𝑇1 and low polarization [98, 99]. Various
chemical exchange saturation transfer (CEST) approaches are
also available for in vivo pHmapping (Figure 6) [17, 100–103].

5.3. Redox-State. The hypoxic and acidic tumor microen-
vironment affects redox status by elevating reactive oxygen
species (ROS) production [70, 104]. In a biological system,
the redox-state can be represented by a multitude of ratios
including the [NAD+]/[NADH] and [NADP+]/[NADPH].
Hyperpolarized 13C-dehydroascorbate and 13C-ascorbic acid
are suggested as biomarkers to interrogate the in vivo
[NADP+]/[NADPH] balance as the ratio reflects extra-
cellular oxidation of 13C-ascorbic acid and intracellular
reduction of 13C-dehydroascorbate [105, 106]. Intracellular
[NAD+]/[NADH] redox-state can also be estimated from
[13C-lactate]/[13C-pyruvate] ratio after an injection of hyper-
polarized 13C-glucose [107, 108], but the clinical utility
requires further investigation due to the fast 𝑇1 decay of

13C-
glucose.

5.4. Bioenergetics. Reprogramming of energy metabolism
is a fundamental characteristic of cancer. The first discov-
ered metabolic phenotype was aberrant glycolysis (Warburg
effect), by which energy generation shifts from oxidative
phosphorylation to anaerobic glycolysis, even under normal
oxygen concentrations [109]. Anaerobic glycolysis produces
two ATPs per glucose molecule, which is less efficient in
comparison to the 36 ATPs generated by oxidative phos-
phorylation [69, 110]. Recent evidence shows that when

glucose is limited, cancer cells may recapture lactate and
convert it into pyruvate to fuel the tricarboxylic acid (TCA)
cycle [111]. This change in glycolysis involves alterations in
the regulation of glucose transporters (GLUT), glycolytic
enzymes such as hexokinase 2 (HK2) and pyruvate kinase
isozyme M2 (PKM2), lactate dehydrogenases (LDH), and
transporters of lactate (MCT) as well as the downregula-
tion or inactivation of pyruvate dehydrogenase (PDH) [112,
113]. Several key oncogenes, which drive the development
and progression of common human cancers, are known to
regulate glycolysis. For example, the deregulated activity of
the serine-threonine kinase Akt has been shown to increase
glucose uptake by cancer cells [114–116].The oncogene c-myc,
a transcription factor, controls numerous glycolytic genes
(e.g., HK2, enolase, and LDH-A) [117, 118]. Oncogenic Ras,
an essential protein that controls signaling pathways that
regulate normal cell growth and malignant transformation
[119], increases the concentration of an allosteric activator
of phosphofructo-1-kinase, fructose-2,6-bisphosphate, that
catalyzes the phosphorylation of fructose-6-phosphate to
fructose-1,6-bisphosphate [120]. Therefore, altered glucose
utilization and the associated enzymatic/oncogenic activities
can serve as surrogates for the development of imaging bio-
markers and anti-cancer treatments.

Upregulated glucose uptake and altered glycolysis have
been known for decades [109], but non-invasive imaging
methods that provide a true assessment of in vivo bioen-
ergetics are still lacking. Hyperpolarized [1-13C]pyruvate
has demonstrated increased lactate labeling in tumors [121]
and decreasing metabolism to bicarbonate [122], indicating
suppressed pyruvate flux into mitochondria (biomarkers:
metabolite ratios [lactate]/[pyruvate] or apparent conversion
rate 𝑘pyr-lac [123, 124]). The metabolic fate of pyruvate in
the mitochondria has also been explored with hyperpolar-
ized [2-13C]pyruvate in a preclinical glioma model as the
labeled carbon is retained in acetyl-CoA and enters the TCA
cycle [18]. In particular, decreased [5-13C]glutamate produc-
tion in tumors implies that the metabolic pathway from
pyruvate to the TCA cycle is suppressed in the tumor
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Figure 7: Glioma metabolism using hyperpolarized [2-13C]pyruvate before and after dichloroacetate (DCA) administration. 125-mM
hyperpolarized [2-13C]pyruvate was injected intravenously into a rat with C6 glioma cells. Metabolite maps of (a) [2-13C]pyruvate, (b) [2-
13C]lactate, and (c) [5-13C]glutamate from a tumor slice of a representative glioma-implanted rat brain, measured pre- and post-DCA. (d)
Contrast-enhanced 𝑇1-weighted

1HMRI of the corresponding slice (adapted from [18]).

as compared to the contralateral normal-appearing brain
tissue, while glycolytic characteristics of tumors could be
still assessed by increased [2-13C]lactate. Using hyperpo-
larized [2-13C]pyruvate, it was further demonstrated that
dysregulatedmitochondrial metabolism (e.g., the TCA cycle)
is potentially recoverable in glioma by inhibiting pyruvate
dehydrogenase kinase (PDK) with dichloroacetate (DCA)
(Figure 7). The utility of this technique is further verified for
monitoring anti-cancer treatment responses [125–129]. Glu-
tamine addiction, another phenotype in bioenergetics often
found in multiple cancer models that are less glycolytic [130,
131], can also be assessed by hyperpolarized 13C substrates
[132–134].

In addition to these approaches, proton (1H) magnetic
resonance spectroscopic imaging (MRSI) has been a powerful
tool for characterizing tumor metabolism by quantifying
cancer-related metabolites such as choline, creatine, N-acetyl
aspartate (NAA), and 2-hydroxyglutarate (2HG). Increased
levels of choline, specifically, are associated with tumor
proliferation, with recent studies emphasizing the complex
interactions between choline metabolism and oncogenic
signaling [135]. NAA is a neuro-specific metabolite that
decreases in most brain tumors as neurons are destroyed
or displaced by proliferating tumors [136, 137]. While NAA
metabolism has been primarily studied in the central nervous
systems, a recent study discovered cancer-specific production
of NAA via overexpressed NAA synthetase (NAT8L) in non-
small cell lung cancers [138]. A separate study in ovarian
cancer patients reported that patients with elevated NAA
levels have worse clinical outcomes [139], suggesting that
the NAA pathway has a prominent role in promoting tumor
growth. Creatine is another cancer-associatedmetabolite that

is reduced by depleted energy stores due to the highmetabolic
activity of malignant tumors [140]. Lactate also appears
high in tumors when hypoxia-induced anaerobic glycolysis
dominates mitochondrial oxidative phosphorylation and/or
aerobic glycolytic rate is increased [141]. Moreover, detection
of 2HG can differentiate brain tumors with isocitrate dehy-
drogenase (IDH)mutation from tumors with wild-type IDH,
for use in selecting patients for targeted therapies and devel-
opment of novel therapeutic approaches (Figure 8) [19]. Con-
ventional 13C-MRS with 13C-enrichedmetabolites could also
be useful to investigate the utilization of specific metabolic
pathways, but typically it is not used for imaging since the
limited signal intensity inhibits high spatial resolution encod-
ing.

5.5. Cell Death and Necrosis. High-grade neoplasms are
frequently heterogeneous and may have central necrosis.
The destruction of cell membranes in necrotic brain lesions
allows for virtually unhindered diffusion, yielding areas of
high ADC [142]. It has also been suggested that necrosis can
be detected using hyperpolarized 13C-fumarate and its extra-
cellular conversion to 13C-malate via fumarase, an enzyme
that presents in cytosol and mitochondria [143].

6. Imaging Tumor Heterogeneity

Common tools of cancer research such as DNA sequencing,
gene and protein expression, and metabolomics are based
on biopsy measurements and the assumption of a homoge-
nous cell population within a tumor. Tumors progressively
accumulate geneticmutations and epigenetic alterations [144,
145]. Genetic mutations of cancer cells lead to diversity and
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Figure 8: 2-Hydroxyglutarate (2HG) detection by MRS in isocitrate dehydrogenase- (IDH-) mutated glioma patients. In vivo single-voxel
localized spectra from normal brain (a) and tumors ((b)–(f)), at 3 T, are shown together with spectral fits (LCModel) and the components
of 2HG, GABA, glutamate, and glutamine, and voxel positioning (2 × 2 × 2 cm3). Spectra are scaled on the water signal from the voxel.
Vertical lines are drawn at 2.25 ppm to indicate the H4 multiplet of 2HG. Shown in brackets is the estimated metabolite concentration (mM)
± standard deviation. Cho: choline; Cr: creatine; NAA: N-acetyl aspartate; Glu: glutamate; Gln: glutamine; GABA: 𝛾-aminobutyric acid; Gly:
glycine; Lac: lactate; Lip: lipids. Scale bars: 1 cm (adapted from [19]).

heterogeneity, which may favor cooperation for growth [146]
andmetastasis [147]. Recently, the intratumoral heterogeneity
and branched evolution have been investigated in renal cell
carcinomas by genome sequencing of multiple spatially sepa-
rated samples fromprimary tumors and associatedmetastatic
sites [148].Themetabolic heterogeneity is attributed not only
to genetic alteration but also to the adaptation to the hypoxic
tumor microenvironment. As glycolysis confers a significant
growth advantage by producing the requiredmacromolecules
as building blocks, lactate can be utilized by oxygenated
cancer cells as oxidative fuel [149], to save the glucose for
the more anoxic cells in the center of the tumor [150]. This
cooperation between hypoxic and normoxic tumor cells opti-
mizes energy production and allows cells to adapt efficiently
to their environmental oxygen conditions [151, 152]. With

this in mind, there is a considerable research interest to
identify andmeasure both the overall degree of spatial tumor
heterogeneity and pinpointing where subpopulations within
tumors are responsive to therapy or resistant [10, 153, 154].

Tumors are versatile and have been described as evolving
ecosystems, expressing dynamic heterogeneity [155]. For
example, tumor pO2 fluctuates over time with a possibility
of rapid (minutes) adaptation to O2 availability via direct
and post-translational modulation, or slow adaptation with
chronic or delayed changes involving transcriptional, epi-
genetic, and genetic mechanisms [156, 157]. Furthermore,
the degree of intratumoral heterogeneity tends to increase
as tumors grow [158, 159]. Specifically, the spatial spread of
tumors is dependent on temporally evolving neovascular-
ization and tissue perfusion [157, 160]. Microenvironmental
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signals of lactate or pH stimulate adjustments in cell behavior
and protein patterns [161], which promotemechanisms of cell
migration [162, 163], angiogenesis, and immunosuppression
[161–164]. These consequences, which are the results of epi-
genetic, transcriptional, translational, or post-translational
mechanisms, are more or less reversible [163, 165, 166].

6.1. Analytical Methods. Imaging genuinely reflects spatial
heterogeneity in tumors. MRI is one of the leading imaging
modalities for quantifying tumor heterogeneity due to its
ability to take advantage of multiple tissue contrasts [167].
Many analytical methods are proposed for the quantification
of tumor heterogeneity as an imaging biomarker for cancer
staging, tumor classification, and assessment of treatment
responses. Nonspatial methods such as histogram analysis
can quantify tumor heterogeneity by analyzing a statistical
metric such as the frequency distributions, variance, and
percentile values [168–170]. Due to the accessibility of the
nonspatial analytical tools, a rapidly increasing number of
studies have been performed, presenting prognostic poten-
tials [171, 172]. Texture analysis extracts the local or regional
spatial signal distribution or “texture features” to evaluate
the intratumoral heterogeneity [173–175]. Fractal analysis is
a mathematical model-based texture-analyzing method that
provides a statistical measure of geometric pattern change
or recognition as a function of scale [176]. The fractal
biomarkers derived from DCE-MRI showed a significant
correlation with therapeutic outcomes [177–179]. Transform-
based methods are also available for analyzing texture in
frequency or a spatial domain (e.g., Fourier, Gabor, and
wavelet transforms). Currently, most image-based analytical
studies focus on the anatomical, microvascular [153, 180],
and microstructural heterogeneities [181, 182]. To evaluate
the efficacy of MRI/MRS parameters for assessing metabolic
heterogeneity of tumors, other MR methods that capture
functional or metabolic information should be explored
using the analytical methods. Moreover, integrated investi-
gations should be performed between MR-based parametric
maps and genomic/histopathological data.

7. Feasibility of Clinical Translation

Once technically and biologically validated, imaging
biomarkers can serve as useful medical research tools.
Many of the MR techniques reviewed here have shown
excellent promises as research tools, being highly useful in
the development of therapies, but the methods that made
clinical impact are few. To cross the translational gaps and
become a clinical decision-making tool, the imaging method
and the corresponding biomarker should satisfy a series
of criteria with considerations of cost effectiveness and
diagnostic/predictive values in patient care.

Compared to other imaging modalities, the noninvasive
and nonradioactive nature of MR renders it readily transla-
tional from bench to bedside, and the spatial and temporal
information has revolutionized the imaging approaches to
cancer diagnosis and treatment. In addition to 𝑇1 and 𝑇2-
weighted imaging that are routinely used in the clinic,
perfusion and diffusion imaging pulse sequences using DCE,

DSC, ASL, and DWI are included in standard clinical MR
protocols for multiple cancers and frequently used in clinical
trials to report on therapeutic effects [183]. In particular,
a large number of clinical studies regarding the diagnos-
tic values of DCE-MRI have been explored, resulting in
improved margins of radiotherapy dose delivery and surgical
margins [30, 177]. Imaging methods that depend on basic
pulse sequences such as DKI (from DWI), SWI, and QSM
(from𝑇∗2 -weighted imaging) can be available by further post-
processing without having separate data acquisitions. MRE is
already being used in clinics for assessment of chronic liver
diseases, and also available for hepatic tumors and breast
cancers.

Most functional and metabolic MR methods, however,
are rarely used in clinics due to low signal sensitivities,
resulting in poor spatial resolution and reproducibility. 1H
MRS methods, for example, often suffer from inconsistent
quantification and require a long scan time. Nonetheless,
2HG assessment using 1H MRS is expected to play an
emerging role in brain tumor imaging in clinics due to its
uniqueness of identifying IDH mutations in vivo [184, 185].
CEST MRI has shown encouraging results in tumor patients
[186, 187] and several early phase clinical trials are being per-
formed (for more information, refer to ClinicalTrials.gov).
EPRI and OMRI that require an injection of trityl are used
for small animals as research tools, and significant technical
advances and further evaluation are needed prior to human
applications [91, 188]. DNP-MRS plays an emerging role
in assessing cancer metabolism and tumor heterogeneity
with an increasing number of cancer-specific molecular
probes. Despite the transience of hyperpolarized signals and
the long polarization times, hyperpolarized 13C MRS using
dissolution DNP is promising in terms of clinical translation.
The completion of the first clinical trial for the assessment of
prostate cancer established the feasibility of human hyper-
polarized [1-13C]pyruvate studies and illuminated a clear
translational path for other additional applications [189].
Other hyperpolarized substrates, however, are still under
evaluation for toxicity, technical feasibility (e.g., faster 𝑇1
decays and lower polarizations), and biological validation in
animals.

8. Concluding Remarks and
Future Perspectives

The interaction between tumor metabolism and cancer biol-
ogy is essential for supporting tumor growth and prolonging
survival during stress [190] and has important implications
for the way tumors respond to therapies. Recognizing the sig-
nificance, contemporary oncologic therapeutics have moved
forward from cytotoxic treatment to personalized therapies,
such as targeting specific signaling pathways, oncogenes, or
metabolic enzymes. These therapies will potentially lead to
a shift of metabolic signature in tumor tissue that could be
monitored by usingMRI andMRS as described in this review
article. Inclusion of noninvasive MR methods for biomarker
development in conjunction with early drug development is,

https://clinicaltrials.gov/
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therefore, vital to ensure the progression of imaging use into
clinical practice.

Although spatial and metabolic heterogeneity of tumor
is an important prognostic factor, the current clinical utility
of quantifying tumor heterogeneity from imaging is contro-
versial [173, 191] and requires more robust and standardized
methods before it can contribute significantly to clinical
practice. Further details of tumor heterogeneity are available
with increased accuracy as MRI/MRS technologies advance.
For example, smart 𝑘-space sampling schemes and parallel
imaging methods can lead to accelerated data acquisition
with a narrower point spread function, achieving higher
spatial resolution and improved imaging contrast.This would
be beneficial for analyzing tumor heterogeneity, particularly
in the setting of dynamic imaging or metabolic imaging.
More robust assessments of tissue heterogeneity should be
available by enhancing image integrity at high-resolutions via
improvements in MR hardware (e.g., stronger field strength,
high-order shim coils, and more capable gradient coils).
It is also critical to understand each data acquisition and
reconstruction scheme for proper image analysis and valid
assessment of associated metabolic parameters. For exam-
ple, some imaging signals from neighboring voxels are not
necessarily entirely independent, as seen in advanced MRI
techniques where zero-filling techniques are employed to
keep scan times as fast as allowable [192], and this should be
controlled for when defining subregional analysis. Ultimately,
the image-based assessment of tumor heterogeneity will
require multidimensional approaches and therefore should
be done systematically. A large database can be built by shar-
ing existing MR data and patient information between mul-
tiple institutions with proper data conversion. This recently
emerging approach, named “radiomics,” however, should be
accompanied by standardized data acquisition and analytical
models. The mineable database will accelerate to identify
image features that depict intratumoral heterogeneity and
eventually provide useful decision support in clinics [10, 193].

Studies based on a single modality might oversimplify
the dynamics of cancer metabolism into a static description.
A combination of multi-modal in vivo imaging techniques
such as the integration of MR and PET (anatomic and
functional imaging by MRI and metabolic imaging by MRS
and PET) would further help in unraveling the molecular
complexities of cancer metabolism. The authors believe the
development of integrated bioinformatics tools would aid in
the handling of spatial, temporal, and multiparametric data
from cancer metabolic imaging. With these future directions
in mind, we anticipate the widespread integration of these
MR-based approaches into the study of cancer biology in vivo
to better address significant clinical needs. Prospective trials
with well-defined endpoints are encouraged to evaluate the
benefits of these emerging imaging tools in the management
of malignancies.
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and J. Cárdenas-Rodŕıguez, “Multislice CEST MRI improves
the spatial assessment of tumor pH,” Magnetic Resonance in
Medicine, vol. 78, no. 1, pp. 97–106, 2017.

[18] J. M. Park, S. Josan, T. Jang et al., “Volumetric spiral chemical
shift imaging of hyperpolarized [2-13c]pyruvate in a rat c6
glioma model,” Magnetic Resonance in Medicine, vol. 75, no. 3,
pp. 973–984, 2016.

[19] C. Choi, S. K. Ganji, R. J. DeBerardinis et al., “2-Hydroxy-
glutarate detection by magnetic resonance spectroscopy in
IDH-mutated patients with gliomas,” Nature Medicine, vol. 18,
no. 4, pp. 624–629, 2012.

[20] W. R. Nitz and P. Reimer, “Contrast mechanisms in MR
imaging,” European Radiology, vol. 9, no. 6, pp. 1032–1046, 1999.

[21] R. Damadian, “Tumor detection by nuclear magnetic reso-
nance,” Science, vol. 171, no. 3976, pp. 1151–1153, 1971.

[22] R. Damadian, K. Zaner, D. Hor, and T. DiMaio, “Human tumors
detected by nuclear magnetic resonance,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 71, no. 4, pp. 1471–1473, 1974.

[23] C. M. Gaskin and C. A. Helms, “Lipomas, lipoma variants,
and well-differentiated liposarcomas (atypical lipomas): results
of MRI evaluations of 126 consecutive fatty masses,” American
Journal of Roentgenology, vol. 182, no. 3, pp. 733–739, 2004.

[24] M. J. Kransdorf and M. D. Murphey, “Radiologic evaluation of
soft-tissue masses: a current perspective,” American Journal of
Roentgenology, vol. 175, no. 3, pp. 575–587, 2000.

[25] G. B. Chavhan, P. S. Babyn, B. Thomas, M. M. Shroff, and E.
Mark Haacke, “Principles, techniques, and applications of T2*-
based MR imaging and its special applications,” Radiographics,
vol. 29, no. 5, pp. 1433–1449, 2009.

[26] J. Folkman, “Tumor angiogenesis: therapeutic implications.,”
The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–
1186, 1971.

[27] R. K. Jain, E. di Tomaso, D. G. Duda, J. S. Loeffler, A. G.
Sorensen, and T. T. Batchelor, “Angiogenesis in brain tumours,”
Nature Reviews Neuroscience, vol. 8, no. 8, pp. 610–622, 2007.

[28] P. S. Tofts, G. Brix, D. L. Buckley et al., “Estimating kinetic
parameters from dynamic contrast-enhanced T1-weightedMRI
of a diffusable tracer: standardized quantities and symbols,”
Journal of Magnetic Resonance Imaging, vol. 10, no. 3, pp. 223–
232, 1999.

[29] B. R. Rosen, J. W. Belliveau, J. M. Vevea, and T. J. Brady, “Perfu-
sion imaging with NMR contrast agents,” Magnetic Resonance
in Medicine, vol. 14, no. 2, pp. 249–265, 1990.

[30] F. Khalifa, A. Soliman, A. El-Baz et al., “Models and methods
for analyzing DCE-MRI: a review,”Medical Physics, vol. 41, no.
12, Article ID 124301, 2014.

[31] J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Per-
fusion imaging,” Magnetic Resonance in Medicine, vol. 23, no.
1, pp. 37–45, 1992.

[32] C. Warmuth, M. Günther, and C. Zimmer, “Quantification of
blood flow in brain tumors: Comparison of arterial spin labeling
and dynamic susceptibility-weighted contrast-enhanced MR
imaging,” Radiology, vol. 228, no. 2, pp. 523–532, 2003.

[33] S. B. Wedam, J. A. Low, S. X. Yang et al. et al., “Antiangiogenic
and antitumor effects of bevacizumab in patients with inflam-
matory and locally advanced breast cancer,” Journal of Clinical
Oncology, vol. 24, pp. 769–777, 2006.

[34] B. F. Jordan, M. Runquist, N. Raghunand et al., “Dynamic
contrast-enhanced and diffusionMRI show rapid and dramatic
changes in tumor microenvironment in response to inhibition
of HIF-1𝛼 using PX-478,” Neoplasia, vol. 7, no. 5, pp. 475–485,
2005.

[35] M. Fuss, F. Wenz, M. Essig et al., “Tumor angiogenesis of
low-grade astrocytomas measured by dynamic susceptibility
contrast-enhancedMRI (DSC-MRI) is predictive of local tumor
control after radiation therapy,” International Journal of Radia-
tion Oncology Biology Physics, vol. 51, no. 2, pp. 478–482, 2001.

[36] S. E. Heethuis, P. S. N. van Rossum, I. M. Lips et al., “Dynamic
contrast-enhanced MRI for treatment response assessment
in patients with oesophageal cancer receiving neoadjuvant
chemoradiotherapy,” Radiotherapy and Oncology, vol. 120, no.
1, pp. 128–135, 2016.

[37] Y. Hayashida, T. Hirai, S. Morishita et al., “Diffusion-weighted
imaging ofmetastatic brain tumors: comparisonwith histologic
type and tumor cellularity,”American Journal of Neuroradiology,
vol. 27, no. 7, pp. 1419–1425, 2006.

[38] D. Le Bihan, E. Breton, D. Lallemand, M.-L. Aubin, J. Vignaud,
and M. Laval-Jeantet, “Separation of diffusion and perfusion in
intravoxel incoherent motionMR imaging,” Radiology, vol. 168,
no. 2, pp. 497–505, 1988.

[39] Y.-D. Zhang, Q. Wang, C.-J. Wu et al., “The histogram analysis
of diffusion-weighted intravoxel incoherent motion (IVIM)
imaging for differentiating the gleason grade of prostate cancer,”
European Radiology, vol. 25, no. 4, pp. 994–1004, 2015.

[40] M. Klauss, P.Mayer, K.Maier-Hein et al., “IVIM-diffusion-MRI
for the differentiation of solid benign andmalign hypervascular
liver lesions-evaluation with two different MR scanners,” Euro-
pean Journal of Radiology, vol. 85, no. 7, pp. 1289–1294, 2016.

[41] T. Hauser, M. Essig, A. Jensen et al., “Prediction of treatment
response in head and neck carcinomas using IVIM-DWI:
evaluation of lymph node metastasis,” European Journal of
Radiology, vol. 83, no. 5, pp. 783–787, 2014.

[42] S. Nougaret, H. A. Vargas, Y. Lakhman et al., “Intravoxel
incoherentmotion-derived histogrammetrics for assessment of
response after combined chemotherapy and radiation therapy
in rectal cancer: initial experience and comparison between
single-section and volumetric analyses,” Radiology, vol. 280, no.
2, pp. 446–454, 2016.

[43] L. Zhu, L. Zhu, H. Shi et al., “Evaluating early response of cervi-
cal cancer under concurrent chemo-radiotherapy by intravoxel
incoherent motion MR imaging,” BMC Cancer, vol. 16, no. 1,
article 79, 2016.

[44] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczyn-
ski, “Diffusional kurtosis imaging: the quantification of non-
Gaussian water diffusion by means of magnetic resonance
imaging,” Magnetic Resonance in Medicine, vol. 53, no. 6, pp.
1432–1440, 2005.



14 Contrast Media & Molecular Imaging

[45] A. J. Steven, J. Zhuo, and E. R. Melhem, “Diffusion kur-
tosis imaging: an emerging technique for evaluating the
microstructural environment of the brain,” American Journal of
Roentgenology, vol. 202, no. 1, pp. W26–W33, 2014.

[46] R. Jiang, J. Jiang, L. Zhao et al., “Diffusion kurtosis imaging can
efficiently assess the glioma grade and cellular proliferation,”
Oncotarget, vol. 6, no. 39, pp. 42380–42393, 2015.

[47] S. Goshima, M. Kanematsu, Y. Noda, H. Kondo, H. Watanabe,
and K. T. Bae, “Diffusion kurtosis imaging to assess response to
treatment in hypervascular hepatocellular carcinoma,” Ameri-
can Journal of Roentgenology, vol. 204, no. 5, pp. W543–W549,
2015.

[48] K. Sun, X. Chen,W.Chai et al., “Breast cancer: diffusion kurtosis
mr imaging-diagnostic accuracy and correlation with clinical-
pathologic factors,” Radiology, vol. 277, no. 1, pp. 46–55, 2015.

[49] A. B. Rosenkrantz, E. E. Sigmund, G. Johnson et al., “Prostate
cancer: feasibility and preliminary experience of a diffusional
kurtosis model for detection and assessment of aggressiveness
of peripheral zone cancer,” Radiology, vol. 264, no. 1, pp. 126–
135, 2012.

[50] C. Liu, “Susceptibility tensor imaging,” Magnetic Resonance in
Medicine, vol. 63, no. 6, pp. 1471–1477, 2010.

[51] S. Kakkad, J. Zhang, A. Akhbardeh et al., “Collagen fibers
mediate MRI-detected water diffusion and anisotropy in breast
cancers,” Neoplasia, vol. 18, no. 10, pp. 585–593, 2016.

[52] K. J. Painter and T. Hillen, “Mathematical modelling of glioma
growth: the use of diffusion tensor imaging (DTI) data to
predict the anisotropic pathways of cancer invasion,” Journal of
Theoretical Biology, vol. 323, pp. 25–39, 2013.

[53] A. R. Padhani, G. Liu, D. Mu-Koh et al., “Diffusion-weighted
magnetic resonance imaging as a cancer biomarker: consensus
and recommendations,” Neoplasia, vol. 11, no. 2, pp. 102–125,
2009.

[54] E. R. Gerstner andA. G. Sorensen, “Diffusion and diffusion ten-
sor imaging in brain cancer,” Seminars in Radiation Oncology,
vol. 21, no. 2, pp. 141–146, 2011.
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