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Abstract

Endemic Burkitt ymphoma (eBL) is primarily found in children in equatorial regions and rep-
resents the first historical example of a virus-associated human malignancy. Although
Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is
unclear whether other factors may contribute to its development. We performed RNA-Seq
on 20 eBL cases from Uganda and showed that the mutational and viral landscape of

eBL is more complex than previously reported. First, we found the presence of other her-
pesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human
herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-
neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic
genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape
with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of
mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in
eBL samples. Recurrent mutations in two genes not previously associated with eBL were
identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral
samples showed lower numbers of somatic mutations in common altered genes in compari-
son to sBL specimens, suggesting dual mechanisms of transformation, mutation versus
virus driven in sBL and eBL respectively.
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Author Summary

Burkitt lymphoma is endemic in sub-Saharan Africa and affects primarily children of age
4-7 years. Historically, it was one of the first tumors associated with a virus (EBV) and
bearing a translocation involving an oncogene, i.e. MYC. There are three distinct clinical
variants of Burkitt lymphoma according to the World Health Organization: sporadic,
endemic and immunodeficiency-related. Although there has been some recent work on
the molecular characterization of sporadic Burkitt lymphomas, little is known about the
pathogenesis of endemic cases. In this work, we analyzed 20 samples of RNASeq from Bur-
kitt lymphoma collected in Lacor Hospital (Uganda, Africa) and validated in an extension
panel of 73 samples from Uganda and Kenya. We identify the presence in the adjacent
non-neoplastic tissue of other herpesviridae family members in 53% of the cases, namely
cytomegalovirus (CMV) and Kaposi sarcoma herpesvirus (KSHV). We also demonstrate
expression of EBV lytic genes in primary tumor samples and find an inverse association
between EBV lytic expression and TCF3 activity. When studying the mutational profile of
endemic Burkitt tumors, we find recurrent alterations in genes rarely mutated in sporadic
Burkitt lymphomas, i.e. ARIDIA, CCNF and RHOA, and lower numbers of mutations in
genes previously reported to be commonly mutated in sporadic cases, i.e. MYC, ID3,
TCF3, TP53. Together, these results illustrate a distinct genetic and viral profile of endemic
Burkitt lymphoma, suggesting a dual mechanism of transformation (mutation versus virus
driven in sBL and eBL respectively).

Introduction

Burkitt lymphoma (BL) is the first human cancer to be associated with the Epstein-Barr virus
(EBV), the first tumor to exhibit a chromosomal translocation activating an oncogene (MYC),
and the first lymphoma to be associated with human immunodeficiency virus (HIV) infection.
The World Health Organization[1] classification describes three clinical variants of BL:
endemic, sporadic, and immunodeficiency-related. These variants are similar in morphology,
immunophenotype, and genetics. While the sporadic variant (sBL) occurs outside of Africa
and is rarely associated with EBV infection, the endemic variant (eBL) arises mainly in Africa
and is associated with malaria endemicity and EBV infection in almost all cases. Epidemiologi-
cal studies have shown that malaria and EBV combined do not fully explain the distribution of
eBL in high risk regions[2]. Malaria and EBV are in fact ubiquitous within the lymphoma belt
of Africa, suggesting that other etiologic agents may be involved[3]. However, it is unclear
what other epidemiological factors could play a role in the genesis of eBLs.

Three types of EBV latency have been described in EBV-related lymphomas according to
the pattern of EBV nuclear antigen (EBNA) and the latent membrane protein (LMP) expres-
sion, namely latency I, II, and ITI[4]. Specifically, latency I is usually associated with eBL and it
denotes a transcriptional program in which an EBV infection does not produce virions and
expresses a single protein, EBNA-1. While the latency I program has been extensively charac-
terized in vitro, a different form of latency has been recently reported in 15% of eBL that uses a
different set of promoters. Termed Wp-restricted latency[5], this program shows a homoge-
neous host expression signature[6] characterized by down-regulation of BCL-6 and up-regula-
tion of IRF-4 and BLIMP-1. Other reports have described latency program heterogeneity at
single cell level[7] and low expression of LMP genes in a fraction of cases[8,9]. Heterogeneous
EBYV transcription profiles with LMP expression have been recently reported in some cases of
AIDS-related and sporadic BL[10], but extensive data on endemic cases are not available yet.
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These studies indicate that the transcriptional EBV programs of primary eBL could be more
complex than expected across cases and within individuals. Therefore, the exact role of EBV
has remained elusive and further investigation is required.

The genetic hallmark of all three clinical variants of BL is the t(8;14) translocation involving
the juxtaposition of the immunoglobulin heavy chain locus (IGH) with the MYC oncogene
[11]. However, although transgenic mice expressing MYC under the control of the intronic
IGH enhancer (Ep) develop B cell lymphomas[12], successive molecular characterization dem-
onstrated that this model does not fully recapitulate the human disease. The comparison
between the gene expression profile (GEP) of BL and diffuse large B-cell lymphoma (DLBCL)
highlighted a distinct signature of BL characterized by the expression of both MYC targets and
germinal-center B-cell genes[13]. Furthermore, hypermutation and different breakpoint pat-
terns of IGH/MYC translocation[14,15] suggests that the origin of human BL derives from
aberrant class switching in the germinal center (GC), while transgenic IGH/MYC mice typically
arise from precursor/naive B-cells. The more accurate PI3K/MYC transgenic mouse model by
Sander et al[16] better recapitulates the human phenotype of BL and highlights the importance
of the PI3K pathway in the disease. Moreover, GEP analysis has demonstrated that the tran-
scriptional profile of eBL is different from that observed in sBL[17]. Recent studies have
unveiled the genetic landscape of sBL characterized by mutations affecting the B-cell receptor
(BCR) pathway and in particular the transcription factor TCF3, its negative regulator ID3, the
cell-cycle G1/S regulator CCND3[18,19], and the chromatin-remodeling gene ARID1A[20].
On the contrary, very little is known about the spectrum of alterations in eBL, how it might dif-
fer from that of sBL, the correlations between host mutation and viral infection, and the spe-
cific viral/host transcriptional programs.

In this study, we aim to characterize the presence of other potential agents, to define the
EBV transcriptional profile and to link these profiles to the mutational status of new and previ-
ously reported genes. We provide a characterization of the mutational and viral landscape of
eBL using 20 cases from Uganda. RNA-Seq, in combination with targeted sequencing technol-
ogy on a larger cohort of cases, allows the identification, validation and assessment of the recur-
rence of new somatic mutations. In addition, in contrast with earlier microarray-based
expression studies, RNA-Seq provides the opportunity to identify and associate microbial and
tumor mutational and expression profiles.

Results
Endemic BL is associated with multiple viral infections

To identify new pathogens in eBL, we applied Pandora, a new pipeline for the characterization
of tumor microbiomes, to a discovery cohort of 20 RNA-Seq samples. We established a read
cutoff on the basis of those samples that tested positive for RNA in situ hybridization (ISH) of
the EBER transcript. Since ISH validated all the RNA-Seq samples as positive, we established
the threshold to call a virus present in a particular sample as the minimal number of reads
detecting EBV (S1 Fig). Next, we established the EBV subtype by aligning RNA-Seq reads to
the genomes of both EBV type I and type II and deduced type I as the closest genotype. In addi-
tion to EBV, RNA-Seq revealed the presence of other viruses. In particular, 5/20 cases con-
tained human herpesvirus 5 (HHV5, cytomegalovirus, CMV), 4/20 human herpesvirus 8
(HHV8, Kaposi sarcoma herpes virus, KSHV), and 1/20 human T-lymphotropic virus 1
(HTLV-1) (Fig 1A, S2 Fig and S3 Fig). Human immunodeficiency virus (HIV) was not
detected in any case, confirming that pediatric eBL is rarely associated with the immunodefi-
ciency syndrome[21]. Nested PCR and immunohistochemical (IHC) analysis performed on all
20 original samples confirmed the presence of all the viruses in the discovery cohort (SIA
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Fig 1. (A) RNA-Seq technology reveals the presence of EBV and of other viruses. In particular, 5/20 cases contain human herpesvirus 5 (CMV), 4/
20 human herpesvirus 8 (KSHV), and 1/20 human T-lymphotropic virus 1 (HTLV-1). (B) Immunohistochemical evaluation demonstrates the
presence of CMV in the stromal cells in the adjacent reactive lymphoid tissue. CMV stain, Original Magnification (O.M.): 40x. (C) KSHV positivity is
shown, respectively in few neoplastic cells and in the endothelial cells within the neoplastic proliferation. LANA-1 (LN53 antibody), O.M.: 40x; (D)

LANA-1 (AT4C11 antibody) O.M.: 40x.

doi:10.1371/journal.ppat.1005158.9001

Table). To assess whether RNA-Seq findings generalize for EBV, CMV, KSHV, and HTLV-1,
we assayed for the presence of these four viruses in 20 additional cases from western Kenya by
IHC (S1B Table). In this Kenyan cohort, EBV was detected in 20/20 samples, CMV in 8/20
samples (Fig 1B and S4 Fig), KSHV in 7/20 samples (Fig 1C and 1D, and S5 Fig), and HTLV-1
in 0/20 samples. Therefore, over the 40 cases, we report the overall viral infection frequencies
of 40/40 (100%) for EBV, 13/40 (32.5%) for CMV, 11/40 (27.5%) for KSHV, and 1/40 (2.5%)
for HTLV-1. IHC analysis demonstrated the presence of CMV in the stromal cells and
macrophages localized within the tumors and in the adjacent reactive lymphoid tissue (Fig 1B,
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S2 Fig and $4 Fig). KSHV was identified not only in normal B-lymphocytes and endothelial
cells from the adjacent reactive lymphoid tissue (S3 Fig and S5 Fig), but also in one case in
about 5-10% of neoplastic cells (Fig 1C and 1D). HTLV-1 was detected in reactive T-lympho-
cytes in the only positive case of the discovery cohort. Sections of the samples incubated with
the secondary antibody alone and sections of reactive lymphoid tissue were used as negative
controls. Sections of lymph nodes with infectious mononucleosis were used as positive control
for EBV. Next, we compared the viral landscape of endemic and sporadic cases by analyzing 27
RNA-Seq sBL samples from Schmitz et al.[19] with Pandora. The analysis showed the presence
of EBV and HIV respectively in 4/27 (15%) and in 1/27 (4%) cases, consistent with several liter-
ature sources[22].

Epstein-Barr virus latent and lytic infection in BL

Beyond identification of EBV presence, RNA-Seq enabled us to quantitatively analyze the viral
transcriptional program. In addition to EBER-1 and EBER-2 transcripts, expression analysis of
the viral genes showed the expression of EBNA-1, a gene associated to latency I type, in 18/20
cases (Fig 2A). We also detected either LMP-1 or LMP-2A, characterizing the latency II type, in
13/20 samples (65%), and also EBNA-2 in 1/20 cases (5%). Interestingly, 2/20 cases (10%) were
characterized by the expression of EBNA-3A/B/C/LP, together with the lytic gene BHRF-1, sug-
gesting a Wp-restricted program[23]. However, the specific analysis of EBV isoforms showed
the presence of H2-HF splicing event, which is hallmark of lytic BHRF-1 expression[24-26](S6
Fig). Unsupervised hierarchical clustering of expressed EBV genes demonstrated two main
clusters distinguished largely by gene products involved in EBV replication (BALF-2, BCRF-1,
BHRF-1, BILF-1, BMRF-1, BNLF-2a, BZLF-1). The expression of these genes suggests a non-
canonical latency program of the virus with a subset of viral episomes initiating lytic reactiva-
tion[23].

Due to the heterogeneity of the viral transcriptional programs, we aimed to validate the
latency type by performing RT-qPCR for the EBNA-1, LMP-1, LMP-2A, EBNA-2, EBNA-3C,
and BHRF-1 transcripts across an additional series of 26 cases from an extended cohort of sam-
ples from Kenya. EBNA-1I was detected in 26/26 (100%), LMP-1 and LMP-2 in respectively 5/
26 (20%) and 20/26 (75%) cases (S3 Table and S7A Fig), EBNA-2 in 0/26 (0%), and the combi-
nation of EBNA-3C and BHRF-1 in 4/26 (15%). These results are largely consistent with the
RNA-Seq data with the exception of LMP-1 that has been detected at higher frequency in
RNA-Seq (S2 Table). Next, we evaluated the lytic cycle activation and found BILF-1, BALF-4,
and LF-2 in all 26 cases, whereas we observed the expression of BALF-2 in 23/26 (90%), BHRF-
1in 20/26 (80%), BZLF-1 and BMRE-1 in 15/26 (60%), BNLF-2a in 13/26 (50%), and BCRF-1
in 11/26 (45%) of the cases (53 Table and S7B-S7D Fig).

We then validated the expression of all the available encoded-proteins by IHC using strin-
gent positive and negative controls as reported in Materials and Methods. Overall, IHC evalua-
tion confirmed a non-canonical latency associated program with the expression of some
proteins characterizing latency II (i.e. LMP-1 in 2/26 and LMP-2A in 17/26 of the cases);
however, there was heterogeneity in the intensity of protein staining and in the proportion of
positive tumor cells. LMP-1 was detected in few cells, whereas LMP-2A was identified in a pro-
portion of cells ranging from 25% to 50% (Fig 2B and 2C). EBV replication was assessed by
nuclear expression of the immediate-early BZLF-1/ZEBRA and early BMRF-1/Ea-D, BHRF-1/
Ea-R lytic proteins (Fig 2D-2I). There was positive staining in the neoplastic cells for BZLFI,
BHRF-1/Ea-R and BMRF-1/Ea-D, respectively in 11/26 (40%), 16/26 (60%), and 13/26 (50%)
of the cases (S3 Table).
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Fig 2. (A) Unsupervised hierarchical clustering of expressed EBV genes demonstrates a diversity of non-canonical latency-associated gene
expression programs with a subset of viral episome initiating lytic reactivation as indicated by expression of genes corresponding to the lytic
program. (B) LMP-2A is expressed by 40 to 50% of neoplastic cells. LMP-2A stain, O.M.: 40x; (C) LMP-2A expression is identified in a proportion of
neoplastic cells ranging from 20 to 30%. LMP-2A stain, O.M.: 40x; (D) BZLF1/ZEBRA positivity is expressed by 5 to 10% of neoplastic cells. BZLF1/
ZEBRA stain, O.M.: 40x; (E) BZLF1/ZEBRA expression is detected in few neoplastic cells. BZLF1/ZEBRA stain, O.M.: 40x; (F) BMRF-1/Ea-D
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expression is observed in 50% of neoplastic cells. BMRF-1/Ea-D stain, O.M.: 40x; (G) BMRF-1/Ea-D protein expression in 5% to 10% of neoplastic
cells is shown. BMRF-1/Ea-D stain, O.M.: 40x; (H) BHRF-1/Ea-R staining is found in 60% of neoplastic cells. BHRF-1/Ea-R stain, O.M.: 40x; (I)
BHRF-1/Ea-R is expressed in 10% of neoplastic cells. BHRF-1/Ea-R stain, O.M.: 40x.

doi:10.1371/journal.ppat.1005158.9002

Finally, we compared the patterns of latent and lytic gene expression between endemic and
sporadic BLs using the 4 EBV-positive sBLs of the 27 RNA-Seq samples from Schmitz et al.'®
We observed the expression of BHRF-1 and BMRF-1 in 1 case; BZLF-1 was present in 2 cases
and LMP-2A in 4 cases.

Mutational landscape of eBL and correlation with EBV presence

To identify the genes that are somatically mutated in eBL, we applied the SAVI algorithm[27]
to the cohort of 20 RNA-Seq samples (see Material and Methods for gene selection criteria).
Our analysis identified 13 genes recurrently mutated in more than 4 samples. We confirmed
the presence of mutations in genes previously reported in BL literature[18,19,28] (Fig 3A-3C
and S4 Table), including MYC in 10/20 (50%), DDX3X in 7/20 (35%), ID3 in 6/20 (30%),
ARIDIA in 5/20 (25%), RHOA in 4/20 (20%), TCF3 and TP53 in 3/20 (15%), CCND3 in 1/20
(5%) of the cases. In addition, we found recurrent mutations in one gene not reported so far:
CCNF, detected in 4 out of the 20 cases (20%). Since RHOA mutations have not been previ-
ously detected in eBL and CCNF mutation was a new discovery, their prevalence as specific
mutations was further assessed using Sequenom technology on an extended panel of 66 neo-
plastic samples plus 7 cases with matched normal controls (S8A and S8B Fig). Recurrent muta-
tions in RHOA were found in 6/73 eBL cases (8%), and in 0/7 normal samples. Two of the 6
RHOA mutations occurred in paired eBL/normal cases, confirming that the alterations are
somatic (S5 Table). Recurrent mutations in codon 451 of CCNF were found in 14/73 eBL cases
(19%), and in 0/7 normal samples. One of the 14 CCNF mutations occurred in a paired eBL/
normal case, showing that also CCNF alteration is somatic. Direct sequencing of genomic
DNA confirmed all the mutations identified by Sequenom tecnnology and RNAseq (S9 Fig and
S10 Fig).

The distribution of somatic mutations and viral presence across both eBL and sBL samples
exhibit two interesting features (Fig 3B). First, in eBL samples we observed lower mutational
frequencies in the genes MYC, ID3, TCF3, DDX3X, CCND3 and TP53, as compared to their
reported recurrence in sBL, and higher mutational frequencies in ARIDIA, RHOA, and CCNF
[18,19]. Second, in sBL cases an almost mutual exclusivity can be seen between EBV presence
and mutations in TCF3/ID3 both known to be driver genes in sBL (p-value < 0.02, Fisher exact
test). To explore this hypothesis, we performed a hierarchical clustering of both endemic and
sporadic cases on TCF3 target genes (previously reported in Schmitz et al.[19]) and we demon-
strated that the first bifurcation of the dendrogram classifies the samples into EBV-positive
and EBV-negative BL independently on the specific subtype with an accuracy of 96% (45/47).
(Fig 4A). The results show that the TCF3 pathway is more activated in EBV-negative cases, as
indicated by the significant negative enrichment of TCF3 target genes in EBV-positive samples.
Furthermore, we observe that when considering the overall panel of both endemic and sporadic
BL samples, the mutually exclusivity between TCF3/ID3 mutations and EBV infection yields a
more significant effect (p-value < 0.0008, Fisher exact test). To further investigate the host
transcriptional programming related to EBV presence, we performed GSEA C2 analysis on
genes differentially expressed between EBV-positive and EBV-negative cases. Interestingly, we
detected a significant enrichment for the LMP-1 gene set signature, reported by Sengupta et al.
[29] in nasopharyngeal carcinoma, which is consistent with the detected LMP-1 expression in
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Fig 3. (A) The presence of mutations in genes previously described in BL is reported, including MYC (50%), DDX3X (35%), ID3 (30%), ARID1A
(25%), RHOA (20%), TCF3 and TP53 (15%), and CCND3 1/20 (5%). In addition, a new mutation is shown, involving CCNF and detected in 20% of the
cases. (B) Bar plot showing the frequency comparison of virus presence and driver mutations between endemic and sporadic BL. For each
comparison we report the p-value associated with rejecting the null hypothesis of equal eBL and sBL prevalences. (C) Distribution of mutations in
5 driver genes. Red points indicate endemic BL, while blue points the sporadic ones.

doi:10.1371/journal.ppat.1005158.9003

RNA-Seq data (Fig 4B). Moreover, since 13/20 RNA-Seq cases were positive for LMP2A, we
investigated the role of this viral gene in the context of eBL and GSEA C2 analysis has been per-
formed on gene differentially expressed between LMP-2A positive and LMP-2A negative sam-
ples. Interestingly, the E2F, E2F3 and cell cycle G1/S gene sets presented the highest significant
enrichment score (see S11 Fig), together with the down-regulation of retinoblastoma pathway.
These results can be explained as an effect of the interaction between MYC and LMP2A. In
fact, previous studies showed that LMP-2A promotes MYC-induced lymphomagenesis[30],
and E2F is a know target of MYC during cell division and proliferation[31]. Moreover, several
works associate LMP-2A expression to the PI3K/Akt pathway activation[32-35] and the study
from Brennan et al. (Oncogene, 2002 [36]) shows that the activation of PI3K pathway in lym-
phoblastoid cell lines can promote E2F transcription activity to affect cell cycle and cellular
proliferation.

Discussion

Opver the past few years, the concept that many diseases can be etiologically linked to infection
by more than one pathogen has drawn increased attention[37-40]. Whether endemic Burkitt
lymphoma should also be considered a polymicrobial disease and what role genetic alterations
play in the tumor are still open questions. In this paper, we analyzed the presence of pathogens
other than EBV in 40 eBL primary tumors by RNA sequencing, PCR, and immunohistochem-
istry, and found the presence of CMV and KSHV. We detected these viruses, which are fre-
quently reported in the African population[41], primarily in the surrounding non-neoplastic
tissue. Their prevalence in areas endemic for EBV, along with their absence in the sporadic
cases, suggests that CMV or KSHV could contribute to the chronic antigenic stimulation in
which eBL occurs.

The presence of these additional cofactors may also induce EBV lytic cycle through B-cell
reactivation and spreading EBV infection out of its natural niche of memory B-cells, character-
ized by a latency 0/1 program[42,43]. In fact, in our samples we showed a non-canonical
latency program of the virus characterized by a large number of cases expressing LMP-1/-2A/-
2B in a significant proportion of cells along with lytic reactivation. Our results are in agreement
with recent studies showing more complex EBV protein expression in Akata and Mutu cell
lines, commonly used to study the role of EBV in Burkitt lymphoma[44]. By using an alterna-
tive approach based on RT-QPCR array platform, Tierney et al. report a quantitative character-
ization of EBV transcripts in different experimental infection models that were validated in
endemic Burkitt lymphoma samples[24]. Interestingly, in this study a significant expression of
LMP-2 gene was revealed. Moreover, our results are in accordance with a previously published
study in primary AIDS-related lymphomas (ARL) by Arvey and colleagues[10], although a
rigorous comparison is limited by the small number of ARL BLs. All together, our findings
confirm recent evidence that LMP-2A cooperates in reprogramming the function of normal B-
lymphocytes and enhance MYC driven lymphomagenesis through the activation of PI3K-path-
way[45,46]. This pathway is a crucial to MYC mediated transformation as shown by PI3K/
MYC transgenic mouse that produces a model that represent a phenocopy of human tumors in
terms of histology, gene and protein marker expression, and somatic hypermutations[47]. This
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Fig 4. (A) the dendrogram classifies the samples into EBV-positive and EBV-negative BL independently on the specific subtype with an accuracy
of 96% (45/47). (B) GSEA C2 analysis on genes differentially expressed between EBV-positive and EBV-negative cases detects a significant
enrichment for the LMP-1 gene set signature. GSEA: gene set enrichment analysis.

doi:10.1371/journal.ppat.1005158.9004
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scenario suggests that LMP-2A activation of PI3K is an alternative/convergent mechanism to
the one driven by TCF3/ID3 mutations.

The expression of genes characterizing the lytic phase of EBV found by RNA-Seq was con-
firmed by IHC staining for the three main genes involved in the initiation of the lytic phase,
BZLF-1/ZEBRA, BMRF-1/Ea-D and BHRF-1/Ea-R. In early latent infection, EBV can be
induced to enter the lytic cycle by a variety of causes including B-cell receptor stimulation,
Toll-like receptor-9 activation, hypoxia, and growth factors[48,49]. Although lytic infection
kills the host cell, it also allows horizontal spread of EBV from cell to cell and may increase the
pool of latently infected B-lymphocytes from which transformed cells arise. Additionally, lyti-
cally infected B-cells secrete factors that may promote tumorigenesis, including growth and
angiogenesis factors and immunosuppressive cytokines. Recent evidence has challenged the
view that only the latency phase of EBV infection is significant for the development of EBV-
associated malignancies, proposing that lytic EBV replication may be of pathogenic relevance.
[50] Humanized mice infected with lytic active viral strains develop more lymphomas than ani-
mals infected with replication-defective strains[39], suggesting that lytic EBV infection may be
of importance also in the context of an active immune response. In the present study we gave
evidence for the first time that this occurs in vivo in the neoplastic cells of the primary tumors.
Physiologically, lytic gene products are expressed in three consecutive stages: immediate-early,
early, and late. Immediate-early lytic gene products initiate the process by inducing the activa-
tion of transcription of the other genes. Early genes control replication and metabolism of neo-
plastic cells[51]. Fatty acid synthase expression is induced by the BRLF-1 immediate—early
protein, and interestingly BL tumors are characterized by altered lipid metabolism[52]. Late
gene products code for viral capsid antigens and proteins involved in immune evasion. BNLF-
2A, detected in a significant number of our cases, may protect infected B-cells from immune
recognition and elimination[53]. Finally, the EBV transcriptome during the reactivation may
involve the contribution of a wide array of other virus-encoded RNAs, such as BARF-0, BARF-
1, BcLF-1, and RPMSI-1[54], that are not translated and may function as non-coding RNA
molecules which could participate in regulating gene expression[55]. Heterogeneity in lytic/
latent expression programs can be observed not only between patients but also within individ-
ual tumors, on a cell-to-cell basis. Intra-patient heterogeneity might be related to the activation
of the immune response following the expression of the viral genes. Therefore, the tumor is
under selective pressure and needs alternative mechanisms to survive and proliferate[56].

Our data on the mutational landscape of eBL seems to support this hypothesis. In fact, eBL
samples were characterized by a lower number of point mutations in genes previously found
altered in sBL, including MYC, ID3, TCF3, DDX3X, CCND3, and TP53. These results are con-
sistent with previous studies by Schmitz et al. [19]in which TCF3/ID3 mutations were more
common in sBL (70% of the cases) than eBL (40%). In particular, we observed a near mutual
exclusivity between TCF3/ID3 mutations and the presence of EBV, indicating that TCF3 path-
way is more significantly activated in EBV-negative cases.

The inverse correlation we observed between the presence and expression of EBV and the
number of cellular mutations in the different BL cases, may represent an in vivo picture of the
dynamic process by which a neoplastic cell, initially dependent upon EBV, switches-off viral
genes and switches-on cellular mutated genes to survive and proliferate. These results are con-
sistent with previous analysis of pediatric BL[20]. Based on our findings, one should infer that
eBL may arise from pathogenic pathways that are partially distinct from those driving sBL, sug-
gesting dual mechanisms of transformation in BL, mutationally versus virally driven. On the
other hand, ARIDIA and RHOA were more often mutated in eBL than in sBL. ARIDIA is one
of the subunits of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling
complex and is currently thought to behave like a tumor suppressor gene. Consistently,
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ARIDIA mutations frequently occur as insertion/deletion, and in most of our cases involved
the amino acid G1630. This gene has been reported as frequently mutated in the context of
pediatric BL, with a significant association to EBV negative cases[20], suggesting that the high
prevalence in eBL compared to the sBL may be due to the pediatric nature of the endemic case.
However, other EBV-associated cancer types show frequent deregulation of ARID1A[57-61].
In particular, in EBV-associated gastric cancer a strong correlation between ARID1A deactiva-
tion and EBV presence has been reported[62-64]. RHOA, which belongs to the Ras homolog
family, is a small GTP-ase protein recently found to be mutated in three tumors associated
with EBV infection, namely peripheral T-cell lymphoma (where it relates to follicular helper T-
cells[65-67]), diffuse gastric carcinoma[68] and paediatric sBL[28]. The distribution of RHOA
mutations in our cohort overlaps with the already reported mutations (codons 5, 17, 42 and
69) suggesting a similar functional role.

Finally we identified recurrent mutations involving the amino acid R451C in one gene not
previously detected in endemic or sporadic BLs, CCNF, altered in 20% of our cases. CCNF
encodes a member of the cyclin family belonging to the F-box protein family; it acts as an
inhibitor of centrosome reduplication during G2 phase and protects the cell from genome
instability[69]. Therefore, it is reasonable that CCNF mutations may cooperate in inducing
lymphomagenesis by promoting chromosome instability and a hypermutator phenotype
[70,71].

Understanding the mechanisms regulating EBV lymphomagenesis will hopefully lead to the
development of highly specific therapies. To avoid the tumor evasion from the already available
therapies, we need to identify and target the multiplicity of pathways that are deregulated in
the neoplastic cells and decrease tumor survival and proliferation.

Materials and Methods
Cases selection

A total of 20 BL samples preserved in RNAlater (RNA stabilization Reagent-QIAGEN, Valen-
cia, CA) were collected from the Department of Human Pathology of the Lacor Hospital
(Uganda, Africa), in endemic areas. For all of them, formalin-fixed and paraffin-embedded
(FFPE) samples have been available. All diagnoses were reviewed by 2 expert hematopatholo-
gists and were formulated according to the 2008 WHO classification. The clinical and histo-
pathologic characteristics of the 20 BL cases are summarized in S6 Table. Briefly, all cases were
t(8;14)-positive, and the immunophenotype was consistent with the diagnosis of BL (CD20
positive, CD10 positive, BCL-6 positive, Ki67> 98%, BCL-2 negative). Epstein-Barr virus was
detected by using in situ hybridization with EBER probes (INFORM EBER, Roche Diagnostics,
Basel, Switzerland). EBV infection in tumor cells was observed in 100% of the samples, assessed
by strong nuclear expression of small EBV-encoded RNA genes, EBER-1 and -2. These cases
have been previously studied for gene expression profile analysis and showed a molecular pro-
file consistent with molecular BL[17].

We used two distinct series of cases for validation of RNA-Seq results. The first included 26
primary tumors collected at the Moi University, Eldoret (Western Kenya). Of these, 20 were
used for virus data validation and 26 for EBV latency validation. The second was comprised of
66 neoplastic samples plus 7 cases for which matched normal controls were available (1 liver, 6
lymph nodes) collected from endemic area in Africa, and was used for Sequenom validation.

RNA extraction

Total RNA extraction was perfomed by RNeasy Plus Mini Kit(QIAGEN, Valencia, CA)
according to the manufacture instructions. The amount and quality of RNA were evaluated by
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measuring the optical density (OD) at 260 nm, the 260/230 and the 260/280 ratios using a
Nanodrop spectrophotometer (ND-100, Nanodrop, Thermo Scientific, Celbio, Italy).

RNA sequencing

Paired-end libraries (2x75 base pair) were prepared according to the TruSeq RNA sample prep-
aration v2 protocol (Illumina, San Diego, USA). Briefly, 2 ug of Poly(A)* RNA was purified
from total RNA using poly-T oligo attached magnetic beads and then used for fragmentation
into 130-290 bp fragments. First, single stranded cDNA was synthesized using reverse tran-
scriptase (SuperScript II, Invitrogen, Life Technologies,USA) and random hexamer priming,
followed by generation of double-stranded cDNA. AmpureXP beads (Beckman Coulter, Brea
CA) were used to purify the ds cDNA and end repair step was performed to convert the over-
hangs, resulting from fragmentation, into blunt ends by 3’ to 5’ exonuclease activity. A single
“A” nucleotide was added to the 3’ ends of the blunt fragments to prevent them from ligating
to one another during the adapter ligation reaction. This approach was adopted to ensure a low
rate of chimera (concatenated template) formation. Subsequently, sequencing adapters were
added to the ends of the ds cDNA fragment and a PCR reaction was used to selectively enrich
those ds cDNA fragments that had adapter molecules on both ends, amplifying the amount of
ds cDNA in the final libraries. Lastly, PCR library products were purified by AmpureXP beads
and quality control analysis was assessed using a DNA-1000 (Agilent, USA). The quantification
was performed by Quant-it PicoGreendsDNA Assay Kit according to manufacturer’s protocol
(Invitrogen, Life Technologies,USA). The resulting libraries were sequenced on an Illumina
HiScan SQ (Illumina, San Diego, USA) following the manufacturer's instructions.

Point mutation identification using RNASeq

Sequence variants were obtained using the SAVT (Statistical Algorithm for Variant Identifica-
tion)[72,73] algorithm independently for each sample. Candidate somatic mutations were
obtained by eliminating common germline variants (dbSNP 132 and variants from 10 reactive
lymph nodes). Genes recurrently mutated in more than 4 samples and expressing the corre-
sponding transcript with RPKM >3 were selected. Mutations occurring in the exact same posi-
tion in more than 4 samples have been discarded. Conversely, genes previously reported in BL
[19,74,75] were selected, even at low recurrence, to allow the comparison between endemic and
sporadic subtypes (53 Table). Sanger sequencing was used for technical validation.

Pandora: A pipeline for pathogen discovery using RNASeq

Characterization of the tumor microbiome is accomplished with Pandora, a new RNA-Seq
pipeline for pathogen identification and discovery (S12 Fig). The algorithm takes raw RNA-Seq
data as input and outputs annotated microbial spectra present in the tumor sample. Pandora
implements a subtractive algorithm consisting of discrete modules. First, the Host Removal
phase sequentially aligns the input reads to the host reference using bowtie2[76], blastN[77]
and Megablast,[78] and filters out the data originating from the host. Second, the unaligned
(non-host) reads are passed as input to the Microbe Identification phase where the reads are
aligned to curated sets of NCBI microbial sequences representing viruses/viroids, bacteria,
fungi, and select taxa of eukaryotic parasites. Third, the NCBI records matching each non-host
read are input to the Reporting phase where microbial load, gene expression, and relevant
clinical parameters are computed as the final output. The microbial load is computed as the
number of reads mapping to the organism or virus normalized by the genome length. Gene
expression quantification is computed as transcript per million (TPM)[79], which provides a
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more accurate relative quantification of mRNA abundance compared to other normalization
methods such as RPKM.

EBV genome analysis and expression

RNA-Seq reads were aligned to the GRCh37/hg19 reference genome using Bowtie2[76], Blastn
[77] and Megablast[78]. Reads not aligning to homo sapiens (non-host reads) were mapped to
human herpesvirus 4, type I (NCBI accession number NC_007605.1) using TopHat, a splicing
aware alignment program [80] (S9 Table and S10 Table). EBV viral gene expression was nor-
malized as transcripts per million (TPM)[79]. For each viral product the TPM expression was
normalized by the expression of A73 genes, which is consistently expressed in all the HHV4
positive BL samples. Hierarchical clustering was computed with Pearson distance and Ward’s
linkage method.

Expression analysis

Gene expression analysis was performed on both endemic and sporadic[19] RNA-Seq samples
of Burkitt Lymphoma. All the reads were aligned to human reference genome (GRCh37/hg19)
by means of TopHat version 1.3.3. Transcript abundance quantification was computed as
FPKM using Cufflinks, Cuffquant and Cuffnorm version 2.2.1[81]. Hierarchical clustering was
performed with Pearson distance and Ward’s linkage method. Gene set enrichment analysis
was obtained by running GSEA software on pre-ranked list of log2 ratio of the FPKM mean
fold change between two conditions[82].

DNA extraction

The DNA was extracted from formalin-fixed paraffin embedded (FFPE) of the original neo-
plastic samples using NucleoSpin Tissue (Machery-Nagel, Italy) following manufacture’s
instructions. The amount and quality of DNA were evaluated by measuring the optic density
(OD) at 260 nm, the 260/230 and the 260/280 ratios using a Nanodrop spectrophotometer
(ND-100, Nanodrop, Thermo Scientific, Celbio, Italy).

PCR amplification

To detect the presence of HTLV-1, CMV and KSHYV, a nested PCR assay was performed on
DNA of original tumor samples as previously reported[83]°[84] (S7 Table and S8 Table). DNA
from HTLV-1-positive cells, CMV-positive cells, and KSHV-positive cells were used as positive
controls, whereas DNA from HeLa293 cells was used as negative control. Several precautions
have been taken to prevent false-positive PCR results: (a) rooms for pre- and post-PCR proce-
dures were physically separated; (b) reagents were prepared in large batches and stored in
small aliquots; (c) equipment such as the microcentrifuge, water baths, pipettes, tube racks,
and other small equipment was designated for PCR work only; (d) gloves were changed fre-
quently; and (e) aerosol-barrier pipette tips, PCR tubes, and autoclaved, diethylpyrocarbonate-
treated water were sterilized by UV irradiation prior to PCR. Finally, 15 ul aliquots of the PCR
mixture were electrophoresed on a 2% agarose gel and directly visualized by ethidium bromide
staining under ultraviolet light[85].

Validation in an extended panel

The MassARRAY Assay Design Suite software was used to design 8 different multiplex reac-
tions for investigating 115 SNPs. Genotyping was performed using iPLEX Gold technology 57
MassARRAY high-throughput DNA analysis with matrix-assisted laser desorption/ionization
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time-of-flight mass spectrometry (Sequenom), according to the manufacturer’s protocol. 66
neoplastic cases plus 7 samples with matched normal controls (1 liver, 6 lymph nodes) were
analysed.

Real-time quantitative reverse transcription PCR (RT-gPCR)

The expression of EBV-encoded genes (EBNA-1, EBNA-2, EBNA-3c, BALF-2, BALF-4, BCRF-1,
BHRF-1, BILF-1, BNLF-2a, BMRF-1, BZLF-1, LMP-1, LMP-2A LF-2), which characterize the dif-
ferent latency programs, has been investigated on an additional series of 26 samples by RT-qPCR
using the QuantiTect SYBR Green PCR Kit (Qiagen, CA) as previously reported (S7 Table). All
samples were run in triplicate. The stably expressed housekeeping gene hypoxanthine-guanine
phosphoribosyltransferase (HPRT) was used as an endogenous control and reference gene for
relative quantification of each target gene. The relative expression is expressed as 2", where ACt
is defined as the difference in mean cycle thresholds of the gene of interest and HPRT[86]. The
samples were defined as “not expressed” if the ACt value exceeded 50 cycles[87].

Immunohistochemistry

To further validate the presence of HTLV-1 and HHV-8, immunohistochemistry for viral
products (HTLV-1-TAX 1: 70, Abcam, Cambridge, United Kingdom; HHV8-LANA 1: 50,
Leica Biosystems, Newcastle Lid, United Kingdom; HHV8 clone AT4C11 1:50, Abnova, Taipey
City, Taiwan) was performed on formalin-fixed paraffed-embedded (FFPE) sections of the
original samples and in an additional series of 20 cases. CMV was detected using in situ hybrid-
ization (ISH) with Bond ISH Probe.

The protein expression of EBNA-1 (1:150, AbCam, Italy), EBNA-2 (1:100, AbCam, Italy),
LMP-1 (1:100, Novus Biologicals, Italy), LMP-2A (1:100, AbCam, Italy), BZLF-1/ZEBRA
(1:100, Novus Biologicals, Italy), BMRF-1/Ea-D (1:150, AbCam, Italy), BHRF-1/Ea-R (1:150,
Novus Biologicals, Italy), was assessed by immunohistochemistry on FFPE sections of the orig-
inal samples and on an additional series of 26 primary tumors. Sections of the samples incu-
bated with the secondary antibody alone and sections of reactive lymphoid tissue were used as
negative controls. Sections of lymph nodes with infectious mononucleosis were used as positive
control. Immunoreactivity was performed on Bond Max automated immunostainer (Leica
Microsystem, Bannockburn, IL, USA), with controls in parallel. No epitope retrieval was used.
Ultravision Detection System using anti-Polyvalent HRP (LabVision, Fremont, CA, USA) and
diaminobenzidine (DAB, Dako, Milan-Italy) as chromogen was used. Two independent inves-
tigators assessed immunoreactivity. Case were considered positive when more than 20% of the
cells were stained for latent gene products and when more than 5% of the cells were stained for
lytic gene products.

Ethics statement

Ethics approval for this study was obtained from the Institutional Review Board at the Univer-
sity of Siena (Italy), from the Ethics and Research Committee at the Lacor Hospital (Uganda)
and from the Ethics and Research Committee at Moi University, Eldoret (Kenya). Written per-
mission and informed consent have been obtained before sample collection in accordance with
the Declaration of Helsinki.

Supporting Information

S1 Fig. Number of viral reads per million of human reads across the 20 eBL of the discovery
cohort. The red line indicates the minimal number of viral reads to detect any of the viruses in

PLOS Pathogens | DOI:10.1371/journal.ppat.1005158 October 15,2015 15/21


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005158.s001

@'PLOS | PATHOGENS

Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma

the corresponding sample.
(TIFF)
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S$4 Fig. CMV detection on Kenyan cohort samples by THC.
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S5 Fig. KSHYV detection on Kenyan cohort samples by IHC.
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S7 Fig. Validation of latency and lytic genes expression by RT-qPCR for LMP-2A (A),
BZLF-1 (B), BMRF-1 (C), BHRF-1 (D) in additional series of 26 cases is shown.
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S11 Fig. A-B The E2F, E2F3 and cell cycle G1/S gene sets presented the highest significant
enrichment score together with the down-regulation of retinoblastoma pathway.
(TIFF)

$12 Fig. Characterization of the tumor microbiome by Pandora.
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