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INTRODUCTION 
 

Cardiovascular disease (CVD) is among the leading 

causes of morbidity and mortality around the world. 

The critical pathological foundation of CVD is 

atherosclerosis, which is characterized by the formation 

of atheromatous plaques in large- and medium-sized 

arteries, a damaged endothelium, fatty deposits and the 

build-up of fibrous caps [1, 2]. The development of 

strategies for the prevention of atherosclerosis will 

facilitate a decrease in the incidence of CVD. 

 

Autophagy, an evolutionarily conserved catabolic 

process, is the orderly turnover of cellular components 
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ABSTRACT 
 

The development of atherosclerosis is accompanied by the functional deterioration of plaque cells, which leads 
to the escalation of endothelial inflammation, abnormal vascular smooth muscle cell phenotype switching and 
the accumulation of lipid-laden macrophages within vascular walls. Autophagy, a highly conserved homeostatic 
mechanism, is critical for the delivery of cytoplasmic substrates to lysosomes for degradation. Moderate levels 
of autophagy prevent atherosclerosis by safeguarding plaque cells against apoptosis, preventing inflammation, 
and limiting the lipid burden, whereas excessive autophagy exacerbates cell damage and inflammation and 
thereby accelerates the formation of atherosclerotic plaques. Increasing lines of evidence suggest that long 
noncoding RNAs can be either beneficial or detrimental to atherosclerosis development by regulating the 
autophagy level. This review summarizes the research progress related to 1) the significant role of autophagy in 
atherosclerosis and 2) the effects of the lncRNA-mediated modulation of autophagy on the plaque cell fate, 
inflammation levels, proliferative capacity, and cholesterol metabolism and subsequently on atherogenesis. 
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that deliver harmful pathogens, damaged protein 

aggregates and organelles to the lysosome for 

degradation [3]. Basal autophagy protects cells against 

the accumulation of cytosolic metabolic waste or other 

dysfunctional constituents. Under environmentally 

critical conditions, autophagy-mediated nutrient 

recycling is crucial for the maintenance of energy 

sources and cell viability [4]. Specifically, the entire 

process involves more than 30 types of autophagy-

related genes (ATGs) and can generally be divided into 

the following three steps: (1) cytoplasmic materials are 

sequestered into an expanding membrane sac, called the 

phagophore, which matures into a characteristic double-

membrane vesicle, known as the autophagosome; (2) 

autophagosomes fuse with lysosomes to form 

autolysosomes, where dysfunctional organelles and 

cellular substances are degraded; and (3) the degraded 

components are delivered to the cytoplasm for 

anabolism or recycling [5]. To date, three different 

forms of autophagy have been delineated: macro-

autophagy, chaperone-mediated autophagy, and micro-

autophagy. In this review, macroautophagy is referred 

to as autophagy. 

 

Autophagy occurs in all major atherosclerotic plaque 

cells present around the necrotic core and in the fibrous 

cap, e.g., endothelial cells (ECs), vascular smooth 

muscle cells (VSMCs) and macrophages [6]. In the 

normal vessel wall, basal/moderate levels of autophagy 

function as cytoprotective and antiatherogenic 

mechanisms [7], as illustrated in Figure 1. The sequesto-

some 1 (SQSTM1/p62) levels are considered as a 

negative indicator of autophagic flux [8, 9]. In Western 

diet-fed apoE-deficient (apoE
-/-

) mice, the SQSTM1/p62 

levels are clearly amplified in the atherosclerotic aortae, 

and increases in the age/plaque burden are associated 

with further enhancements in these levels [10], which 

suggests that plaque progression is accompanied by 

defective autophagy. The conundrum of how reparative, 

life-sustaining machinery, such as autophagy, becomes 

dysfunctional in atherosclerosis has attracted the 

attention of researchers. In contrast to basal autophagy, 

 

 
 

Figure 1. Role of moderate autophagy in atherosclerosis. The process of autophagy primarily involves the following steps: phagophore 

elongation, autophagosome formation, autophagosome-lysosome fusion, autolysosome formation, acidic hydrolase-mediated degradation 
of the autophagosome cargo and recycling of constituent macromolecules. In addition, moderate autophagy can inhibit atherosclerosis by 
protecting plaque cells (i.e., ECs, VSMCs, and macrophages) against apoptosis, inflammation, lipid accumulation, and abnormal phenotype 
switching. ECs, endothelial cells; VSMCs, vascular smooth muscle cells. 
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the available evidence also shows that certain stimuli can 

induce excessive autophagy, which exerts cytotoxic 

effects on plaque cells and is detrimental for 

atherogenesis [11]. In general, the disruption of 

“autophagic homeostasis”, which can be reflected as 

either insufficient autophagy or overstimulated 

autophagy, is common during atherogenesis. 

 

Long noncoding RNAs (lncRNAs) are defined as non-

protein-coding transcripts longer than 200 nucleotides 

[12]. According to their genomic location, lncRNAs can 

be classified into several broad subclasses, including 

sense/antisense, intronic, intergenic, divergent/convergent, 

promoter-/enhancer-associated and upstream promoter 

lncRNAs (Figure 2). In addition, lncRNAs can exhibit 

various functions, which include serving as molecular 

signals, decoys, guides and scaffolds (Figure 3) [13]. 

Despite their poor conservation among species, 

lncRNAs serve as molecular switches that determine the 

cell viability, inflammatory response and lipid 

metabolism in the vasculature by governing the 

autophagic flux [14, 15]. This review aims to provide a 

better overall picture of the relationships among 

lncRNAs, autophagy and atherosclerosis (Table 1). 

 

AUTOPHAGY IN ATHEROSCLEROSIS 
 

EC autophagy in atherogenesis 
 

Based on the available evidence, the defective 

autophagy occurs in ECs during atherogenesis. ECs 

isolated from high-fat diet (HFD)-fed apoE
-/- 

mice 

exhibit significantly lower levels of ATG-6/Beclin-1 

protein and a decreased ratio of microtubule-associated 

protein 1 light chain 3 II to I (LC3-II/I) [16]. In 

addition, low shear stress (LSS) can decrease the LC3-

II/I ratio and the formation of autophagic vacuoles in 

human umbilical vein endothelial cells (HUVECs). The 

rapamycin-induced activation of autophagy promotes 

endothelial alignment in the flow direction, whereas the 

LSS-induced defects in autophagy disrupt this 

alignment and accelerate atherosclerotic plaque 

formation [17]. Nevertheless, Chen et al. reported that 

LC-3 and ATG-13 are highly expressed in aortic ECs of 

severe atherosclerotic patients, which indicates that the 

intimal ECs of advanced plaques might exhibit 

overactivated autophagy [18]. 

 

Effects of autophagy on EC apoptosis 

 

EC apoptosis contributes to atherogenesis [19]. Lunasin 

reportedly protects EAhy926 ECs against H2O2-induced 

cytotoxicity and mitochondrial-dependent apoptosis by 

repressing the generation of reactive oxygen species 

(ROS), which results in inhibition of the formation of 

thick plaques and increases in the collagen content in 

atherosclerotic lesions [20]. 

 

The role of endothelial autophagy in cell survival and 

atherosclerosis progression depends on the autophagy 

intensity levels. Wang et al. reported that the levels of 

ATG-5 and ATG-12 are decreased in ECs from the 

aortae of atherosclerotic mice. An in vitro study 

suggested that lower levels of ATG-5, ATG-12  

and LC3-II proteins and enhanced SQSTM1/p62 

accumulation are concomitant with an impaired cell 

 

 
 

Figure 2. Classification of lncRNAs based on their genomic region. I, II: Sense lncRNAs and antisense lncRNAs are located on the same 
and opposite strands, respectively, and overlap with neighboring genes; III: intronic lncRNAs are transcribed entirely from the introns of 
protein-encoding genes; IV: intergenic lncRNAs lie within the genomic interval between two genes; V, VI: divergent/convergent lncRNAs are 
transcribed in the opposite/same direction as nearby protein-encoding genes; VII, VIII: promoter/enhancer-associated lncRNAs originate 
from the promoter/enhancer regions of protein-encoding genes; and IX: lncRNAs are situated upstream of the promoter. 
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viability of young HUVECs [21]. The injection of 6-

amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine 

(ABO) into apoE
-/-

 mice substantially promotes 

autophagy and ameliorates apoptosis in the aortic 

endothelium. Furthermore, ABO robustly decreases the 

atherosclerotic plaque size and improves the stability of 

plaques [22]. Nevertheless, because autophagy is a 

process of self-cannibalization, it is reasonable to 

propose that under proatherosclerotic conditions, high 

levels of specific stimulators, such as oxidized low-

density lipoproteins (ox-LDL) or lipopolysaccharides 

(LPS), might induce excessive “self-eating” and 

autophagic cell death [18, 23]. Peng et al. found that the 

treatment of HUVECs with 3BDO, a novel activator of 

mammalian target of rapamycin (m-TOR), can 

significantly reverse ox-LDL-induced autophagy. The 

administration of 3BDO to apoE
-/-

 mice decreases the 

ATG-13 protein level in the plaque endothelium, 

prevents EC death and stabilizes atherosclerotic lesions 

[24]. Similarly, recombinant thrombomodulin can exert 

antiatherogenic effects by inhibiting ox-LDL-induced 

EC apoptosis through the repression of overactivated 

autophagy [18]. 

 

Effects of autophagy on EC-related inflammation 
 

Pankratz et al. observed that miR-100 can suppress m-

TOR complex 1 (mTORC1) signaling, enhance endo-

thelial autophagy and decrease the expression of 

adhesion molecules in vivo and in vitro. In LDL 

receptor-deficient (LDLR
-/-

) mice, systemic miR-100 

overexpression reduces the plaque area by 45% [25]. 

Additionally, apoE
-/-

 mice treated with morin hydrate 

exhibit attenuated atherosclerosis development, 

decreased serum levels of pro-inflammatory factors 

(TNF-α, ICAM-1) and enhanced autophagy in plaques. 

In vitro studies have revealed that morin hydrate-treated 

HUVECs display decreased inflammation, and these 

effects can be counteracted by the autophagy blocker 3-

MA, which suggests that the anti-atherogenic and anti-

inflammatory effects of morin hydrate are largely 

associated with the induction of autophagy [26]. 

 

 
 

Figure 3. Schematic diagram of the four mechanisms of action of lncRNAs. (I) As molecular signals, lncRNAs are involved in gene 
transcription in response to various stimuli; (II) as decoys, lncRNAs can repress gene transcription by titrating transcription factors; (III) as 
scaffolds, lncRNAs can recruit different proteins to target genes; and (IV) as guides, lncRNAs can localize particular ribonucleoprotein 
complexes to specific chromatin targets. 
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Table 1. Take-home messages of this review. 

Non-coding RNAs Cell type Autophagy activity As 

LncRNAs Plaque cells 

(ECs, VSMCs, macrophages) 

Basal/moderate level ↓ 

Insufficient level ↑ 

Excessive level ↑ 

Notes: LncRNAs can mitigate atherosclerosis development by inducing basal/moderate autophagy in plaque cells (ECs, 
VSMCs, macrophages) and instigate atherogenesis by inducing insufficient or excessive autophagy. EC, endothelial cell; 
VSMC, vascular smooth muscle cell; As, atherosclerosis. 
↓, inhibitory effects; ↑, stimulatory effects. 
 

VSMC autophagy in atherogenesis 

 

Effects of autophagy on VSMC phenotype switching 

and proliferation 
 

During atherosclerosis, VSMCs can switch from a 

differentiated, “contractile” phenotype to a 

dedifferentiated, “synthetic” phenotype, which is 

characterized by high proliferative and migratory 

capacities [27]. Injection of the DNA methyltransferase 

inhibitor (DNMT) 5-aza-2’-deoxycytidine into apoE
-/-

 

mice can profoundly reduce the plaque size, and the 

underlying mechanisms are related to inhibition of the 

VSMC switch to a synthetic phenotype [28]. 

 

Autophagy suppresses the synthetic phenotype in 

VSMCs and cell proliferation [29]. Grootaert et al. 

showed that ATG-7 deficiency in VSMCs induces clear 

defects in autophagy and augments the proliferative 

capacity of the cells. In VSMC-specific ATG-7
-/-

 mice, 

the medial thickness of the aorta and the size of 

atherosclerotic plaques are significantly increased [30]. 

However, a positive correlation among autophagy, the 

synthetic VSMC phenotype and atherosclerosis has also 

been reported. The incubation of VSMCs with nicotine 

significantly promotes a switch from the contractile 

phenotype to the synthetic phenotype through the 

induction of autophagy. Injections of nicotine into HFD-

fed apoE
-/- 

mice increase the LC3-II/I ratio, decrease the 

SQSTM1/p62 levels in plaque VSMCs and enlarge the 

lesion area in the aortic root [31]. The mechanisms 

underlying this contradiction merit further study. 

 

Autophagy in VSMCs prevents cell death and attenuates 

the instability of atheromatous plaques [32]. VSMCs 

isolated from ATG-7
-/-

 mice exhibit a higher apoptotic 

death rate, and the mice had larger stenosis areas and 

intraplaque hemorrhage regions in their carotid arteries 

[33, 34]. Nevertheless, some factors can induce 

excessive VSMC autophagy and impair cell viability. 

The treatment of VSMCs isolated from human 

atherosclerotic plaques with TNF-α markedly enhances 

autophagic cell death by increasing the number of 

vacuolated cells and the expression of the autophagy 

marker LC3 [35]. In addition, human VSMCs treated 

with osteopontin exhibit marked increases in the 

autophagosome numbers, the LC3-II/I ratio and the 

expression of several ATGs, which results in accelerated 

cell death [36]. Altogether, the results show that 

moderate and overactivated autophagy most likely exert 

opposite effects on VSMC fate and atherosclerosis. 

 

Effects of autophagy on lipid accumulation in VSMCs 

Autophagy can also impede atherogenesis by preventing 

excessive lipid loading in VSMCs. Li et al. observed 

that the downregulation of sterol regulatory element-

binding cleavage-activating proteins (SREBPs)  

rescues dysfunctional autophagy in VSMCs, which 

leads to decreased accumulation of lipid droplets (LDs), 

free cholesterol (FC) and cholesteryl ester (CE). 

Furthermore, the VSMC-specific knockdown of 

SREBPs in apoE
-/- 

mice enhances cell autophagy and 

alleviates lipid deposition in plaques [37]. Similarly, the 

treatment of lipid-laden VSMCs with spermidine 

increases cholesterol efflux, and this effect is 

substantially attenuated in ATG-7-deficient VSMCs. In 

vivo studies have shown that spermidine significantly 

increases the LC3-II/I ratio, decreases the levels  

of SQSTM1/p62, and diminishes lipid deposition  

and necrotic core formation in aortic atherosclerotic 

plaques [38]. 

 

Macrophage autophagy in atherogenesis 

 

Lipophagy 

 

Lipophagy, a special type of autophagy, refers to an 

important acidic cholesterol hydrolysis pathway through 

which cytoplasmic LD-associated CE is transported to 

lysosomes [39]. This lipophilic flux consists of the 

following steps: (1) ATG-6/Beclin-1 mediates the 

formation of vesicle nucleation and subsequent LD-

sequestered autophagosomes, which fuse with 

lysosomes to promote autolysosome production, and (2) 

lysosomal acid lipase (LAL) in the autolysosome 

hydrolyzes LD-associated CE to liberate FC [40]. 

Moreover, ATP-binding cassette transporter A1 

(ABCA1) mediates the efflux of FC from macrophages, 
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which is a key step in the formation of high-density 

lipoprotein (HDL) and reverse cholesterol transport 

(RCT) [40, 41]. RCT can increase the clearance of 

circulating low-density lipoprotein cholesterol (LDL-C), 

an independent risk factor for atherosclerosis [42, 43]. 

Thus, the activation of lipophagy is a viable therapeutic 

target for preventing lipid deposition and atherogenesis. 

 

Jeong et al. observed dysfunctional lipophagy and an 

increased number of macrophage foam cells in plaques 

of peroxiredoxin-1
-/-

 apoE
-/- 

mice. In peroxiredoxin-1-

deficient
 
murine peritoneal macrophages, the ratio of 

autolysosomes to autophagosomes is decreased, which 

leads to impaired lipophagic flux and increased levels 

of total cholesterol (TC) and CE [44]. In addition, 

miR-33 antagonism exerts antiatherogenic effects by 

promoting the ABCA1-mediated efflux of cholesterol 

from plaque macrophages [45]. These effects are 

related to enhanced lipophagy, as demonstrated by the 

finding that hypercholesterolemic mice treated with 

miR-33 inhibitors show markedly increased LC3 

levels, substantially higher autophagosome formation 

and less LD accumulation in macrophage foam cells 

[46]. These findings highlight the critical role of 

macrophage lipophagy in alleviating lipid overload 

and preventing atherogenesis. 

 

Effects of autophagy on macrophage polarization 

and inflammation 
 

Liu et al. showed that ATG-5 deficiency suppresses 

anti-inflammatory M2 macrophage generation [47], 

which indicates that autophagy inhibits macrophage 

inflammation. Additionally, the cellular repressor of 

E1A-stimulated genes (CREG) can ameliorate 

macrophage inflammation by promoting lysosomal 

maturation and autolysosome formation. The treatment 

of HFD-fed apoE
-/-

 mice with recombinant CREG 

significantly decreases the plaque areas by reducing the 

number of macrophages and inhibiting inflammation in 

aortae [48]. Moreover, autophagy induced by 

tanshinone IIA promotes macrophage polarization 

towards the M2 phenotype. The administration of 

tanshinone IIA to apoE
-/-

 mice increases the CD206
+
 

macrophage (M2) numbers, and this effect is 

accompanied by augmented autophagy, weakened 

inflammatory responses and smaller atherosclerotic 

lesion areas in the aorta [49]. 

 

LNCRNAS INVOLVED IN ATHEROGENESIS 

THROUGH AUTOPHAGY 
 

EC 
 

The downregulation of GAS5 prevents atherosclerosis 

progression in apoE
-/-

 mice [50]. In cardiac microvascular 

endothelial cells (CMECs), the overexpression of GAS5 

significantly elevates the activity of the apoptosis-related 

protein caspase-3 and promotes the formation of 

incomplete nuclei [51]. Moreover, in ox-LDL-treated 

human aortic ECs, the knockdown of GAS5 substantially 

augments the LC3-II/I ratio, decreases the SQSTM1/p62 

levels and reduces cell apoptosis, and these effects are 

reversed by miR-26a suppression. Therefore, impaired 

autophagic flux and exacerbated EC apoptosis might be 

involved in the pro-atherogenic effects of GAS5 [52]. 
 

MALAT1 mitigates atherosclerotic plaque formation by 

decreasing myeloid cell adhesion to ECs and reducing 

proinflammatory cytokine production [53]. In vitro 

studies have shown that the downregulation of 

MALAT1 notably enhances the secretion of interleukin-

6 (IL-6) and IL-8 from human aortic ECs [54]. The 

overexpression of MALAT1 significantly increases the 

LC3-II protein levels and facilitates the formation of 

autophagosomes and autolysosomes in HUVECs [55]. 

Similarly, the downregulation of MALAT1 in brain 

microvascular endothelial cells (BMECs) significantly 

decreases LC3-II expression and increases the 

SQSTM1/p62 levels by targeting the miR-200c-

3p/sirtuin 1 (SIRT-1) axis [56]. Other studies have 

revealed that MALAT1 can also exert pro-autophagic 

effects through the miR-26b/ULK-2 axis [57] or the 

miR-216-5p/Beclin-1 axis [58]. MALAT1-induced 

autophagy in ECs might contribute to the inhibition of 

inflammation and atherogenesis. 

 

Both LPS and ox-LDL can induce excessive autophagy 

and increase the TGFB2-OT1 levels [59]. TGFB2-OT1 

can increase the production of IL-6 and IL-8 in 

HUVECs likely due to the overactivation of autophagy 

through the miR-4459/La ribonucleoprotein domain 

family member 1 pathway (LARP1) [59]. Whether 

TGFB2-OT1 accelerates atherogenesis by promoting 

autophagy and inflammation in ECs is unclear. 

 

VSMC 
 

MALAT1 can inhibit atherosclerosis development 

through several mechanisms [60–62]. In siMALAT1-

transfected VSMCs, the expression of SMC-specific 

contraction-related genes, including α-smooth muscle 

actin, SM-22, myocardin and serum response factor 

(SRF), was significantly enhanced. Furthermore, VSMC 

proliferation and migration are inhibited by the 

knockdown of MALAT1. Mechanistically, MALAT1 

acts as a miR-142-3p sponge to enhance the expression 

of ATG-7 and LC3-II and decrease the SQSTM1/p62 

levels [63]. Thus, in addition to its beneficial role in 

atherogenesis, MALAT1 might have the potential to 

accelerate atherosclerosis by inhibiting the contractile 

phenotype of VSMCs via autophagy stimulation. 
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The expression of the lncRNA BANCR is significantly 

increased in human atherosclerotic plaques. The 

overexpression of BANCR in VSMCs clearly increases 

the LC3-II/I ratio and promotes cell proliferation, and 

these effects are counteracted by the JNK inhibitor 

SP600125 [64]. Moreover, treatment with the 

autophagy inhibitor 3-MA significantly attenuates the 

positive effects of BANCR on autophagy and cell 

proliferation [65]. BANCR might exert pro-atherogenic 

effects by promoting VSMC autophagy and cell 

proliferation. 
 

Guo et al. [66] found that apoE
-/-

 mice injected with 

lentiviral vector-siRNA-FA2H-2 exhibit defective 

autophagy, increased expression of mixed lineage 

kinase domain-like protein (MLKL), VCAM-1, MCP-1, 

and IL-6, and larger lesion areas in the aortic roots and 

aortic valves. In vitro studies have shown that the 

downregulation of FA2H-2 in VSMCs and ECs 

significantly increases the expression of MLKL, 

suppresses autophagic flux and amplifies the production 

of proinflammatory cytokines (IL-6, IL-8, IL-18, IL-1β, 

and TNF-α). Furthermore, pretreatment with 3-MA or 

ATG-7-shRNA reverses the effects induced by FA2H-2 

knockdown, which demonstrates that FA2H-2 

attenuates atherosclerotic plaque progression by 

enhancing autophagy in VSMCs and ECs to alleviate 

inflammation. 
 

The lncRNA H19 reportedly exacerbates atherosclerosis 

and induces ischemic stroke [23]. The overexpression of 

H19 in vivo can increase VSMC inflammation [67]. 

Moreover, an inverse expression pattern of H19 and 

autophagy-related proteins (LC3-II/I ratio and Beclin-1) 

has been observed in both the thoracic aortae of apoE
-/-

 

mice and human VSMCs. Further study showed that the 

H19-mediated suppression of the dual-specificity 

phosphatase 5 (DUSP-5)-ERK1/2 axis mitigates VSMC 

autophagy [68]. H19-induced atherogenesis is likely 

attributed to the repression of VSMC autophagy and the 

subsequent promotion of inflammation. 
 

Macrophage 
 

The overexpression of DYNLRB2-2 in THP-1 

macrophages markedly increases the ABCA1-mediated 

efflux of cholesterol and reduces intracellular LDs. The 

upregulation of DYNLRB2-2 also augments the 

expression of p-AMPK, LC3-II and ATG-6/Beclin-1 

and decreases the levels of phospho-m-TOR and 

SQSTM1/p62. Furthermore, the effects of DYNLRB2-2 

on macrophage lipid accumulation are attenuated by 

pretreatment with the AMPK signaling pathway 

inhibitor compound C or the autophagy blocker 3-MA 

[69]. Another study by Hu et al. revealed that 

DYNLRB2-2 enhances ABCA1-mediated lipid efflux 

and the anti-inflammatory response by amplifying the 

expression of G protein-coupled receptor 119 

(GPR119) [70]. Further experiments are needed to 

verify whether DYNLRB2-2 protects against 

atherosclerosis through the enhancement of macro-

phage autophagy. 

 
The TLR-4/NF-κB pathway has been well established 

as a facilitator of atherogenesis [71–73]. The available 

evidence shows that activation of the TLR-4/NF-κB 

pathway is positively correlated with the macrophage 

autophagy levels [74–77]. The lncRNA SNHG16 

aggravates LPS-induced inflammation in mouse 

macrophages by upregulating TLR-4 expression [78]. 

The lncRNA HOTAIR promotes NF-κB activation and 

increases the expression of IL-6 and inducible nitric 

oxide synthase (iNOS) by accelerating IκBα 

degradation in RAW264.7 mouse macrophages [79]. 

The mechanism underlying the induction of 

inflammation by SNHG16 and HOTAIR might be 

related to overactivated autophagy. Additionally, 

MALAT1 overexpression inhibits the secretion of IFN-

γ, TNF and IL-6 by increasing its interaction with the 

lncRNA NEAT1 in macrophages [62]. Another study 

performed by Zhao et al. [80] demonstrated that the 

MALAT1 levels in macrophages are upregulated by 

LPS, and MALAT1 reduces LPS-induced inflammation 

by acting as a negative feedback modulator of NF-κB. 

Because LPS is a potential inducer of excessive 

autophagy [59], MALAT1 might exert an anti-

inflammatory effect in macrophages by repressing NF-

κB-mediated autophagy. 

 

LNCRNAS INVOLVED IN THE DEVELOP-

MENT OF ATHEROSCLEROSIS-RELATED 

DISEASES THROUGH AUTOPHAGY 

 
LncRNA-induced autophagy is also involved in other 

factors that influence the progression of arteriosclerosis, 

such as hypertension and obesity [81, 82]. Placental 

tissues from preeclampsia patients diagnosed with 

hypertension exhibit significantly higher H19 levels 

[83]. As observed in a mechanistic study, H19 over-

expression decreases the viability of trophoblasts, 

increases the LC3-II/I ratio and the Beclin-1 levels and 

suppresses SQSTM1/p62 expression. H19 might 

aggravate hypertension by inducing excessive auto-

phagy and cell death [84]. In addition, in human 

adipocyte-derived stem cells, the lncRNA MEG3 levels 

are decreased during adipocyte differentiation [85]. 

MEG3 overexpression significantly decreases adipocyte 

differentiation by targeting miR-140-5p [85]. The 

enhancement of autophagy facilitates adipogenic 

differentiation and increases the size of adipose depots 

[86–88], and miR-140-5p induces autophagy in different 
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Table 2. LncRNAs that regulate autophagy in atherogenesis and the underlying mechanisms. 

Cell type LncRNAs Pathways Autophagy Cell function As Refs. 

EC GAS5 miR-26a↓ ↓ Apoptosis↑ ↑? 50-52 

MALAT1 PI3K/AKT↓, 

miR-200c-3p↓/SIRT-1↑, 

miR-26b↓/ULK-2↑, 

miR-216-5p↓/Beclin-1↑ 

↑ Inflammation↓ ↓? 53-58 

TGFB2-OT1 miR-4459↓/LARP1↑ ↑↑? Inflammation↑ ↑? 59 

FA2H-2 MLKL↓ ↑ Inflammation↓ ↓ 66 

VSMC MALAT1 miR-142-3p↓/ATG-7↑ ↑ Synthetic 

phenotype↑ 

↑? 63 

BANCR JNK↑ ↑? Proliferation and 

migration↑ 

↑? 64, 65 

FA2H-2 MLKL↓ ↑ Inflammation↓ ↓ 66 

H19 DUSP5-ERK1/2↓ ↓ Inflammation↑ ↑? 67, 68 

Macrophage DYNLRB2-2 GPR119↑/ABCA1↑ ↑ Foam cell formation↓, 

inflammation↓ 

↓? 69, 70 

SNHG16 TLR-4/NF-κB↑ ↑↑? Inflammation↑ ↑? 78 

HOTAIR NF-κB↑ ↑↑? Inflammation↑ ↑? 79 

MALAT1 NEAT1↓, NF-κB↓ ↓↓? Inflammation↓ ↓? 62, 80 

Notes: ↑, stimulatory effects; ↑↑, excessive activation; ↓, inhibitory effects; ↓↓, restrain of excessive activation;?, needs 
to be confirmed. 
Abbreviations: EC, endothelial cell; VSMC, vascular smooth muscle cell; As, atherosclerosis; SIRT-1, sirtuin 1; ULK-2, unc-51-
like autophagy-activating kinase 2; LARP1, La ribonucleoprotein domain family member 1; MLKL, mixed lineage kinase 
domain-like protein; JNK, c-Jun N-terminal kinase; ATG-7, autophagy-related gene 7; DUSP-5, dual-specificity phosphatase 5; 
GPR119, G protein-coupled receptor 119; ABCA1, ATP-binding cassette transporter A1; TLR-4, Toll-like receptor 4; NF-κB, 
nuclear factor kappa-B. 
 

cell types [89, 90], which implies that MEG3 might 

alleviate obesity by inhibiting autophagy. 
 

LNCRNA-BASED THERAPEUTIC AP-

PROACHES FOR CARDIOVASCULAR 

EVENTS 
 

LncRNAs are appealing pharmacological targets due to 

their general cell type-specific functions, but many 

promising approaches for targeting lncRNAs remain in 

the preclinical phase [91]. Recombinant viral systems, 

such as adenoviruses and lentiviruses, are commonly 

used to deliver lncRNA transcripts into a target cell. 

The subcutaneous injection of the lncRNA CDKN2B-

AS1-overexpressing lentiviral vector into apoE
-/- 

mice 

robustly mitigates atherosclerosis development by 

inhibiting ADAM10 [92]. The injection of adenovirus 

vectors containing lncRNA AZIN2-shRNA into the 

myocardium of rats significantly decreases the infarct 

size by sponging miR-214 and elevating PTEN 

expression [93]. Additionally, the intravenous injection 

of adenoviral-based siRNA against CHRF into an 

animal model antagonizes cardiac hypertrophy by 

targeting the miR-489/MyD-88 pathway [94]. Similarly, 

the intraperitoneal injection of lncRNA Chast-targeted 

GapmeR into mice significantly ameliorates cardiac 

remodeling and hypertrophy through the suppression of 

Plekhm1 expression [95]. Thus, the development of 

more therapeutic strategies targeting lncRNAs is critical 

for the treatment of CVD. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

The entire process of atherogenesis is accompanied by 

autophagy impairment. Basal autophagy is beneficial in 

early atherosclerosis but severely dysfunctional in 

advanced atherosclerotic plaques. A beneficial level of 

autophagy in plaque cells, but not excessive autophagy, 

can protect cells against apoptosis, mitigate vascular 

inflammation and calcification, and alleviate lipid 

accumulation in atherosclerotic plaques. Additionally, 

autophagy can usually be overactivated in response to 

many stresses, including intracellular stresses (e.g., 

endoplasmic reticulum stress and reactive oxygen 

species) [96, 97], and extracellular stimuli (e.g., 

hypoxia, ox-LDL and LPS) [18, 23, 98]. In these cases, 

the cellular content is irreversibly depleted, which 

accelerates cell death and exacerbates the development 
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of atherosclerosis [11, 32, 99]. LncRNAs participate in 

atherogenesis by acting as determinants of the 

autophagy status in plaque cells (i.e., ECs, VSMCs and 

macrophages) (Table 2). As described above, TGFB2-

OT1 might induce overactivated autophagy in ECs and 

subsequently promote inflammation. SNHG16 and 

HOTAIR might induce atherogenesis by enhancing 

macrophage-induced inflammation through the 

overactivation of autophagy. The improper regulation of 

autophagy cannot reverse atherosclerotic plaque 

formation but rather worsens the atherosclerosis 

outcomes [100]. Thus, identifying the trend and pattern 

of autophagic responses during atherogenesis is of great 

significance for predicting the sensitivity/resistance of 

cells to pathological changes. 

 

The roles of other forms of autophagy in addition to 

macroautophagy, such as microautophagy, chaperone-

mediated autophagy, mitophagy, aggrephagy, and 

xenophagy, in atherosclerosis have not been adequately 

addressed. By acting as critical determinants of auto-

phagy, the lncRNA-miRNA and lncRNA-lncRNA axes 

exert profound influences on atherogenesis. 

Intriguingly, Liu et al. reported that the lncRNA NBR2 

and AMPK kinase form a feed-forward loop under 

chronic energy stress conditions [101], which makes us 

wonder whether positive feedback loops between 

lncRNAs and autophagy components might promote the 

progression or remission of atherosclerosis. Unraveling 

these mechanisms will undoubtedly be helpful for the 

development of lncRNA-based drugs for atherosclerosis 

treatment. 
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