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Abstract: Intelligent textiles are predicted to see a ‘surprising’ development in the future. The
consequence of this revived interest has been the growth of industrial goods and the improvement of
innovative methods for the incorporation of electrical features into textiles materials. Conductive
textiles comprise conductive fibres, yarns, fabrics, and finished goods produced using them. Present
perspectives to manufacture electrically conductive threads containing conductive substrates, metal
wires, metallic yarns, and intrinsically conductive polymers. This analysis concentrates on the latest
developments of electro-conductivity in the area of smart textiles and heeds especially to materials
and their assembling processes. The aim of this work is to illustrate a potential trade-off between
versatility, ergonomics, low energy utilization, integration, and heating properties.

Keywords: conductivity; heating element; knitting; metal fibre; smart textiles

1. Introduction

With the progression of electronic device miniaturization and the Internet of Things
(IoT), the scope of flexible wearable electronics has been increasing in our quotidian ap-
pliances. For the successful construction of flexible electronics, textiles fibrous materials
have received tremendous attention because of their excellent deformability, soft feel, com-
fort, lightness, good absorption, and moistures properties. In general, textiles are used
for clothing purposes and with the rapid growth of advanced manufacturing strategies,
fibrous textiles are now acquainted as an ideal material for electronic device engineering
and fabrication. The electronic textile (e-textile) can provide information that can effectively
respond to and adjust actions, capable of sensing external conditions or stimuli. The stimuli
can be thermal, mechanical, chemical, electrical, magnetic, optical, etc. [1–6]. According
to the applications, smart textiles can be classified into three sorts: the first generation of
smart textiles incorporating sensors, which can track or stimulate environmental changes is
referred to as passive e-textiles; the second generation includes textiles containing sensors
and actuators that give the capability to recognize and actuate or passage a part of their
environment (chromatic materials, shape memory materials, phase change materials, hy-
drogels and membranes), which are defined as active e-textiles; lastly, the third generation
of smart textiles, which can feel, respond, and accept peripheral circumstances or stimuli
(space suits, thermoregulating clothing, health monitoring apparel), includes sophisticated
or very e-textiles [7–11].

The materials, related to textiles, show conductivity or work on an electronic or compu-
tational purpose, referred to as conductive textiles, and these are used for an ample variety
of textile fibre-based goods with certain electrical conductivities that vary widely [12].
Conductive fibres, yarns, fabrics, and also garments are included in conductive textiles [1].
They are required even for smart textiles to work. Their value determines smart textiles’
durability, launderability, reusability, and fibrous efficiency [13]. For antistatic applications,
electromagnetic interference shielding (EMI), electronic applications, infrared absorption or
protective clothing in dangerous areas, filters, de-electrifying coatings and anti-electrostatic
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and heating purposes, conductive fabrics have received increased interest. This is often
largely because they are desirably versatile and lightweight [14–20]. Important advantages
are gained by the textile industry within the fields of intelligent and multifunctional tex-
tile products, particularly in advanced fibres, yarns, and fabrics. Additionally, industrial
materials such as sensors, electrostatic discharge, electromagnetic interference shielding,
dust- and germ-free clothing, monitoring, data transfer in clothing, etc. are increasingly
rising in demand for fabrics (eventually, fibres and yarns with improved electrical con-
ductivity) [21,22]. It is possible to classify conductive fibres into two groups: those that
are normally conductive, and others that are specifically treated for conductive formation.
Electrically conductive metals—for example, ferrous alloys, nickel, stainless steel, titanium,
aluminium, copper, and carbon—are formed from naturally conductive fibres or metallic
fibres. Using coating fibres by metals, conductive polymers, galvanic substances, or metal
salts such as copper sulphide and copper iodide, electrically conductive fibres can also
be made. Another method comprises the preparation of polymer fibre, whose chemical
configuration itself guarantees superior conductivity or the application of conductive
bi-component fibres.

Conductive fibres may be manufactured in filament or staple lengths to produce yarns
with varying degrees of conductivity and might be integrated with conventional fibres.
Without greatly altering the existing substrate properties, conductive coatings can convert
substrates into electrically conductive materials. It may be implemented to the outward of
fibre, yarn, or fabric via methods comprising electroless plating, evaporative deposition,
sputtering, and conductive polymer coating. There is an alternative opportunity to develop
conductive textiles by printing with ink that is conductive. Conductive inks are used to
print patterns on fabric and those prints show electrical activity. To produce conductive
inks, metals such as copper, silver, gold, carbon, and nickel are injected to conventional
printing inks. Different external factors such as strain, torsion, pH, and humidity may be
responsible for altering the conductivity of textile materials. For multiple novel applications,
the resulting conductive textile is acceptable. Classically used electroactive materials and
their properties for e-textiles are indicated in Table 1. Some chemical structures of polymeric,
metallic, and carbon-based electroactive materials for e-textiles are presented in Figure 1
and electrical conductivity vs. Young’s modulus of different electroactive fibres as well.

Table 1. Typically used electroactive materials and their properties for e-textiles.

Electroactive Materials Group of Electroactive
Materials

Limit of Electrical
Properties Strengths and Weaknesses Refs.

Metallic flakes/nanoparticles/
nanowires (e.g.,
Cu/Ag/AgNWs/Au/Ni/Al)

Metal and its
derivatives ≈104–6.3 × 107 Sm−1

• Extremely conductive
• Resistant against air ageing
• Inflexible
• Less comfort

[23]

PANI/PPy/PEDOT: PSS/PhT Intrinsically conducting
polymers (ICPs) ≈10–1.7 × 10−3 Sm−1

• Less cost and density
• Non-resistant to air ageing [24]

CB/CNF/GO/rGO/MXene/
SWCNT/MWCNT

Carbonaceous
materials ≈102–109 Sm−1

• Highly conductive
and stretchable

• Time-consuming process
[25,26]

Note: Cu = copper; Ag = silver; AgNWs = silver nanowires; Au = gold; Ni = nickel; Al = aluminium; PANI = polyaniline; PPy = polypyrrole;
PEDOT: PSS = poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; PhT = triethoxy (phenyl); CB = carbon black; CNF = carbon
nanofibres; GO = graphene oxide; rGO = reduced graphene oxide; SWCNT = single-walled carbon nanotube; MWCNT = multi-walled
carbon nanotube.
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Figure 1. (a) Polymeric, (b) metallic, and (c) carbon-based electroactive materials for e-textiles. (d) Electrical conductivity 
vs. Young’s modulus of different electroactive fibres based on CNTs (blue diamonds), carbon fibers (gray stars), ICPs (red 
circles), blends of conjugated and insulating polymers (orange/white circles), graphene (yellow triangles), nanocomposites 
of CB (blue/white diamonds), CNTs or graphene embedded in an insulating polymer matrix and (green/white circles) 
coatings of textile fibers with ICPs, CNTs, or graphene [27]. 

2. Conductive Textile Architectures 
2.1. Conductive Fibre/Yarns 

Some specific fibres that are conductive electrically are remarkable in textile history. 
A fibre can be described as a fine, flexible structure that has a high length-to-width ratio 
[28]. A fibre having an electro-conductive part can be described as conductive fibre. Thick 
copper wires or metal nails are electro-conductive, but they cannot be defined as fibre, 
since they are neither fine nor flexible. However, polymer fibre with a silver coating or 
fine copper wire can be identified as conductive fibres [20]. Wire drawing, a mechanical 
method of processing, is the traditional process of creating metal fibres. The numerous 
drawing measures, called coarse, medium, fine, and carding train, characterize this 
method (Figure 2) [10]. The drawing dies are composed of a steel mount with a centre 
made from ceramics, carbide, or diamond that is used for drawing the fibre. Depending 
on the material, the opening diameter of the metal wire fluctuates. It is typically 8 mm for 
copper, whereas it is 5 mm for iron. The wire is recycled at temperatures between 600 and 
900 °C following drawing. They are eventually quenched. On a rotating wire drawing 
cylinder, the fine metal wire is then wrapped [29]. Metal monofilaments that can be inter-
mingled with all kinds of fibres or can be employed without changing the direction in 
which weaving and knitting have been discovered. Significantly, there are different elec-
trical characteristics in relation to the material used [30]. The products range from fila-
ments made of copper (Cu) and silver-plated copper (Cu/Ag), brass (Ms) and silver-plated 
brass (Ms/Ag), and aluminium (Al) and copper-clad aluminium (CCA) filaments. Metal 
monofilaments that are inserted into base yarns such as cotton, polyester, polyamides, 
and aramids are specially manufactured by another company. A standard conductive 

Figure 1. (a) Polymeric, (b) metallic, and (c) carbon-based electroactive materials for e-textiles. (d) Electrical conductivity
vs. Young’s modulus of different electroactive fibres based on CNTs (blue diamonds), carbon fibers (gray stars), ICPs (red
circles), blends of conjugated and insulating polymers (orange/white circles), graphene (yellow triangles), nanocomposites
of CB (blue/white diamonds), CNTs or graphene embedded in an insulating polymer matrix and (green/white circles)
coatings of textile fibers with ICPs, CNTs, or graphene [27].

2. Conductive Textile Architectures
2.1. Conductive Fibre/Yarns

Some specific fibres that are conductive electrically are remarkable in textile history. A
fibre can be described as a fine, flexible structure that has a high length-to-width ratio [28].
A fibre having an electro-conductive part can be described as conductive fibre. Thick
copper wires or metal nails are electro-conductive, but they cannot be defined as fibre,
since they are neither fine nor flexible. However, polymer fibre with a silver coating or
fine copper wire can be identified as conductive fibres [20]. Wire drawing, a mechanical
method of processing, is the traditional process of creating metal fibres. The numerous
drawing measures, called coarse, medium, fine, and carding train, characterize this method
(Figure 2) [10]. The drawing dies are composed of a steel mount with a centre made from
ceramics, carbide, or diamond that is used for drawing the fibre. Depending on the material,
the opening diameter of the metal wire fluctuates. It is typically 8 mm for copper, whereas
it is 5 mm for iron. The wire is recycled at temperatures between 600 and 900 ◦C following
drawing. They are eventually quenched. On a rotating wire drawing cylinder, the fine
metal wire is then wrapped [29]. Metal monofilaments that can be intermingled with all
kinds of fibres or can be employed without changing the direction in which weaving and
knitting have been discovered. Significantly, there are different electrical characteristics
in relation to the material used [30]. The products range from filaments made of copper
(Cu) and silver-plated copper (Cu/Ag), brass (Ms) and silver-plated brass (Ms/Ag), and
aluminium (Al) and copper-clad aluminium (CCA) filaments. Metal monofilaments that
are inserted into base yarns such as cotton, polyester, polyamides, and aramids are specially
manufactured by another company. A standard conductive yarn with base fibres and a
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metal monofilament twisted around them is shown in Figure 2. There, Shieldex Nylon
66 threads were used, which are coated as a base material with a thin silver layer [10].
The benefit of coatings is that they are appropriate for numerous categories of fibre and
construct good conductivity without drastically modifying established main features, for
example, density, flexibility, and handling. The adhesiveness of the metal and fibres plus
the resistance of corrosion can, however, create problems.

Coatings may be functional to the outer part of fibres, yarns, even fabrics. Coatings on
the conductive polymeric textile are carried out by sputtering, electroless plating, and de-
position of vapour. In order to prepare conductive textiles, metal fibres are combined with
traditional fibres during spinning [4,31,32]. During weaving and knitting, the processing
of these yarns is difficult, consequential in fabrics with movable textile properties [16,33].
By coating CPs, such shortcomings connected with the processability and poor textile
characteristics have been effectively solved [34]. PPy has been generally practiced by the
CPs on account of its high conductivity, low toxicity, and high ecological constancy. It is
presented in a system to produce fibres with diverse material layers and structures. The
manufacturing process is based on the traditional fibre-processing based on the preform,
easily generating kilometres of usable fibre during the process. Another important task is
to produce a transistor using the crossing yarns [35,36].

Additionally, the carbon nanotube fibre is manufactured on the basis of tiny carbon
nanotubes by means of the wet spinning method [37]. The groundwork and features of both
conductive polymer-based fibres and nanocomposite fibres on a carbon nanotube basis
are described in another paper [38]. Through melt spinning, carbon nanotubes containing
conductive fine fibres were geared up with polyester, polyamide 66, and polypropylene.
Here, the results showed that by adding the amount of CNT, the electrical conductivity
was amplified [39].
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Figure 2. (A). Ultrastable and high-performance silk energy harvesting textiles; (B). (a) Iron tube; (b) reducing diameter;
(c) tube building; (d) forming fibres and (e) conductive fibre diagram wrapped with the typical fibres; (C). (a) Twisted metal
wire; (b) coated metal; (c) metal multi-filaments; (d) copper-polyester twisted yarn and (e) base fabric with embedded
copper wire [10,40,41].
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2.2. Conductive Fabrics

Conductive textile has been gained for multi-purpose and multi-directional appli-
cations by numerous means, for instance, chemical coating, metallisation, electroless
deposition, metallic yarns insertion, and thin-layer plating that holds conductive fillers,
for example, CNT and carbon black particles [42–45]. By utilizing weaving, knitting, and
embroidery or nonwoven manufacturing methods, the function of electronics can be incor-
porated into the textile products. However, it is a complex and hardly ever uniform method
to incorporate conductive yarns into an arrangement as it is necessary to make sure that the
properties of the conductive fabric are suitable for wearing rather than stiff and inflexible.
Various kinds of threads can be utilized to launch conductivity (Figure 2). Woven fabrics
can include a multiplex network with various conducting and non-conducting components
that can be used as complicated electrical circuits and are designed to provide several layers
and spaces to accommodate electronic devices. A simple woven fabric containing polyester
yarns twisted with copper thread has been developed by researchers at ETH. It is made
of 42 µm diameter woven polyester monofilament yarn and 50 ± 8 µm diameter copper
alloy wires. A polyurethane varnish is used as insulation material to coat each copper
wire. The copper wire grid has a separation of 570 µm in the textile structure. Electrically
conductive coatings for fibre-based e-textiles and silver nanowire coated knitted wool
fabrics for wearable electronic applications are exhibited in Figure 3.
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Feratec® (Manufacturer: Baltex; Ilkeston, UK) can primarily be used for the specific
heating and electro-magnetic shielding purposes. Here, knitting technology has been used
to integrate metal wires. Metallized woven nylon fabrics have also been manufactured in
various shapes and profiles. In order to produce metallized woven fabrics, silver, copper,
and a copper–nickel combination are used as the metal. The conductive yarns—for example,
copper thread, silver-plated, and polyester-coated—are used in manufacturing electronic
fabrics, electronic conductors, textile operating panels, and micro-sensors. Conductive
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fabric can also be accomplished using the embroidery method by adding a conductive
material to a ground arrangement. Stitching patterns that can identify circuit traces,
connection pads, or sensing surfaces built with conventional CAD circuit layout tools have
been discovered (Figure 2) [47]. High sensitivity to its elongation is shown by the surface
resistance of PPy conductive fabric. By changing the resistance and anisotropic structure of
the fabric, body joint motion can be identified [48–50].

3. Thermoregulation for Conductive Textiles

Textile materials are considered as ideal insulators and hold wide varieties of thermal
conductivity at their pristine state. Conductive textile uses environmentally friendly electric
energy that provides electrical energy by setting heating elements into the clothing [51].
The thermal conductivity of several materials is indicated in Table 2. In order to explain
the heat generation phenomenon, Joule’s law is used, wherein heat is generated by an
electrical current passing through a heat-generating conductor inserted into the fabric. The
power supply, flexible heating device, clothing, safety protection elements, and temperature
control module are key elements of composing conductive heating textiles. Joule’s heating
principle describes the heat generation; the power of heating (P) is related to the resistance
(R) and electric current (I) of the conductor and is calculated by Equation (1).

P = I2R (1)

Table 2. The thermal conductivity of several materials [51].

Indicators of Thermal Conductivity of
Thermal Insulators Thermal Conductivity (λ/Wm−1 K−1)

Wood 0.17

Asbestos 0.17

Plastics 0.17

Leather 0.15

Polystyrene 0.1329

Polyacrylonitrile fibres 0.05

Nylon 0.209–0.337

Polypropylene fibres 0.22–0.30

Cellulose 0.11

Air 0.0244

When a resistor is connected to an external power source, it will produce heat. Ac-
cording to Joule’s effect, the conductive textile material can be used as a resistor with a
confirmed degree of conductivity for heat generation. To effectively affect Joule’s heat
generation theory, an electrical conductor necessitates a reasonable electrical resistivity. It is
not possible to produce enough heat by a low-resistivity highly conductive material while
passing a current through it. In order to produce resistive yarns or fabrics of conductive
composite for heat generation, metal, a good conductive source, is then mixed with insulat-
ing textile fibres in a variety of ways [52,53]. The electrical conductivity, σ, is calculated by
Equation (2) and the resistance, R, is calculated by Equation (3).

σ =
1
ρ

(2)

and
R = ρ

l
A

(3)
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Thermal conductivity, K, is the material’s property that indicates the ability to conduct
heat and is calculated by Equation (4).

H =
∆Q
∆t

= KA
∆T
l

(4)

where ∆Q/∆t is the rate of heat transfer, ρ is the electrical resistivity, A is the surface area,
and l is the length.

The electrical and thermal energy sources are responsible for heat generation on textile
materials. A suitable temperature gradient is maintained by textile heated clothing between
the body and environment. It is possible to gain the necessary temperature gradient by
either passive or active clothing. Where a high amount of work is needed, passive clothing
is not sufficient. It impedes the wearer’s ease as it contains some layers. In that case,
active clothing can be an alternative. Graphite, metal, conductive rubbers, and water-like
elements have been used before in active clothing to generate heat.

4. Roadmap towards Heating Textile Devices

In two ways, heated textiles can be produced: one is manufacturing a piece of fabric
and adding an electronic mechanism into it, and another way is manufacturing a yarn
with electronic characteristics and producing textile products [54]. In heating clothing and
gloves, electrical wires were used. The gloves should be used with an outward cape-leather
to keep away electric wires from skin contact [55]. In World War II, metallic wires were
first used in textile clothing [56]. Rather than metallic wires, more advanced conductive
yarns are fashioned, currently, containing the features of textile yarns [33]. Nonwoven,
knitted, woven, and embroidery fabrics can be used to fabricate heating products. Due
to high resistivity, heating elements containing nonwoven fabric have confirmed limited
utilization. Alternatively, woven fabric marks lower resistance than knitted fabric in
the same dimensional heating area because of the structure [57,58]. A multifilament
carbon blended stainless steel yarn is generated with moderate resistance for an acceptable
heat generation application [4]. This kind of electro-conductive yarn has been found to
exhibit especially brittle and weak bending features which are not appropriate for textile
applications [59,60]. A conductive textile was first recorded by De Rossi for measuring
strain and temperature [61]. By coating polypyrrole on a Lycra fabric, the sensing fabric
was fabricated and demanded to demonstrate temperature sensitivity, comparable to that
of ceramic thermistors. However, in order to use it in a functional environment, they have
not offered any additional description. Another significant drawback was that the fabric
was so particularly susceptible to a strain that could also be a major cause of strain, well in
a complex setting. This may be the main source of unwanted art-crafts during temperature
management. To produce active clothing, external devices or heaters were used, though
there were some limitations of using heaters: clothing weight up, structure rigidity, and
sweat extraction. Heating small patches can be without problems joined in active clothing
at several locations by stitching. Basically, a patch of heating is composed of four elements:
a carrier, a heating material, a bus bar, and a power source. Many of the incidents recorded
in recent years are attributed to aircraft caused by ice accumulation [62,63]. Heated textiles
can also be exercised as an anti-freezing mediator in the aircraft industry to prevent ice
accumulation on the aircraft wings.

Heating textile has therapeutic advantages, providing heat treatment against persistent
pain [64]. As the surface of the heating textile remains in contact with skin, it shows
effective results in thermotherapy. This textile is used in a particular region and the
application of heat increases blood flow, reduces inflammation and pain, and is also used
for joint injuries [65–67]. To inform patients of their pathological conditions, heating
textiles can play a role as thermographs. It can monitor vascular, dermatological, and
rheumatic abnormalities and investigate breast cancer [68]. In that case, thermocouples and
thermistors are used as contact sensors and can be inserted into textiles without making
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them bulky [69]. In the next section, the recent progress in different electroactive materials
coated heating textile is comprehensively discussed.

5. Advanced Heating Textiles and Their Performances
5.1. Metal-Based Heating Textiles

Metals are highly electro-conductive and have ideal electrical properties as well. That
is why metal-integrated textiles are conductive and can be used for heating purposes. Frank
Hewitt manufactured heating fabric and heating pads where heat was produced by electric
current flow through a metal wire that was inserted into the fabric or pad [70–72]. Metal
wires can be woven or knitted into the heating textile. The heating fabrics which have plain
and interlocking knitted structures show maximum equilibrium temperature at the voltage
of 3 V and stainless steel yarns are integrated as heating elements into the knitted fabrics
where silver-plated yarn is braided on both sides of the fabrics [73]. A study shows that
plain woven fabric which contains silver filament or silver-plated yarns has a great positive
linear correlation between power and temperature. This relation improves the design
of fabric manufacturing by analyzing the physical properties of heating textiles [57]. To
prepare metal-based conductive heating textile, metal nanomaterials can be coated on the
fabric surface. Compared to CNT-coated cotton fabric, AgNW-coated cotton fabric shows a
better heating effect. The study shows that at the voltage of 0.9 V and 1.2 V AgNW-coated
cotton fabric can reach 38 ◦C and 53 ◦C, respectively, whereas to obtain the same heating
effect for CNT-coated cotton fabric, the voltage needs to be raised up to 12 V [74,75].

Liu et al. [76] knitted plain, rib, and interlock structures using silver-plated yarn
and polyester staple yarn (Figure 4D). In the research, aging tests were carried out, and
under 100 ◦C temperature, the silver-plated yarn was hardly affected by time and the
aging temperature. A strong linear correlation was found between the power consump-
tion density and the maximum equilibrium temperature of three knitted fabrics in the
study. Another research work was carried out to test the electro-thermal stability of sil-
ver yarn or silver-coated yarn by performing an oven aging test; the results found better
electrical resistivity of silver yarn by showing a strong linear density. At a voltage of
9 V, that resistivity made the samples capable of obtaining higher temperatures [77,78].
Kexia et al. [78] showed the relation of temperature and the resistance of wool and silver
yarn made conductive electro-thermal knitted fabric (Figure 4B). At a voltage of 2.4 V,
the conducting heating fabric showed a better result which had the double needle bed
knitting structure of 1 × 1 rib. Hong et al. [79] embedded AgNWs to polydimethylsiloxane
(PDMS) films (Figure 4A). These conductive films showed extraordinary electrical con-
ductivity that could respond to thermal properties quickly by generating Joule heating
(Figure 4A). Guo et al. [80] used the roller printing method to create highly conductive
wearable electronics for smart fabrics depending on the adhesion variance of semiliquid
metal (Cu-EGaIn, eutectic gallium-indium combined with copper microparticles) on cotton
fabrics and PVAC glue. The adhesive effect with the Cu-EGaIn mixture is determined by
the surface topography and chemical interaction of textiles and PVAC glue, according to the
findings. The electromechanical stability of the manufactured lines on fabrics was proved
in the electric testing. To demonstrate practical applications in the method, a number of
smart fabrics were constructed, including an interactive circuit, stretchy light-emitting
diode array, and thermal management device with benefits of easy operation, low cost, and
large-area fabrication (Figure 4C). Repon et al. [81] investigated heat generation in compres-
sion supports using Ag-coated PA-based electro-conductive knitted textiles. They created
compression knitted constructions with integrated electro-conductive yarns and studied
heat generation characteristics and temperature variations over time and under stretch
to induce compression. Silver-coated PA yarn with linear densities of 66 tex and 235 tex
was used to create combined half-Milano rib structured knitted fabrics. The summary of
metal-coated heating textiles is shown in Table 3.
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Figure 4. (A) Highly stretchable and transparent heater. (a) Schematic illustration of the stretchable and transparent heater
composed of AgNW percolation network on PDMS film; (b,c) pseudocolor image at room temperature (left) and infrared
camera thermal image (right) of a Ag NW/PDMS stretchable and transparent heater operating at 60 ◦C with (b) no strain
and (c) at 60% strain condition [79]; (B) sample temperature change with time of S1–S6 under (a) 1.2 V and (b) 2.4 V and
thermal images of S4 (c) before and (d) after 1 min, (e) after 30 min, and (f) after 1 h of application of a voltage of 2.4 V [78];
(C) thermal management device printed on woven cotton fabrics. (a) Temperature curve of the serpentine Cu-EGaIn
conductors during heating/cooling process under input current of 0.5 A. (b) Temperature curve of the serpentine Cu-EGaIn
conductors during the heating process under various input currents. (c) Picture of the thermal management device and its
infrared temperature distribution images at 120 s under various input currents. (d) Infrared temperature distribution image
of the thermal management device sewn on a T-shirt. (e) Structure diagram of the woven cotton fabric with color changing
pigment. (f) Thermochromic display of the serpentine Cu-EGaIn conductors. (g) Infrared temperature distribution image of
multiple Cu-EGaIn patterns heated by the electromagnetic heating coil [80]; (D) infrared images of (a) PSF, (c) RSF and
(e) ILK and three-dimensional images of (b) PSF, (d) RSF and (f) ILK at 4 V [76].
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Table 3. Summary of metal-coated heating textile.

Electroactive
Materials Type of Textile Temperature

Range (◦C)
Voltage Range

(V)
Electrical
Properties Refs.

AgNWs Cotton/Polyurethane
Core-Spun Yarn (CPY) ≈25–100 2–6 ≈36 Ωsq−1 [82]

AgNWs Nylon ≈30–140 2–10 30 Ωsq−1 [79]

AgNWs Ink Polyester (PET) ≈20–100 3–7 ≈10 Ωsq−1 [83]

AgNFs and PtNFs Silk fabric (SF) 41.3–99 3–8 25 Ωsq−1 [84]

AgNFs Silk fibroin (SF) ≈28–106.2 0.5–4.5 12 Ωsq−1 [85]

AgMFs - 27.3–209.4 0–1.6 <0.2 Ωsq−1 [86]

AgFDs Polystyrene film 52.3–180< 1–4 0.048 Ωsq−1 [87]

AgNWs PVA Film ≈45–74 3–5 20 Ωsq−1 [67]

AgNWs Polyester (PET) and
polydimethylsiloxane (PDMS) ≈30–160 5–25 ≈0.5 Ωsq−1 [88]

AgNWs Polydimethylsiloxane (PDMS) ≈50–160 1–2 0.25 Ωsq−1 [89]

CuNWs Polyurethane (PU) 46–102 3–7 4.7 Ωsq−1 [90]

Cu-Ni NWs Poly (ethylene terephthalate)
(PET) 20–106 3–15 300 Ωsq−1 [91]

AgNWs Elastomer ≈40 0.5–1.0 ≈0.8 Ω [66]

AgNPs Cotton fabric ≈34–98 1–5 0.26 Ωsq−1 [92]

AgNW/PEDOT: PSS Silk yarn 25–64 2–3 ≈320 S/cm [93]

CuZr Metallic glasses 180 7 3.8 Ωsq−1 [65]

AgNWs Cotton fabric ≈42 1.5 2.2 Ωsq−1 [94]

Cu filament PET-Cu braided fabric ≈89 5 2.428 Ω/m [95]

Stainless steel yarns Polyester knitting fabric ≈60 12 - [54]

CuNWs PET fibres 57 3 - [96]

Silver-plated yarn Polyester staple yarn 4 70 - [97]

Stainless steel Cotton fabric ≈84 (plain)
≈99 (Interlock) 3 0.3 Ω cm−1 [73]

Stainless steel, CB Cotton fabric ≈63 6 1.2–12 kΩ [98]

Ag Cotton-nylon
spandex fabric ≈119 10 21 Ω mm [99]

Ag Polyamide 52 2.5 0.64 Ω [81]

AgNPs Cotton 36.5–118.7 0.5–2.0 - [100]

CuNWs Polyamide 6 70 1.8 0.3 Ωsq−1 [101]

Note: AgNWs = silver nanowires; AgNFs = silver nano-fibres; AgFDs = silver micro-fibres; CuNWs = copper nanowires; PEDOT:
PSS = poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; CB = carbon black; Cu = copper; Ag = silver.

5.2. Conductive Polymer Based Heating Textiles

It has been found that polymeric composites of non-metals are ideal for generating
heat. The benefits of these heating yarns are found, compared with other heating materials,
for their low power density, lightweight, temperature homogeneity, and their durability
and fineness [102–105]. To prepare conductive composites, PPy, PANi, PTh, etc. polymers
are used for coating on yarns by different systems. Polypyrrole (PPy) can be coated by
chemical and electrochemical methods on nylon fabric. By the gas combustion method, PPy-
coated polyester fabric can be obtained where FeCl3 is used as an oxidizing agent [106,107].
A combination of in situ polymerization and interfacial polymerization method is used
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to coat a thin and compact PPy layer on cotton, silk, wool, and polyester fabric and their
temperature can rise to 100 ◦C at 6 V [108]. Wang et al. [109] fabricated highly conductive
and hydrophobic textiles that showed an excellent heating performance according to Joule’s
law and the conductivity of the fabric was 1000 Sm−1. In the experiment, silicone-coated
MXene sheets that were modified by in situ polymerized polypyrrole (PPy) were deposited
onto poly (ethylene terephthalate) textiles. Joule heating performances, current-voltage
behaviour and temperature stability of silicone-coated M-textile and the SEM images of
G/CNC-coated bamboo viscose fabrics are displayed in Figure 5.

Studies show that integrating PPy into fibres, both natural and regenerated, to form a
textile composite and also cotton woven fabrics is appropriate for heat creation [110,111].
Sparavigna et al. and Macasaquit and Bina recommended that 100% PPy-coated polyester
fabrics are basically functional for large extent purposes, together with medical or other
applications among flexible, portable, surface-heating elements [112,113]. There is fair
conductivity in PPy-coated polyester–Lycra woven composite fabrics, and efficient heat
generation [114,115]. The rate of temperature change has two separate phases for all
these composites, an initial sharp rise followed by a leveling-off to plateau, close to PPy-
coated cotton composites [116]. It has been noted that the doping anion controls the heat
and resistivity outcome of PPy composites [117]. By chronological HTHP chemical and
electro-chemical polymerizations, nylon fabric with PPy coating is structured. By using
a marketable battery of 3.6 V, the surface temperature of this fabric goes up rapidly to
around 55 ◦C in 2 min and it is constant for at least ten rounds [106]. There is rational
electrical stability in a PPy-coated e-glass fabric, and it is found to be efficient in generating
heat. The surface temperature increases by applying an unvarying voltage through the
cloth, while power consumption is found to be decreased [118]. For heat generation, PPy-
coated silk composites are also arranged [119,120]. The application of voltage increases the
temperature of the PPy-coated woven and non-woven fabrics and studies show the rate of
increasing temperature increases exponentially. It is also noticed that the time duration of
applying voltage is an important factor for increasing the temperature of the fabrics [121].

The polymer of 3, 4-ethylene dioxophene monomer (EDOT) is called polyethylene
dioxophene thiophene (PEDOT). PEDOT has been used for fabricating conductive heating
textiles due to its features of high conductivity, simple molecular design, and compact
energy gap. In order to synthesize PEDOT with the substrate material, several techniques
are used such as spraying, impregnation coating, in situ polymerization, and vapor phase
polymerization. To manufacture conductive PET, Yang et al. [122] coated PET with PEDOT
film applying the vapor phase polymerization process. Research shows better reusing
stability and uniform thermal distribution of AgNWs/PEDOT: PSS composite film by
studying its thermal response features on the basis of thermodynamic analysis, the heat
capacity of substrate material [123]. The summary of polymer-coated heating textiles is
stated in Table 4.
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Figure 5. (A). I–V curve and (b) Joule heating performances of silicone-coated M-textile. (c) Time–temperature curve
at a constant voltage of 3 V for silicone-coated M-textile. (d) Temperature stability of the silicone-coated M-textile in
heating/cooling cycles [109]; (B). SEM images of CBPFs and GCBPFs ((a,b) CNC-coated bamboo pulp fabric; (c,d) G/CNC-
coated fabric with lowest thermal conductivity; (e,f) G/CNC-coated fabric with highest thermal conductivity) [124].

Table 4. Summary of polymer-coated heating textile.

Electroactive Materials Type of Textile Temperature
Range (◦C)

Voltage Range
(V)

Electrical
Properties Refs.

PEDOT: PSS, rGO Cotton fabric 70 30 150 Ω sq−1 [125]

PEDOT, MXene Cotton fabric ≈193 12 3.6 Ω sq−1 [126]

PPy, FeCl3 Cotton fabric ≈168 5 0.37 Ω cm [127]

PPy PET fabric ≈110 30 1434.12 Ω sq−1 [121]

PPy Cotton fabric ≈48 9 32 Ω sq−1 [128]

PPy, MXene, silicone PET fabric ≈57 3 ≈1000 S m−1 [109]

PPy PET-lycra fabric ≈40 24 150–500 Ω sq−1 [115]

Polypyrrole Nylon fabric 55 3.6 5 Ω sq−1 [107]

Polyethylene dioxophene
thiophene PET 43 15 52 Ω sq−1 [129]

PEDOT Cotton fabric ≈44 6 41 Ω sq−1 [130]

PEDOT: PSS, SDS Cotton fabric ≈99 12 1335 Scm−1 [131]

PEDOT: PSS, glycerol Polyamide fabric ≈80 12 740 Ω [129]

rGO PET/PU fabric ≈59 30 2.0 × 10−5 S sq−1 [132]

rGO PET fabric ≈138 14 24.7 Ω sq−1 [133]

Note: PPy = polypyrrole; PEDOT: PSS = poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; GO = graphene oxide; rGO = reduced
graphene oxide.
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5.3. Carbon Based Heating Textiles

Conductive materials based on carbon are a good source of heat generation. Graphene,
graphite powder, and CNTs are normally attached to the surface of the fibre to make it
conductive. By using recycled carbon fibre and dipping and coating CNTs with cotton
fabric, where SWCNTs are used as a dispersant, the conductive heating textile can be
developed [134,135]. To enhance the thermal properties of the fabric, MWCNTs are coated
on the cotton fabric through the techniques of impregnation–drying coating and the im-
provement of thermal conductivity is found [136]. Time–temperature curves for different
voltage and temperature stability of flexible MXene-decorated fabric with interwoven
conductive networks for integrated Joule heater are shown in Figure 6. For heat generation
application, reduced graphene oxide (rGO) nanosheet-coated cotton fabric-based films
are used to fabricate electrically conductive textile [137]. Wearable electronics, specific
devices for personal cooling and heating, or simply personal thermal management (PTM)
devices can be developed by embedding graphene in fabrics. Using highly conductive
graphene fibre with superior heating at reduced energy can readily increase stretchability
and breathability [138–140]. Surface temperature of triple- and quadruple-layers at various
applied voltages and IR images of graphene/polymer coated textile based multi-layer
fabric heating element with aramid fabric are shown in Figure 7. The summary of carbon
based heating textile is demonstrated in Table 5.

Materials 2021, 14, x 13 of 24 
 

 

 
Figure 6. A piece of flexible MXene-decorated fabric with interwoven conductive networks for integrated Joule heating, 
electromagnetic interference shielding and strain sensing performances: Time–temperature curves of M-C fabrics at a 
voltage of (a) 2 and (b) 6 V. (c) Time–temperature curves of 6 wt % M-CF from 1 to 6 V. (d) Temperature adjustability of 
the 6 wt % M-CF heater. (e) Temperature stability of 6 wt % M-CF heater under 100 heating cycles. (f) Temperature distri-
bution of the wearable 6 wt % M-CF heater attached on a glove and wrist [141]. 

Figure 6. A piece of flexible MXene-decorated fabric with interwoven conductive networks for integrated Joule heating,
electromagnetic interference shielding and strain sensing performances: Time–temperature curves of M-C fabrics at a
voltage of (a) 2 and (b) 6 V. (c) Time–temperature curves of 6 wt % M-CF from 1 to 6 V. (d) Temperature adjustability of the
6 wt % M-CF heater. (e) Temperature stability of 6 wt % M-CF heater under 100 heating cycles. (f) Temperature distribution
of the wearable 6 wt % M-CF heater attached on a glove and wrist [141].
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Table 5. Summary of carbonaceous heating textile.

Electroactive Materials Type of Textile Temperature Range
(◦C)

Voltage
Range (V) Electrical Properties Refs.

rGO/PEDOT: PSS Cotton fabric 30–70 5–30 150 Ω sq−1 [125]

MWCNT Glass or poly(dimethylsiloxane)
(PDMS) 100 40 172 Ω sq−1 [143]

MWCNTs Cotton ≈90 10–60 1670 Ω sq−1 [144]

MWCNTs Silk Fabric ≈49.1 5–25 468 Ω sq−1 [145]

Graphene Polyimide 55–150 30–60 1.568 Ω sq−1 [146]

rGO Polyester fabric 50–138.64 6–14 24.7 Ω sq−1 [133]

CB Polyester Fabric ≈30–85 0–20 <71 Ω cm−1 [147]

CNT Cotton Yarn Max. 80 2–5 3.92 Ω cm−1 [148]

CC/PW Thermoplastic Polyurethane (TPU) ≈32.5–50 2–3 374 Sm−1 [149]

MnO2/rGO Cotton fabric Max. 36 1–15 0.78 Ω [150]

Graphene/WPU Polyester 71.3 50 5.43 × 103 Ω sq−1 [151]

Recycled carbon fibre non-woven fabric 94.6 13 2.8 × 103 Sm−1 [152]

Graphene, WPU Aramid fabric (knit) ≈54 5 ≈56 Ω [153]

Graphene, MWCNTs Cotton 66.2 27 29.8 Ω sq−1 [154]

MWCNTs Polyester/polyurethane 56.1 5 2.66 Ω cm [155]

Note: PEDOT: PSS = poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; CB = carbon black; CNT = carbon nanotube; GO = graphene
oxide; rGO = reduced graphene oxide; MWCNT = multi-walled carbon nanotube; WPU = waterborne polyurethane.
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Wearable thermoelectric devices have the potential to generate electricity for on-
body applications in a ubiquitous, non-intermittent, and noiseless manner. Due to its
out-of-plane thermoelectric generation and strong structural conformability with fabrics,
three-dimensional thermoelectric textiles (TETs) outperform other varieties in smart tex-
tiles [156–161]. Yuanyuan et al. [157] sewed carbon nanotube yarn-based segmented
thermoelectric textiles on a large scale to create organic spacer fabric shaped TETs. It was
discovered through a combination of finite element analysis and experimental evalua-
tion that the fabric structure has a substantial impact on power generation. The properly
constructed TET has a high output power density and is wearable and stable. Another
study generated a stretchable heating carbon nanotube (CNT) fibre with good mechanical
and heating capabilities based on the hierarchically helical structure of traditional ther-
mal insulation material—wool [159]. A huge number of generated hierarchically helical
voids inside and out provide good thermal insulation. It has a rapid thermal response of
over 1000 ◦C s−1, a low working voltage of a few volts, and great heating stability over
5000 cycles, to name a few features. Active thermoregulation via electro-heat and thermo-
electrics is illustrated in Figure 8. The applications of fibres and yarns in smart fabrics
along with conductive features are mentioned in Table 6 and the coating techniques of
textile yarn with intrinsically conducting polymer (ICP) are stated in Table 7.

Table 6. Application of fibres and yarns along with conductive features in smart fabrics.

Material Mesh or
Core Characteristics Advantage Disadvantage Resistance per Unit

Length Refs.

Copper
wire/tinsel

wire

Polyester,
copper
(tinsel)

Flattened and
twisted with
cotton, nylon,

Nomex or Kevlar
thread

Robust connection,
conventional

Difficult to
integrate into

clothing
~21 Ω cm−1 [162]

Stainless steel
staple fibres

Blended with
polyester

Composite broken
bundles (sewable)

Strength, resistance to
corrosion,

biologicalinertness

Difficult to attach
to existing
electronics

components

BK 50/2 ~50 Ω cm−1,
broken)

[47]

Aracon MCAF
metal clad

aramid
(polymer) fibres

Kevlar

Composite core:
Kevlar cladding

metal: Ag, Ni, Cu,
Au, Sn (24–200 fibres)

Light, flexible, stable,
high temp resistance
Can be soldered like

normal wire

Conformability in
integration with

fabrics
~0.001 Ω cm−1 [47]

Metallic
organza Cloth Composite fibre:

Ag Yarn level integration
Challenging

connections to data
acquisition

~10 Ω m−1 [47]

Silver thread Fabric
Composite2

ply
Ag fibre, nylon

Machine sewable
Sensitive to

humidity and
aging

~85 Ω ft−1 [163]

Strips of
conductive

fabric

Coated
or intr.

conductive
fabric

Carbon based, PPy,
PEDOT, PANi,
metal plated

(i.e.,
Cu, Ni)

Can be glued, sewed
to other fabrics

Compatibility
and specialty of

connectors
Varies [164]

Thin Kapton
sheet Kapton

Stacking of
thin film layers

including silicon
nitride

Enables flexible
electronics techniques

Cannot be machine
sewn Varies [165]
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Figure 8. Active thermoregulation via electro-heat and thermoelectrics. (a) Photograph and IR image of a stretchable and
energy-efficient smart Joule-heating textile. (b) Temperature and distribution profiles of the smart heating textile. (c) Smart
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thermoregulation. (h) Output power of the plain-weave thermoelectric smart textile [156].

Table 7. Coating techniques of textile yarn with ICP.

Coating Technique Textile Yarn ICP Linear Resistivity
(Conductivity) Refs.

Solution
polymerization Wool, cotton, nylon, and polyester PANI 23 kΩ/cm/

filament [166]

Dipping and drying PET PANI ~70 Ω/cm [11]

Dipping and drying PET PANI ~100 Ω/cm [42]

Solution
polymerization Wool PPy 4.8 kΩ/cm [167]
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Table 7. Cont.

Coating Technique Textile Yarn ICP Linear Resistivity
(Conductivity) Refs.

Solution
polymerization Wool PPy ~50 Ω/cm [168]

Vapour polymerization Wool, cotton,
and nylon PPy 0.37–3 kΩ/mm [169]

Vapour polymerization Wool PPy 0.43 kΩ/mm [170]

Vapour polymerization Nylon-6 and polyurethane PPy —- [171]

Vapour polymerization
and solution

polymerization

Cotton and
silk PPy

6.4×10-4 S/cm
(cotton)

3.2×10-4 S/cm
(silk)

[172]

Dipping and drying Silk PEDOT: PSS 8.5 S/cm [173]

Dipping and drying Silk PEDOT: PSS 2 kΩ/mm [34]

Vapour polymerization Viscose PEDOT: PSS —- [35]

Note: PANI = polyaniline; PPy = polypyrrole; PEDOT: PSS = poly(3,4-ethylenedioxythiophene) polystyrene sulfonate.

6. Future Perspective and Conclusions

In antiquity, conductive threads were fabricated before the discovery of electricity.
With the passage of time, things change, and different innovations are carried out day by
day to improve the path of conductivity in textile. Textile fibres, yarns, and fabrics are
modified by using metal in the form of wires, coats, wraps, and conductive polymers intrin-
sically. Traditional electrical wires were initially used, but more advanced methods were
then introduced. Particularly with the high expansion in wearable and electronic materials,
there will be an additional drive for the enlargement of conducting paths with properties
more compatible with traditional fibrous materials. Smart textiles and their applications
will boom in the forthcoming in the area of textiles, electronics, and information technology
with the development of advanced materials and polymers. The future possibilities for
conductive material comprise health, protection, fashion, and fitness. The smart conductive
textile can give protection to the firefighters and can monitor health in clinical application,
use in sportswear for fitness purposes, functional clothing for fashion and non-clothing are
applied for the automotive and home textile purpose.

Textile-based Joule heaters by implementing a combination of nanomaterials, fabri-
cation tactics, and structural designs have changed the paradigm of futuristic intelligent
garments and clothing systems. Structural textiles have different benefits over rigid elec-
trical elements such as comfort, feasibility, flexibility, breathability, etc. in designing
thermo-regulating devices. In spite of immense progress in textile-based Joule heaters,
there still remain some challenges to overcome. It is very difficult to retain the electri-
cal properties or constant heating functionality under mechanical deformations and wet
conditions (e.g., wash/sweating). Wearable textile heaters with insufficient durability
under critical environments make the acceptability of numerous prototypes questionable
for large-scale applications. To keep the electrical functionality activated from creasing
or washing stresses, a strong interfacial bonding (intimate contact between textiles and
embedding materials) is essential. Moreover, the implementation of flexible encapsulant
materials such as 3D printing bundle, fully biobased film, and ultrathin White-EVA films
are expected to guarantee a promising bright future for textile-based thermoregulation in
the coming decade.

Textile-based heaters open new opportunities for next-generation smart heating de-
vices. Furthermore, problems coexist with conveniences, necessitating increased study and
improved tactics to impart higher functionality, wearability, aesthetics, and washability
into a textile heating device while maintaining adequate mechanical compliances. Various
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important understandings are still to be uncovered in order to convey the true impact of
these wearable textile heaters to our society and to accelerate their large-scale production.
We believe that with the continued hard work of researchers from many areas, the design,
functionalities, and performance of heating textiles will be enhanced, thereby promoting
the development of heating textiles toward a future.
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