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Simple Summary: A dynamically developing civilization is constantly increasing the demand for
electricity. Increasing energy consumption and communication range contributes to the use of
different frequencies of the electromagnetic field (EMF). As a result, the natural environment is tightly
filled with EMF of various frequencies and intensities. This leaves the entire environment under its
influence. The honeybee, as one of the most important pollinators, is constantly influenced by these
factors. Studying the influence of this factor on the behavior of the honeybee will help to understand
whether these changes pose a threat to this valuable pollinator. Our research showed changes in the
behavior of bees under the influence of a 50 Hz E-field. The demonstrated behavioral disturbances
may reduce the efficiency of bees as pollinators, which will translate into a decrease in the efficiency
of crop production.

Abstract: EM-fields come from both natural and anthropogenic sources. This study aimed to
investigate changes in honeybee behavior parameters under the influence of an electric field at
50 Hz and variable intensity. Bees were exposed for 1 h, 3 h, or 6 h to the following artificial E-field
intensities: 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. Bees in the control group were under
the influence of an E-field <2.0 kV/m. Six basic behaviors were selected for bee observation (walking,
grooming, flight, stillness, contact between individuals, and wing movement). Our research shows
the impact of bee exposure time on behavioral change within groups. Exposure for 3 h caused a
decrease in the time that bees spent on behaviors and in the number of occurrences. After 6 h, the
parameters increased within the groups, as was the case with 1 h exposure. This may indicate that
there is a behavioral barrier that allows the pattern to normalize for some time.

Keywords: E-field; honeybee; worker bee behavior

1. Introduction

EM-fields represent basic interactions occurring in nature. This phenomenon occurs
between particles with electric charge and arises as a result of the combination of an electric
and magnetic field. The magnetic field creates a magnetosphere around the Earth that
deflects the flux of charged particles (solar wind). It is similar to a magnetic dipole field
with geomagnetic poles near the northern and southern poles [1]. The natural electric field
of the Earth has its source in a radioactive element, i.e., cosmic rays; thus, it contributes to
air ionization. The electricity of the Earth’s atmosphere also includes lightning discharges,
electric charges of clouds, and precipitation [2]. The impact of these fields creates a specific
electromagnetic field that fills the natural environment. Thus, all living organisms are
exposed to its effects. The source of the environmental EM-field is, among others, the
Sun, which generates wide-range electromagnetic waves. In addition to natural sources,
the electromagnetic field comes as a result of human activity. The rapid development of
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technology has increased the share of EM-fields from artificial sources. Electromagnetic
fields are emitted, for example, by high-voltage lines, antenna radiation, and wireless power
transfer [3,4]. The effects of the EM-field can be divided into thermal and nonthermal.
Increasing the cell temperature exposes it to major changes. An EM-field with a frequency
of 50 Hz may contribute to an increase in the likelihood of many diseases [5]. This frequency
is also the most commonly used. The biological effect is achieved by the impact of an
EM-field on the body, which results in a physical, biochemical, or behavioral reaction. If
these reactions occur within homeostasis, there is a possibility of their reversal [6]. The
EM-field affects both vertebrate and invertebrate animals, including insects. Fruit flies
(Drosophila melanogaster L.) were exposed to a magnetic and electromagnetic field. In the
case of the magnetic field, the change was observed at DNA level, mainly manifested
by different sensitivity of the genes responsible for the development of various parts of
the body and the proliferation of cells. An electromagnetic field at low frequencies had
a potentially positive effect on the fruit fly’s organism without causing negative changes
in embryonic development, whereas higher frequencies (MHz) reduced reproductive
capacity by as much as 60%, along with changes in the rate of cell proliferation and protein
synthesis [7]. In the study of Migdal et al. [8], an EM-field at 50 Hz after 1, 3, or 6 h of
exposure increased the activities of antioxidant and proteolytic systems of the honeybee
in laboratory conditions. Moreover, 12 h of exposition showed changes in the activity
of SOD (superoxide dismutase), CAT (catalases), and FRAP (ferric reducing antioxidant
power) in all tested groups [9]. Electromagnetic fields (EMFs) can also affect insect behavior.
Radiofrequency fields in the MHz range disrupt insect orientation [10]. Extremely low-
frequency EMF exposure had effects on the behavior, physiology, and protein expression
of desert locusts (Schistocerca gregaria F.) [11]. Electromagnetic field exposure for 24 h, 72 h,
and 7 days (50 Hz) impaired the latency to escape from noxious heat in American cockroach
(Periplaneta americana L.) [12].

Studying the E-field’s impact on bees is important because bees, as a flying insect, can
approach transmission lines and be exposed to fields with intensity exceeding 10 kV/m;
it is even possible to exceed values above 15 kV/m [13]. Honeybee workers fly relatively
close to the ground (about 2–3 m above the surface) in free space; when obstacles appear,
they fly on average about 5 m above the ground. The flight altitude depends on many
factors, including obstacles such as trees and buildings [14]. The purpose of field strength
used in the experiment was to analyze the linearity of observed phenomena as a function of
the field strength. Bees spend different times obtaining food in the environment, which also
affects the time of exposure to the electromagnetic field. Collectors fly for nectar, pollen,
and water, covering long distances. Duration depends on many factors; on average, it can
be assumed that 1 h is the average time that worker bees spend in the environment in search
of food during a single flight, 3 h is the time spent by the worker bee on bringing large and
heavy portions of food from distant sources during a single flight, and 6 h is the maximum
average time that a worker bee can devote to searching for and obtaining food during
a single flight [15]. The honeybee in 2019, during a meeting of scientists from the Royal
Geographical Society of London with the Earthwatch Institute, was recognized as the most
important organism on earth. Their protection is crucial for the development of civilization.
This is becoming more important given the fact that the honeybee (Apis mellifera L.) has
high economic importance.

2. Materials and Methods
2.1. Test Organisms

Twenty inseminated queens, originated from the same mother-queen and inseminated
with the semen of drones from the same father-queen colony, were individually introduced
into 20 queenless colonies. After checking egg-laying, 10 mothers were randomly selected
and kept in isolators with empty Dadant combs. Each mother was kept in one insulator
(n = 10, 435 × 300 mm). Isolators with the bee frames were placed in a bee family of
Apis mellifera carnica (Pollmann, 1879), in which bee mothers were placed for 12 h. After
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24 h of egg-laying, the queens were released, and isolators containing combs with eggs
were left within the colonies for further worker-brood rearing. On the 19th day of apian
development, the combs with the already sealed worker brood were transferred to the
incubator (temperature of 34.4 ◦C ± 0.5 ◦C and relative humidity of 70% ± 5%) in which
they were maintained within individual chambers for 1 day old bees workers to emerge.
The research material consisted of 2 day old honeybee workers.

2.2. Experimental Setup

One day old bee workers were placed in wooden cages (20 × 15 × 7 cm), each
containing 90 workers and two inner feeders with sucrose solution at a concentration of
1 mol/dm3 ad libitum. Each group consisted of 10 cages. Bees in the experimental groups
were exposed to the following 50 Hz E-field intensities: 5.0 kV/m, 11.5 kV/m, 23.0 kV/m,
and 34.5 kV/m. The control groups were not treated with the artificial E-field; they were
under the influence of an E-field <2.0 kV/m. The group name is the combination of E-field
intensity and exposure time. For example, bees exposed to a 34.5 kV/m E-field for 6 h
had the group name 34.5 kV/m 6 h. The control group was marked with the letter C. The
method used was according to Migdał et al. [8].

2.3. E-Field Exposure

A homogeneous 50 Hz E-field was generated in the exposure system in the form of
a plate capacitor, as in the method of Migdał et al. [8]. The field intensity was fixed to
5.0 kV/m, 11.5 kV/m, 23.0 kV/m, and 34.5 kV/m. The time of exposition was 1, 3, or
6 h. Changes in the homogeneity and stability of E-field intensity were no higher than
±5% in the emitter, to which the bees were exposed during the whole experiment. Field
intensity and homogeneity in the test area were verified using the measurements made by
an LWiMP-accredited testing laboratory (certification AB-361 of Polish Centre for Accredita-
tion) using ESM-100-m No. 972,153 with calibration certificate LWiMP/W/070/2017 dated
on 15 February 2017 issued by the accredited calibration laboratory PCA AP-078. The mea-
surements were done at points of a 10 × 10 × 5 cm3 mesh inside an empty emitter (without
experimental cages). The stability of the electric field was maintained by permanently
monitoring the voltage applied to the exposure system using a control circuit [8].

2.4. Behavioral Analysis

Six bees were randomly taken from each cage within the same group, which was
placed in a special behavioral assessment station. The total number of worker bees tested
in each group was 60. The stand was made of glass, with a height of 20 cm and diameter of
40 cm. Observations of behavior in the program were conducted offline (using recorded
material). Recordings of bees lasted 360 s (60 s for adaptation to change in location and
300 s for analysis). Simultaneously, three bees in a container were recorded. After the
specified time, bees were exchanged. Bee behavior was recorded using a SONY HDR-
CX240E camera (Lund, Sweden). Recorded movies on a memory card were transferred to
a computer using the Noldus Observer XT software. Six basic behaviors were selected for
observation [16,17]:

• walking—time spent walking,
• grooming—the frequency of cleaning the body surface, tentacles, and tongue,
• flight—between the walls of the container for analysis and between the bottom and

the lid,
• stillness—the number of stops where the bee remained stationary for a long time,
• contact between individuals, including trophallaxis and mutual cleansing,
• wings moving—where fanning exposes Nasonov’s gland.

In the first phase, behavioral analysis using the Noldus Observer XT 9.0 software was
based on creating the appropriate project in the analyzer environment. The design of the
behavioral assessment scheme used a mutually exclusive type of behavior. The project did
not use behavior modifiers in the form of changing conditions or interfering with insects,
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as all individuals were assessed under the same conditions. Independent variables in the
form of age, body condition, and damage were also excluded. The possibility of limiting
the observations to 300 s (±0.1 s) was used. The average duration of behavior, i.e., how
much time the bees from a given group spent on performing this behavior, was analyzed,
in addition to the number of occurrences of a given behavior, i.e., how many times during
the observation of individuals from the group the selected behavior was observed.

2.5. Statistical Analysis

The statistical significance of data within groups and between groups was determined
by the Kruskal–Wallis test with Bonferroni correction. For all tests, RStudio [18] was used
with a significance level of α = 0.05.

3. Results
3.1. Control Group

Worker bees in the control group displayed all types of behavior (Figures 1 and 2,
Tables 1 and 2). There were no significant differences in behavioral patterns between the
1 h, 3 h, and 6 h control groups, except the whole time of stillness, which was longer in
the 6 h control group, and the whole time of grooming, where the 6 h control group spent
significantly more time on this behavior compared to the 3 h control group.

3.2. 5 kV/m Treatment Group

Statistical analysis showed no differences within groups in terms of the number of
occurrences and the duration of particular behaviors (see Figures 1 and 2 and Tables 1
and 2). Regarding the average time spent performing the activity, statistically significant
differences were demonstrated for flight, which took more time for bees compared to
controls. In the 5.0 kV/m 1 h, 3 h, and 6 h treatment groups, a difference in behavior
compared to control and a lack of proportionality were observed. Worker bees in these
groups demonstrated longer total flying time compared to the control group. Walking
and flying were dominant behaviors. In line with flight time, the average duration was
longer for all behaviors. The biggest disproportions were observed in grooming and
individual contact behaviors; workers spent 83% and 80.9% more time compared to the
control group, respectively. In the 5.0 kV/m 1 h and 6 h treatment groups, wing movement
was not observed.

3.3. 11.5 kV/m Treatment Group

In the 11.5 kV/m 1 h, 3 h, and 6 h groups, all types of behavior were observed (see
Figures 1 and 2 and Tables 1 and 2). Similarly to previous groups, walking was the most
frequent behavior, whereas, in contrast to previous groups, grooming and individual
contact were the least frequent behaviors. Walking and flying behaviors demonstrated
statistically significant fluctuations. In the 11.5 kV/m 3 h group, the lowest values for
grooming time in terms of duration and average time were shown. Compared to controls,
bees spent more time on stillness, flying, walking, grooming, and individual contact
behaviors and less time on wing movement, which was most frequently observed in
this group. Generally, behaviors occurred less frequently but continued ca. 50% longer
compared to the control. Bees seemed to be characterized by a greater stability of behavior.
With respect to behavioral pattern, the 11.5 kV/m 3 h group was the nearest to the control
group. The 11.5 kV/m 1 h and 6 h groups did not demonstrate differentiating values.
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Table 1. Comparison of the mean number of bouts as a function of exposition time and E-field intensity in and between all groups.

Behavior

Groups and Time of Exposition

C—Control 5 kV/m 11.5 kV/m 23 kV/m 34.5 kV/m

1 h 3 h 6 h 1 h 3 h 6 h 1 h 3 h 6 h 1 h 3 h 6 h 1 h 3 h 6 h

Walking 16.8 ab 16.9 ab 17.0 ab 11.4 cd 11.9 cd 9.9 d 13.9 bc 19.1 a 11.6 cd 11.7 cd 13.5 bc 11.4 cd 9.7 d 14.4 bc 12.6 cd

Flight 8.0 b 8.9 b 9.8 ab 10.2 b 9.2 b 7.6 b 9.3 b 13.9 a 9.4 b 8.0 b 9.2 b 9.4 b 6.9 b 9.7 b 8.8 ab

Body cleaning 4.4 a 3.1 ab 4.0 a 2.0 cd 2.2 bcd 1.6 cd 1.8 d 3.1 bcd 2.0 cd 1.7 d 2.3 cd 1.9 cd 1.7 cd 3.6 bc 2.2 cd

Contact between individuals 4.2 ab 5.6 a 2.8 abc 1.9 e 2.7 bcde 1.9 de 1.9 de 2.3 cde 1.8 e 2.4 bcde 2.8 bcd 2.3 cde 2.0 cde 2.8 abc 2.3 bcd

Wing movement 4.1 a 3.0 b 3.9 a NO 1.0 d NO 1.0 cd 6.6 bc 1.0 d 1.3 d 3.6 bc NO 1.2 d 4.3 bcd 2.8 cd

Stillness 1.6 abcd 1.9 abcd 2.1 abcd 1.8 cd 1.0 d 1.0 d 2.3 a 1.6 ab 1.3 abcd 1.4 abc 1.4 bcd 1.2 cd 1.9 abcd 2.0 cd 2.2 abcd

Sample size (n) 60 60 60 60 60

Different letters (a, b, c, d, e) on the chart indicate statistical differences at the level of p ≤ 0.05. NO—not observed.

Table 2. Comparison of the mean duration as a function of exposition time and E-field intensity in and between all groups.

Behavior

Groups and Time of Exposition

C—Control 5 kV/m 11.5 kV/m 23 kV/m 34.5 kV/m

1 h 3 h 6 h 1 h 3 h 6 h 1 h 3 h 6 h 1 h 3 h 6 h 1 h 3 h 6 h

Walking 14.2 d 15.5 cd 14.5 d 22.9 ab 22.1 ab 26.2 a 21.8 abc 15.4 cd 24.8 ab 23.6 ab 21.4 bcd 33.8 a 28.0 a 21.7 bcd 22.5 ab

Flight 1.3 bcd 1.2 cde 1.3 bcd 2.1 a 2.5 a 2.8 a 1.3 def 0.9 f 1.5 b 1.2 ef 1.3 bcd 1.5 b 1.3 bcd 1.3 bcd 1.6 bc

Body cleaning 6.4 e 8.9 e 8.5 e 39.5 a 34.2 ab 33.8 a 18.1 bcde 6.0 e 34.7 a 16.8 bcde 6.6 e 30.8 abcd 19.6 abc 11.8 cde 11.6 de

Contact between individuals 6.9 de 7.7 de 6.1 e 36.2 a 14.9 a 17.3 abc 18.9 ab 8.1 bcde 17.0 abc 11.6 abc 10.6 cde 10.1 bcde 18.1 abc 15.7 abcd 12.5 abcd

Wing movement 5.1 ab 2.0 ab 7.2 a NO 13.2 a NO 4.1 ab 3.7 ab 2.4 ab 2.3 ab 15.4 a NO 4.7 ab 3.9 ab 3.9 ab

Stillness 9.9 ab 5.7 b 11.9 ab 28.4 a 11.0 ab 61.7 a 18.3 ab 3.6 b 36.7 a 21.2 ab 20.9 ab 18.9 ab 27.0 a 9.4 ab 11.4 ab

Sample size (n) 60 60 60 60 60

Different letters (a, b, c, d, e, f) on the chart indicate statistical differences at the level of p ≤ 0.05. NO—not observed.
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The median values are marked as horizontal lines. The lower and upper whiskers denote the minimum and maximum
values, respectively.

3.4. 23 kV/m Treatment Group

The 23 kV/m 3 h group demonstrated a statistically significant increase in the number
of walking bouts compared to other exposition times (1 and 6 h) (see Figures 1 and 2,
Tables 1 and 2). In relation to the total behavior time, grooming showed a significant
decrease in the 23 kV/m 3 h group compared to the 23 kV/m 1 h (37.7% decrease) and
23 kV/m 6 h (59.3% decrease) groups. Wing movement was not observed in the 23 kV/m
6 h group. In the 23 kV/m 3 h group, bees spent significantly more time on this behavior
compared to all other groups (Figure 2 and Table 2). Bout duration demonstrated significant
fluctuations between groups in relation to most behaviors (walking, grooming, individual
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contact, and flying) except for stillness, on which bees spent a similar time regardless of
the group (Figure 1 and Table 1). In the 23 kV/m treatment group, a disorder in behavioral
pattern compared to controls was shown.

3.5. 34.5 kV/m Treatment Group

In the number of behavior bouts, there were statistically significant differences among
the 1 h, 3 h, and 6 h groups for walking and grooming. The 34.5 kV/m 3 h group showed
the highest number of grooming bouts (twofold more than the 1 h and 6 h groups and
similar to the control) and the highest number of walking and wing movement bouts
(Figure 1 and Table 1). Moreover, the behavior time of wing movement was the longest in
this group (Figure 2 and Table 2).

3.6. Comparison of All Groups

Within all behaviors, only stillness did not show significant differences in the number
of bouts among all groups.

4. Discussion

In this study, the impact of E-fields on honeybees was examined. Only a few publi-
cations evaluated this issue; thus, a comparison of the results to other species and factors
(pesticides, climate change, temperature, etc.) was necessary.

4.1. Control Group

The bees used in this study (at age 2 days ± 6 h) should exhibit all examined types of
behavior, including flying, which, according to Vance et al. [19], are not dependent on age.
Actually, they were all observed in the control group; however, the flying possibilities were
changed in the treated groups. Williamson et al. [20], in studying the impact of pesticides on
honeybee behavior, observed a similar behavioral pattern in their control group compared
to our control group. Results points to the right behavioral pattern under laboratory condi-
tions. According to Shpigler et al. [21], who studied the impact of pesticides on honeybee
behavior, there is a high probability of repeating a behavioral pattern under the influence of
the same factor. In addition, the repeatability and the proportionality of a behavior strongly
depend on the number of equally observed individuals. In our study, only one bee was
observed at a time, as, according to Kimura et al. [22], a higher number would disturb the
counting possibilities and generate significant error. The activity observed in our study
was typical for the temperature, humidity, and season conditions [23].

4.2. 5 kV/m Treatment Group

The longer average time of flight could be evidence of the higher activity of bees;
however, interpretation is difficult due to a lack of similar studies in the available literature.
Nonetheless, one should remember that pesticides damage different systems in the body,
e.g., nervous or muscular system. According to Margotta et al. [24], excessive flight activity
causes an increase in oxidative system activity, which can lead to a decrease in bee vital-
ity. The differences between behaviors and the lack of proportionality in the number of
bouts compared to controls indicate behavioral disorders [20]. The significance of contact
between individuals is still under investigation, as it has been proven that an increase in
individual contact frequency is a symptom of stress, with a willingness to communicate
to obtain information. This also facilitates regulation of the behavior of bees forming
the community [25]. Furthermore, it is a significant element in pheromone transmission,
allowing bees to evaluate the condition of individuals and modulating their roles [26,27].
Thus, a disorder of this behavior results in a modification of community functioning and of
relationships between individuals. The lack of wing movement in the 5.0 kV/m 1 h and
5.0 kV/m 6 h groups is not natural for bees. Honeybees use wing movement to spread the
secretions of the Nasonov gland and to maintain the temperature in the hive [28].
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4.3. 11.5. kV/m Treatment Group

In this group, grooming and individual contact were the least frequent behaviors. The
intensity of grooming by eastern honeybees is especially evident when they are in contact
with a pathogen, e.g., Varroa destructor mite [29]. Carniolan honeybees increase the intensity
of this behavior when they come into contact with substances that disturb their perceptual
abilities [30]. Grooming behavior is caused by irritation of the sensory hairs located on the
body surface and in situations when the chemical receptors are stimulated [31]. A decrease
in the frequency and duration of wing movement may indicate dysfunctions in the organs
of bees related to movement, which are necessary for the proper functioning of individuals,
as presented in studies by Wells et al. [32], who analyzed the correlation between bee
infection with Nosema spp. spores and wing deformation virus, as well as flight length
and activity.

4.4. 23 kV/m Treatment Group

A higher number of walking bouts may negatively affect the transfer of information
between individuals during waggle dances, in which the speed and direction of movement
of the “dancer” bee play an important role [33]. Chaotic information leads to a misdirection
of forager bees, which significantly increases the cost of flight and threatens the survival
of the bee family [34,35]. The strong decrease in total and average grooming time denotes
a serious disorder in the bees’ natural behavior; grooming is essential due to their strong
hygiene instincts, and because sticking of the foragers to pollen would make it difficult to
return to the nest and receive information [36]. A disturbing stimulus in the form of an E-
field may make it difficult for bees to identify specific chemical signals from the atmosphere
of the hive, whereby chaos would lead to impaired learning ability and disorganization in
bee families and of the community [37].

4.5. 34.5 kV/m Treatment Group

The significantly increased walking and grooming activity indicates a desire to escape
and the increased motor activity of bees. Similar observations were made by Tosi and
Nieh [38], who studied the effect of thiamethoxane on phototaxis in honeybees. They
showed a relationship between the length of contact with the pesticide and the increasing
frequency of walking speed. When using 1.34 ng of thiamethoxane per bee, increases in
the speed (+109%) and movement time (+44%) of bees were observed. Prolonged exposure
(over 60 min) caused a decrease in the motion of insects. Opposite results were obtained in
studies on thiamethoxane conducted by Aliouane et al. [16], who showed no significant
differences in motor function between bees affected by this neonicotinoid and the control
group. They used bees at the age of 12 days in the study, which may be the reason for these
differences. Walking is an important element when moving to the flower and obtaining
nectar; thus, such changes may reduce the usefulness of bees as pollinators [39].

4.6. General Comparison among Groups

Changes in the behavior of bees were related to both the duration of exposure and
the intensity of the field. In the case of the 5 kV/m 1 h and 6 h groups and 23 kV/m 6 h
group, no wing movement was observed in bees. It is difficult to identify the reason due
to the shortage of studies in this area. Most often, exposure for 3 h caused a decrease in
the time that bees spent on behaviors and the number of occurrences, regardless of the
E-field intensity used. After 6 h, the parameters increased within groups, as was the case
with 1 h exposure, regardless of the E-field intensity used. This may indicate that there
is a behavioral barrier that allows the pattern to normalize for some time (in relation to
the control sample). Exceeding this point causes a further decrease in the incidence of a
behavior and an increase in the time the insect spends on the behavior. In our research, the
tolerance point was 3 h, while 1 h exposure caused changes, which to some extent shows
that normalizing the behavioral pattern requires more than 1 h, but less than 3 h, at which
point the behavior is less diverse. The time when the behavior was again deregulated was
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a period of about 6 h. Despite this, no return to reference values (control) was observed in
any of the cases. Comparing all groups, the 5 kV/m group had the lowest mean number
of behavior occurrences, but the highest mean duration was observed. Similar behavioral
disorders were observed in the work of Greenberg et al. [40] on the effect of overhead high-
voltage lines on bee colonies. This study showed an increase in motor activity, irregularities
in hive propolis, reduced birth growth, and an increase in the percentage of maternal loss
relative to the control. In beehive conditions, bees improperly rebuilt nurseries, and the
bees were shot dead. Families were also characterized by low winter hardiness. This is
similar to the changes seen in the 5 kV/m and 11.5 kV/m groups for all exposure times in
this research. Changes in bee behavior can also trigger radiofrequencies, as shown in [41].
Placing two cell phones in the hive increased the volume of sounds in the hive. According
to researchers, this may have been due to a disruption in communication among bees.
While studying radiofrequencies in field conditions, Sharma and Kumar [42] noticed a
decrease in the efficiency of bee colonies and a decrease in reproductive abilities. It was
interesting that the frequency of occurrence and the total time that bees spent on wing
movement increased for the 11.5 kV/m 3 h and 34.5 kV/m 6 h groups, in contrast to the
other parameters, which decreased or remained at a level similar to the control group.
Kirschvink et al. [43] suggested, however, that bees require a 100 µT induction level to
be able to distinguish between E-fields at 60 Hz, which is at least an order of magnitude
higher than static fields used in our research [44]. The same researchers, according to bee
waggle dance analysis, stated that the magnetoreceptor system does not work at EMF
(electromagnetic field) greater than 500 µT, which also significantly affects the learning
and motor skills of bees. Our research shows that the selected frequency, as well as the
intensity and duration of exposure, affects the bees’ behavioral patterns. Shepherd et al. [45]
confirmed the relationship between low-frequency E-fields and the increased frequency
of wing movement during bee flight. Flight is a very energy-consuming motor behavior,
which is strongly correlated with bee life expectancy [46]. Therefore, exposure of bees to
EMF may result in increased energy demand during flight; thus, during periods of poor
use, there may be a situation in which the worker will not be able to return to the hive [47].

5. Conclusions

The proper functioning of a bee in the environment whereby it fulfills its role as a
pollinator is associated with the correct arrangement of individual behaviors. This is also
important when bees make “decisions” and communicate through a waggle dance [33,48].
In light of the current research results, it is difficult to determine how flexible the behavioral
patterns of honeybees are and where the limit of their tolerance to environmental impact lies.
The intensity and length of exposure have a negative impact on the behavior of honeybee
workers. These factors disrupt the natural (defined in the control group) behavioral
pattern. The results of our laboratory studies show changes in selected behaviors. The
natural consequence of these studies involves similar simulations in natural conditions,
which may complete the results and indicate the consequences for bees living in the
natural environment.
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8. Migdał, P.; Roman, A.; Strachecka, A.; Murawska, A.; Bieńkowski, P. Changes of selected biochemical parameters of the honeybee
under the influence of an electric field at 50 Hz and variable intensities. Apidologie 2020. [CrossRef]

9. Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Changes in the Honeybee Antioxidant System after 12 h of
Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects 2020, 11, 713. [CrossRef]

10. Balmori, A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci. Total Environ.
2015, 518, 58–60. [CrossRef]

11. Wyszkowska, J.; Shepherd, S.; Sharkh, S.; Jackson, C.W.; Newland, P.L. Exposure to extremely low frequency electromagnetic
fields alters the behaviour, physiology and stress protein levels of desert locusts. Sci. Rep. 2016, 6. [CrossRef]

12. Maliszewska, J.; Marciniak, P.; Kletkiewicz, H.; Wyszkowska, J.; Nowakowska, A.; Rogalska, J. Electromagnetic field exposure
(50 Hz) impairs response to noxious heat in American cockroach. J. Comp. Physiol. 2018, 204, 605–611. [CrossRef]
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