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ABSTRACT

DNA cytosine methylation is an important epige-
nomic mark with a wide range of functions in many
organisms. Whole genome bisulfite sequencing is
the gold standard to interrogate cytosine methyla-
tion genome-wide. Algorithms used to map bisulfite-
converted reads often encode the four-base DNA al-
phabet with three letters by reducing two bases to a
common letter. This encoding substantially reduces
the entropy of nucleotide frequencies in the resulting
reference genome. Within the paradigm of read map-
ping by first filtering possible candidate alignments,
reduced entropy in the sequence space can increase
the required computing effort. We introduce another
bisulfite mapping algorithm (abismal), based on the
idea of encoding a four-letter DNA sequence as only
two letters, one for purines and one for pyrimidines.
We show that this encoding can lead to greater speci-
ficity compared to existing encodings used to map
bisulfite sequencing reads. Through the two-letter
encoding, the abismal software tool maps reads in
less time and using less memory than most bisulfite
sequencing read mapping software tools, while at-
taining similar accuracy. This allows in silico methy-
lation analysis to be performed in a wider range of
computing machines with limited hardware settings.

INTRODUCTION

DNA cytosine methylation plays a key role in transcription
regulation in many eukaryotes, including all mammals. This
epigenetic mark is characterized by the addition of a methyl
group to the fifth carbon of a cytosine (C), which converts it
to a 5-methyl cytosine. With few exceptions, heavily methy-
lated promoters are generally associated with epigenomic
repression of the gene. Methylation through distal regu-
latory regions, such as enhancers, tends to be associated
with inactivity of the element. In vertebrates, methylation
is added, maintained and removed by enzymatic specificity

for cytosines that are directly followed by guanines (Gs).
These CpG dinucleotides are the least frequent of all din-
ucleotides in the genomes of most eukaryotes (often com-
prising only 1–3% of the sequence). In regulatory regions,
however, the frequency of CpGs is significantly higher than
the genome-wide average (1). DNA methylation has been
implicated in cell fate decision (2), genomic imprinting (3),
X chromosome inactivation (4) and retrotransposon silenc-
ing (5). Bisulfite sequencing is the gold standard to analyze
cytosine methylation (6). Sodium bisulfite treatment con-
verts an unmethylated cytosine to uracil while not affecting
a methylated cytosine. The converted DNA is then ampli-
fied in a polymerase chain reaction, which copies uracil as
thymine (T). Whole genome bisulfite sequencing (WGBS)
couples bisulfite treatment with high-throughput sequenc-
ing, which generates hundreds of millions of short reads
ranging from 50 to 150 bases. WGBS data analysis allows
cytosine methylation estimates genome-wide at single-base
resolution (7,8).

Analysis of short read sequencing data, including WGBS,
starts by mapping reads to the reference genome sequence
of the organism from which the DNA originates. The prob-
lem of read mapping is to find the location in the refer-
ence genome that contains the sequence most similar to the
read. In general, mapping a read to the reference retrieves
the most likely genomic origin for that read. Mappers must
be sensitive to differences between read and reference se-
quences, which may originate from, among other sources,
sequencing errors or true genetic variation. The large num-
ber of reads necessary to attain sufficient coverage in large
genomes requires mapping algorithms to be simultaneously
fast and sensitive to various sequence differences between
read and reference.

To attain efficiency, most short read mapping algorithms
start with a filtration step, which reduces comparisons to
a small set of reference subsequences that are likely to be
optimal candidates. Most filtration methods assume that
the read and its optimal mapping location contain a com-
mon subsequence. A read is mapped by selecting a set of
subsequences from it, then comparing the read to all loca-
tions in the reference that match a selected subsequence. We
call subsequences selected from reads for filtration ‘seeds’.
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The most similar mapping locations are reported if they
attain sufficiently high similarity to the read. The algo-
rithmic efficiency of both filtration and comparison be-
tween the read and each candidate globally determine the
speed of a mapping algorithm. Reads can originate from ei-
ther of two complementary genome strands, and one com-
mon way to map a read to both strands is to map the
sequence and its reverse-complement to one strand. Af-
ter reads from WGBS are mapped, genome-wide methy-
lation levels can be estimated based on the number of
Cs and Ts in reads that map to each C in the reference
genome.

Bisulfite conversion makes the problem of mapping
WGBS reads different than the traditional DNA read map-
ping problem. WGBS reads are either T-rich (where most
Cs are sequenced as Ts) or A-rich, with the latter occurring
when the complementary strand of a converted read is se-
quenced. We refer to Ts in T-rich reads and As in A-rich
reads as bisulfite bases. The reverse-complement of a T-rich
read is A-rich, so mapping a T-rich read to the complemen-
tary strand is equivalent to mapping an A-rich to the orig-
inal strand. Multiple four-letter sequences can generate a
given T-rich or A-rich sequence once converted, so WGBS
mappers must allow both bisulfite bases to each match two
bases in the reference to quantify the similarity between a
read and a reference sequence.

Several tools exist to map bisulfite-converted reads to a
reference genome, with many novel algorithms introduced
to address the specific challenges of bisulfite conversion.
These tools can be divided in two categories: (i) wrappers of
short unconverted DNA read mapping algorithms adapted
for bisulfite sequencing and (ii) mappers designed specifi-
cally for bisulfite-converted reads. Tools within the first cat-
egory often operate by creating two copies of the reference
genome, one that converts all Cs to Ts and one that con-
verts all Gs to As, then mapping the input reads by also
replacing any unconverted read Cs with Ts. Bismark (9)
and BWA-meth (https://github.com/brentp/bwa-meth) are
two commonly used tools that adopt this approach. Bis-
mark is a wrapper for Bowtie 2 (10), whereas BWA-meth
wraps the BWA-MEM program (11). Tools within the sec-
ond category often incorporate filtration and alignment
that account for bisulfite conversion in their implementa-
tion, which allows for potential algorithmic optimizations
that may result in faster and more memory-efficient map-
ping times. BSMAP (12) and WALT (13) are mappers de-
signed specifically for WGBS data. These two mappers im-
plement similar algorithms: a direct address table of ref-
erence subsequences is constructed using the same letter
encoding for bisulfite bases, and subsequences are selected
from reads to retrieve exact matches using the table as a fil-
tration step, also reducing bisulfite bases to the same letter.
BSMAP encodes contiguous sequences in the direct address
table, whereas WALT encodes periodically spaced subse-
quences (14). HISAT-3N (15) was developed as a general so-
lution to map reads from sequencing protocols that convert
nucleotides. These include, besides WGBS, the SLAM-seq
protocol, which converts uracils to Cs to allow the analy-
sis of uracil introduction dynamics in maturing RNAs (16).
Bisulfite read mapping algorithms in both categories have
varying computational requirements, with more sensitive

algorithms usually requiring more time and memory to map
reads.

Despite their algorithmic and conceptual differences, a
common property of WGBS mappers is filtering candidates
by allowing bisulfite bases in seeds to match two possible
reference letters but requiring all other seed bases to match
reference letters exactly. Since bisulfite bases account for
half of the converted bases, this approach may result in less
efficient filtration. In particular, if a seed is selected for fil-
tration based on exact matches, the number of candidates
retrieved from the genome will likely increase with the num-
ber of bisulfite bases in the selected subsequence, resulting
in a greater number of false positive matches. Furthermore,
mappers that use the three-letter encoding are often imple-
mented by keeping two copies of the reference, one for each
bisulfite base. In practice, this often requires mappers to use
more memory.

Here we show that accounting for the statistical proper-
ties of nucleotide frequencies after bisulfite conversion pro-
vides an avenue for more efficient filtration and potential
improvement in the speed and memory requirement to map
WGBS reads. Strand symmetry in eukaryotic genomes re-
sults in complementary bases being equally frequent in both
strands (17). As a consequence of this symmetry, purines
(As and Gs) and pyrimidines (Cs and Ts) are also equally
represented both before and after bisulfite conversion. This
motivates the use of filtration using a two-letter alphabet
encoding, which simultaneously converts purines to one let-
ter and pyrimidines to another letter. This encoding can
be used for filtration in both T-rich and A-rich reads. We
show that compared to the commonly adopted three-letter
encoding, filtration using the two-letter alphabet increases
specificity when a fixed number of bits is available to encode
an arbitrary subsequence selected from a read. We describe
theoretical results for fingerprint-based filtration (18) in
genomes formed by independent and identically distributed
(i.i.d) letters and show that many eukaryotic genomes have
comparable properties to those derived theoretically assum-
ing i.i.d sequences. We also introduce an implementation
of this approach as a novel algorithm and software tool,
named abismal, that is optimized for WGBS read mapping.
Using publicly available data, we show that abismal attains
equivalent accuracy to commonly used WGBS mappers in
scientific research but requires less time and memory to gen-
erate its results.

MATERIALS AND METHODS

Indexing with a two-letter alphabet

Mapping bisulfite sequencing reads typically involves con-
verting the genome into a three-letter sequence, with C→T
or G→A to simulate the bisulfite conversion process. Our
approach is motivated by the observation that if the reads
and the genome are converted into two-letter sequences,
with both C→T and G→A simultaneously, a match in
the two-letter converted sequences is a necessary condition
for there to be a match between the three letter sequences.
Moreover, the same two-letter encoding works for both T-
rich reads and A-rich reads, which in some increasingly im-
portant protocols must be considered simultaneously and
on a per-read basis. If this necessary condition is specific

https://github.com/brentp/bwa-meth


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 3

enough, and if it can be tested efficiently, the approach may
have advantages. Beyond the ability to use the same encod-
ing to map both A-rich and T-rich reads, we present the sta-
tistical rationale for the benefits of this strategy.

We define a k-mer as a sequence of k consecutive letters.
We encode sequences by converting each k-mer to a nu-
merical representation that uses one bit per position, distin-
guishing purines from pyrimidines. In particular, with h2(A)
= h2(G) = 0 and h2(C) = h2(T) = 1, the two-letter finger-
print for a k-mer w is defined as

H2(w) = ∑k−1
i=0 h2(w[i ]) × 2i . (1)

Under this scheme, k-mers over the original DNA alpha-
bet are associated with k-bit binary numbers, and 2k dis-
tinct DNA sequences have the same fingerprint. This same
strategy can be applied in the context of spaced seeds (19),
encoding ordered but non-contiguous sets of k letters. The
advantages of spaced seeds are most pronounced when they
span large portions of the read, which renders them less sen-
sitive to insertions and deletions (indels). We, therefore, re-
strict our analyses to contiguous sequences.

Theoretical analysis of the two-letter encoding

Here we analyze the theoretical efficiency of the two-letter
fingerprint strategy, defined in equation (1), as a function
of the number of bits in the fingerprint. This will be done
by comparison with the three-letter encoding used in most
bisulfite sequencing mappers, which reflects the chemical
process of bisulfite conversion. In particular, the three-letter
strategy encodes letters as h3(A) = 0, h3(G) = 1 and h3(C)
= h3(T) = 2. This encoding simply equates T and C. Using
h3, the fingerprint for sequence w can be constructed as

H3(w) = ∑k−1
i=0 h3(w[i ]) × 3i . (2)

The function H3 evaluates a radix-3 polynomial, while in
practice it has been more common to use a radix-4 varia-
tion, defined as

R(w) = ∑k−1
i=0 h3(w[i ]) × 4i .

The two main distinctions between radix-3 and radix-4 are
(i) the size, in bits, for the resulting fingerprint value, and (ii)
the operations required to evaluate the fingerprint function.
Note that R can be evaluated using logical operations, while
H3 requires multiplication and modular arithmetic. Since
H3(w) = H3(w

′
) if and only if R(w) = R(w

′
), the radix-3 and

radix-4 encodings are equivalent with respect to accuracy
characteristics as fingerprint functions, but when bounded
by a common maximum value, the image of the radix-3 en-
coding contains more elements.

As previously outlined, the time required by a mapping
algorithm depends on the total number of fingerprint hits,
which, for a particular fingerprinting scheme, is propor-
tional to the expected hit rate for a random k-mer. We
assume a random genome sequence of infinite size with
i.i.d letters, and will address relaxations of this assump-
tion later. We further assume that Pr(A) = Pr(T) = p and
Pr(C) = Pr(G) = q, reflecting strand symmetry in eukary-
otic genomes. Importantly, this symmetry ensures that p +

q = 1/2. We define the expected hit rate of a fingerprint func-
tion as the expected fraction of positions whose fingerprint
is H(w), where w is a uniformly sampled k-mer from the
genome. This emulates the process of selecting fingerprints
based on seeds from a large number of reads that were sam-
pled from the reference sequence, as is the case with real
short read sequencing data (with the exception of sample
contamination). The expected hit rate Z can be calculated
as

Z =
∑
w

Pr(w)
(∑

w′
Pr(w′) × I(H(w) = H(w′))

)
,

for indicator function I. If k-mers w and w
′
are sampled at

random from the genome, this is equivalent to

Z = Pr(H(w) = H(w′)).

If we assign fingerprints to each genome position using
two functions H and H

′
with the same codomain �, the one

with lower expected hit rate is preferred. For a fixed refer-
ence genome, let u be a fingerprint and n(u) be the number
of k-mers whose fingerprint is u. The empirical expected hit
rate can be calculated by

Z =
∑

u∈� n(u)2

(∑
u∈� n(u)

)2 . (3)

We will also define the theoretical hit rate z to be the ex-
pected hit rate in the specific case of infinite i.i.d genomes
where p + q = 1/2. We can directly devise bounds for the the-
oretical hit rate under the two-letter encoding z2 and three-
letter encoding z3.

First, consider the two-letter fingerprint strategy H2 de-
fined in equation (1). Our statistical assumptions on the
base frequencies in the genome imply that the theoretical
hit rate is z2 = (1/2)k regardless of the values of p and q. We
can also deduce that the lowest possible theoretical hit rate
z3 for H3 is (3/8)k. This can be proven as follows. Consider
w and w

′
to be two independently sampled k-mers. The in-

dependence allows the following rearrangement

Pr(H3(w) = H3(w′)) =
k−1∏
i=0

Pr(h3(w[i ]) = h3(w′[i ]))

=
k−1∏
i=0

2∑
j=0

Pr(h3(w[i ]) = j )2

= (
(p + q)2 + p2 + q2)k

= (1/4 + p2 + q2)k,

by our assumption that p + q = 1/2. The minimal value of
(3/8)k is attained when p = q = 1/4.

If we evaluate fingerprints for k-mers within reads, the
specificity is greater for the three-letter strategy, which
should be intuitive. However, our capacity to index finger-
print values for efficient retrieval depends on the number of
distinct values taken by the fingerprint function. In other
words, it is more appropriate to compare the two strategies
when the number of fingerprint values is fixed rather than
the number of letters in the fingerprint.
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Assume fingerprint values are b-bit non-negative integers,
so fingerprints are numbers between 0 and 2b − 1. For the
two-letter encoding, b letters can be encoded using b bits.
For the three-letter encoding, the number of letters that can
be represented using b bits is �b/log2(3)�. In this case, the ex-
pected hit rate is lower for the two-letter encoding. This can
be proven by analyzing the ratio between z2 and the lowest
possible value of z3, since

z2

z3
≤

( 1
2

)b

( 3
8

)�b/ log2(3)� ≤
(

1
2

× ( 3
8

)− log3(2)
)b

< 0.93b. (4)

Equation (4) indicates that any specificity lost in the two-
letter encoding, compared with the three-letter encoding,
is compensated by increased uniformity in the distribu-
tion of fingerprint values (Figure 1A). This result, how-
ever, assumes k-mers are sampled with i.i.d letters. Con-
sider a genome containing an extreme abundance of poly-
purine sequences. All k-mers sampled from this genome
would have the same fingerprint under H2 but would be dis-
tinguishable under H3. Using equation (3), we can quan-
tify how the empirical expected hit rates of real genome se-
quences deviate from the theoretical values that assume in-
finite i.i.d. We compared the empirical and theoretical hit
rates for six species: H. sapiens, M. musculus, D. rerio, G. gal-
lus, P. troglodytes and A. thaliana, both under the two-letter
and three-letter encodings. For 2 ≤ b ≤ 28, and in all six
genomes, the empirical and theoretical ratios between ex-
pected hit rates are below the bound derived in equation (4),
which suggests that the k-mer distribution in real genomes
favors specificity in the two-letter encoding at least as much
as in genomes generated by infinite i.i.d sequences (Figure
1B). This means that the two-letter encoding can be used
as an efficient filtration strategy for read mapping in these
genomes.

Implementation choices

Both two-letter and three-letter encodings can be incorpo-
rated as an intermediate step in any DNA read mapping
algorithm adapted for bisulfite sequencing reads. Wrappers
for three-letter encoding adaptations of existing DNA read
mapping software often operate by creating two indices of
the original genome that simulate bisulfite conversion, then
mapping reads using the resulting indices and combining re-
sults. It is more challenging, however, to directly write wrap-
pers around existing DNA read mapping code to use the
two-letter encoding. This is because encoded reads are used
for filtration, but both read and reference must be avail-
able as four-letter sequences in order to calculate alignment
scores.

To demonstrate the use of the two-letter encoding for
WGBS read mapping, we introduce another bisulfite map-
ping algorithm (abismal), a specific implementation of a
bisulfite sequencing mapper that uses the two-letter encod-
ing as a filtration strategy. For read r = r1. . . rn, we select k-
mers from r and retrieve all positions in the genome where
the two-letter encoding of each k-mer occurs. Each of these
positions is assessed by scoring the alignment of r with the
corresponding genomic sequence. The position having the
best alignment score is retained as the mapping location for

r, and if two locations share the best score, the read is con-
sidered to map ambiguously. Most algorithms for mapping
short reads fall within this framework. One of the most sig-
nificant factors in the time required by this framework is
the number of full comparisons that must be done for each
read. We outline several important implementation choices
below.

Our implementation uses a direct address table to asso-
ciate fingerprints with positions in the genome. Before map-
ping reads, the genome is indexed through a counting sort
algorithm (20). The indexing algorithm sorts a subset of
genome positions in a direct address table based on the
two-letter k-mers starting at each position. Initially, the fre-
quency of all 2k two-letter k-mers is counted in a linear pass
through the selected genome positions and stored in a count
table, which is then transformed into a cumulative sum vec-
tor of size 2k + 1. A second pass through the genome popu-
lates the direct address table using the cumulative sum vec-
tor to retrieve the location of each genome position in the ta-
ble. Reads are mapped by selecting a set of two-letter k-mers
from it, then aligning the read to every indexed genome po-
sition that match the selected k-mers exactly. We first use up
to k = 128 to retrieve two-letter exact matches then reduce
to k = 24 to retrieve positions with more mismatches and
indels. The resulting count table from the indexing step al-
lows positions to be retrieved based on fingerprint values.
The four-letter read is aligned to positions in the four-letter
reference, with bisulfite bases in reads matching two pos-
sible reference bases. Through local alignments, sequences
that are exact matches in two letters but contain many mis-
matches in three letters will be filtered out if they attain low
alignment scores. The best alignment is identified by locat-
ing the best Hamming distance matches (i.e. counting only
mismatches and not indels) and then computing a banded
Smith-Waterman score for each of them (21). The full de-
scription of the abismal algorithm, as well as a more de-
tailed rationale on the choice of parameters used and their
effects in mapping accuracy is described in the Supplemen-
tary Methods.

RESULTS

The mapped reads are used to estimate the methylation
level at each CpG site (or each cytosine) in the genome.
The methylation level at a site is the fraction of original
molecules (e.g. two per cell for a diploid sample) carrying
the methyl mark at that site. This situation is similar to
genotyping a site using mapped reads from a whole genome
sequencing experiment. Unlike genotype, methylation lev-
els may take values beyond the 1.0 and 0.5 frequencies as-
sociated with homozygous and heterozygous sites, and may
instead take any value between 0 and 1. Consequently, sys-
tematic errors in mapping may lead to incorrect biological
conclusions.

Comparison criteria

To evaluate performance, we used both simulated data and
15 public high-quality datasets obtained from the Sequence
Read Archive (SRA) (22) and the DNA Data Bank of
Japan (23). These datasets include single-end and paired-
end reads from traditional WGBS protocol (i.e. with T-rich
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Figure 1. Theoretical and empirical comparison between two-letter and three-letter encodings. (A) An example comparison between the expected hit rates.
A small i.i.d ‘genome’ of size 25 is shown, as well as its two-letter and three-letter conversions, according to equations (1) and (2). Fingerprints can take
values in � = {0, ···, 8}, and each value is represented as k-mers both in radix-2 and radix-3 encodings. The expected hit rates for both encodings Z2 and
Z3 are calculated using equation (3). Red boxes show example k-mers that are counted in both encodings. (B) Comparison between the ratio of empirical
expected hit rates Z2/Z3 and the theoretical ratio z2/z3, which assumes infinite i.i.d genomes. Empirical expected hit rates Z2 and Z3 were calculated using
equation (3). The k-mer sizes are given by k2 = b and k3 = �b/log2(3)�, where b is the number of available bits, ranging from 2 to 28.

reads on the first end and A-rich reads on the second end)
and from the random-priming post-adapter bisulfite tag-
ging (RPBAT) protocol (24). RPBAT is an amplification-
free protocol that randomly sequences T-rich and A-rich
reads with the property that paired ends have comple-
mentary bisulfite bases. Traditional single-end (25–29) and
paired-end (30–34) datasets were selected from human and
four model organisms (mouse, chicken, zebrafish and ara-
bidopsis), whereas RPBAT datasets (24,35–38) originate
from human samples (Supplementary Table S1). We show
performance results on three distinct metrics: simulation ac-
curacy (in the form of sensitivity and specificity), number of
reads (or read pairs) mapped at least once, and average error
rate between read and reference.

Simulation accuracy for reads sampled with error from
the reference genome is an objective assessment of mapper
performance, even if they do not always reflect every prop-
erty of real data. Mapped reads can be compared to their
true locations of origin to assess the sensitivity and speci-
ficity of each mapper. Sensitivity is defined as the fraction
of correctly mapped reads relative to the total number of
simulated reads, and specificity is the fraction of reported
reads that are correctly mapped. To quantify both met-
rics, paired-end reads were simulated, both in traditional

and RPBAT modes, using Sherman (https://github.com/
FelixKrueger/Sherman) and setting various error rates from
0% to 5%. We also simulated 1% and 70% methylation levels
for cytosines outside and inside of the CpG context, respec-
tively. These parameters simulate well-established methyla-
tion rates from most healthy mammalian somatic cells es-
timated from WGBS data with high conversion rate (39).
We varied read lengths from 50 to 150, a range that encom-
passes most read lengths generated by Illumina sequencers
to date.

For real data, the true location of origin for each read
is not known, but metrics can be used to assess the relative
quality of mapper outputs. The percentage of reads mapped
at least once is an estimate of mapper sensitivity. In particu-
lar, paired-end reads that map concordantly (here defined as
at most 3000 bases apart and in opposite strands) are likely
to be correct candidates. Many mappers, including abismal,
map each end of read pairs independently. Since all tested
reference genomes are large (the smallest with 135 Mbp),
it is unlikely that reads incorrectly mapped are concordant
by chance alone. To estimate specificity, we measured the
error rate of mapped reads, defined as the ratio between
the total number of edits (mismatches, insertions and dele-
tions) and the total number of bases aligned to the refer-

https://github.com/FelixKrueger/Sherman
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ence. We expect more specific mappers to have lower error
rates.

We interpreted abismal’s accuracy, time and memory
metrics by comparing it with five WGBS mappers. In ad-
dition to abismal, we mapped simulated and real reads
with Bowtie 2 (through Bismark), BSMAP, BWA-MEM
(through BWA-meth), HISAT-3N and WALT. We mapped
RPBAT datasets using abismal, Bismark and BSMAP, since
these are the only mappers with modes that allow T-rich and
A-rich reads to be mapped interchangeably. Abismal, Bis-
mark, HISAT-3N and BWA-meth perform local alignment.
BSMAP and WALT count mismatches based on Hamming
distance, with BSMAP also allowing one gap of size up
to 3 in the read. Parameters for mappers were chosen to
maximize the similarity between algorithms (e.g. similar
alignment scores and similarity cut-offs to consider a read
‘mapped’). We ran each mapping tool on machines with
identical hardware, system software and user environments.
We instructed mappers to use 16 threads, which favors map-
pers that make efficient use of parallelism. Parameters for
each mapper and hardware settings used in every test are
detailed in the Supplementary Methods.

Comparison results

In simulated reads, HISAT-3N attains highest sensitivity
and BWA-meth attains highest specificity, with abismal
closely approximating each mapper in both criteria. Abis-
mal’s overall sensitivity and specificity are lower for shorter
reads (between 50 and 70 bases) and higher for long reads.
The lower accuracy for shorter reads stems from the fact
that two-letter seeds in abismal are larger (128 and 24 bp)
compared to other mappers (e.g. 22 bp for Bismark and
16 bp for BSMAP), so they often cover a high fraction of
short reads, and mismatches in certain locations may com-
promise all sampled seeds. Conversely, in higher error set-
tings, two-letter seeds may be invariant to certain muta-
tions, and seeds with errors may still retrieve the correct
candidate. The simulations results are consistent in the tra-
ditional paired-end setting (Supplementary Figure S1) and
RPBAT setting (Supplementary Figure S2). In real data,
Bismark and abismal have the highest sensitivity (Figure
2B and Supplementary Table S2), whereas abismal, WALT
and BWA-meth show the lowest error rates (Figure 2C and
Supplementary Table S2). Abismal’s low error rate is also
reflected in a comparable fraction of low edit distance (in-
cluding exact matches) to other mappers (Supplementary
Figure S3). Bismark’s high sensitivity in paired-end sample
is due to its unique mapping strategy. Unlike most map-
pers, Bowtie 2 maps the second end of reads in the con-
cordant neighborhood of the best candidates from the first
end. WALT attains higher specificity due to its spaced seed
strategy, which does not allow mismatches in the most error-
prone 3’ end of short reads. BWA-meth’s higher specificity
stems from its maximum exact matching paradigm, which
retains candidates based on the largest contiguous subse-
quence that matches some region of the genome exactly.
For bisulfite-converted reads, shorter exact matches may
retrieve too many candidates in the reference. By default
BWA-meth skips exact matches with >500 retrieved can-
didates, which contributes to its higher speed but compro-

mises sensitivity. Overall, abismal attains similar metrics to
the best-performing mapper in all three comparison crite-
ria. These results remain consistent both when alignment
scores are standardized and when mappers are run with de-
fault parameters (Supplementary Figure S4)

We further compared mapper outputs through several
methylation-specific summary statistics on read bases that
map to cytosines, and specifically CpGs, in the genome. We
quantified average methylation levels in three different ways:
mean methylation, weighted mean methylation and frac-
tional methylation, as previously suggested (40). We also
measured the fraction of covered bases across the genome
and the bisulfite conversion rate, estimated by the fraction
of unconverted cytosines mapped to Cs outside the CpG
context. The results show that these summary statistics, in
both cytosines and CpGs, are nearly identical across the six
mappers, with no clear biases in any method (Supplemen-
tary Table S2).

The mapping time comparison shows that abismal is gen-
erally faster, with HISAT-3N and BWA-meth attaining sim-
ilar speed in some human samples (Figure 3A and Supple-
mentary Table S3). For RPBAT datasets, abismal attains
both higher mapping speeds and sensitivity than Bismark
and BSMAP. Mapping times are similar when every mapper
is run with default parameters (Supplementary Figure S5).
Finally, abismal uses significantly less memory than other
mappers (Figure 3B and Supplementary Table S3). For the
human genome, abismal requires approximately half the
memory used by HISAT-3N, the second most memory-
efficient mapper. Bismark and BWA-meth use more mem-
ory because they operate by running several parallel in-
stances of Bowtie 2 and BWA-MEM, respectively, for the
various bisulfite conversion combinations of the reference
genome. This means that the memory required to map reads
scales with the number of threads used. The low memory re-
quired by abismal stems from two implementation choices
made possible by the two-letter encoding: (i) the property
that only one strand of the reference needs to be indexed
and stored in memory and (ii) the higher uniformity of two-
letter k-mers relative to the three-letter alphabet (Supple-
mentary Figure S6), which allows efficient use of minimiz-
ers as a criterion to select which positions are indexed (41).
Indexing only minimizers significantly decreases the size of
the direct address table (Supplementary Methods).

DISCUSSION

We demonstrated the benefits of a two-letter encoding to
map bisulfite sequencing reads. The equal frequency of
purines and pyrimidines in eukaryote genomes makes this
encoding useful for filtration in bisulfite sequencing read
mapping algorithms. The two-letter encoding can be used
in any filtration method that selects subsequences from a
read as exact matches to the reference.

The abismal software tool (49) maps reads with compa-
rable sensitivity to several commonly used mappers in less
time and using significantly less memory. Since most down-
stream methylation analyses, such as individual cytosine
methylation estimates, require less time and memory than
mapping reads (42), abismal makes basic in silico methyla-
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tion data analysis feasible in machines with low computing
power.

There are many avenues to improve efficiency of the abis-
mal algorithm. Our implementation uses a random order-
ing of two-letter k-mers to select minimizers in both reads
and reference (43). Accounting for the frequency of k-mers
within a genome may provide opportunities to index less
frequent k-mers and decrease the number of false-positive
matches (44). Other genome-aware orderings may also lead
to fewer indexed positions and result in less memory use
in larger genomes (45). Similarly, minimizer-based filtration
may be coupled with heuristics that improve mapping speed
in four-letter DNA sequences, such as compressing repeti-
tive sequences and chaining acceleration methods that com-
bine information from multiple seeds (46). Finally, improve-
ments in computer architecture continuously lead to in-
creased efficiency in pre-alignment filtration (47) and speed
of Smith-Waterman local alignments (48), both of which
are important steps in most short read mapping algorithms,
including abismal.

DATA AVAILABILITY

The abismal software tool and source code are available on
GitHub (https://github.com/smithlabcode/abismal). Abis-
mal is a free Open Source software tool under the GNU
Public License (GPL) version 3.0. The source code at
time of publication is available at https://doi.org/10.5281/
zenodo.5711884 (49).

The following SRA runs were analyzed in this
manuscript: SRR3498383 (Brocks), SRR2096734
(Manakov), SRR10606701 (Mendoza), SRR5015166
(Zhang), SRR12075121 (Shahryary), SRR10165530 (Ty-
cko), SRR3897178 (Decato), SRR5756263 (Kamstra),
SRR5644125 (Lee), SRR2296821 (Yong), SRR7461526
(Bian), SRR7757863 (Miura 2), SRR9646129 (Leng) and
SRR2013804 (Guo).

The following run from the DNA Data Bank of Japan
was analyzed in this manuscript: DRR019425 (Miura 1).
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Supplementary Data are available at NARGAB Online.
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