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ABSTRACT Whether generated within a lab setting or isolated from the wild, variant alleles continue to be
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an important resource for decoding gene function in model organisms such as Caenorhabditis elegans. With  Caenorhabditis
advances in massively parallel sequencing, multiple whole-genome sequenced (WGS) strain collections are elegans
now available to the research community. The Million Mutation Project (MMP) for instance, analyzed  Molecular
2007 N2-derived, mutagenized strains. Individually, each strain averages ~400 single nucleotide variants Inversion
Probes

amounting to ~80 protein-coding variants. The effects of these variants, however, remain largely unchar-
acterized and querying the breadth of these strains for phenotypic changes requires a method amenable to
rapid and sensitive high-throughput analysis. Here we present a pooled competitive fitness approach
to quantitatively phenotype subpopulations of sequenced collections via molecular inversion probes
(PhenoMIP). We phenotyped the relative fitness of 217 mutant strains on multiple food sources and classified
these into five categories. We also demonstrate on a subset of these strains, that their fitness defects can be
genetically mapped. Overall, our results suggest that approximately 80% of MMP mutant strains may have a
decreased fitness relative to the lab reference, N2. The costs of generating this form of analysis through WGS
methods would be prohibitive while PhenoMIP analysis in this manner is accomplished at less than one-tenth
of projected WGS costs. We propose methods for applying PhenoMIP to a broad range of population
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selection experiments in a cost-efficient manner that would be useful to the community at large.

The C. elegans haploid genome is compact, containing just over
100 Mb, and yet is capable of generating a complex organism with a
defined cell lineage (Sulston et al 1983). Despite our detailed
knowledge of this organism, much of its biology remains unclear.
At current, only 9,645 Wormbase genes (Wormbase web site 2019)
have phenotype descriptions reported from either variant alleles or
RNAi knockdown experiments, suggesting that the function of nearly
half of C. elegans protein coding genes remain experimentally
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uncharacterized. Knowledge of where and when a gene is expressed
can provide clues to function and many large data sets have elucidated
gene expression patterns across embryonic, larval and adult time-
points. Furthermore, multiple techniques have begun to resolve
tissue-specific and even cell-specific expression profiles (Boeck
et al. 2016; Cao et al. 2017; Gracida and Calarco 2017; Kaletsky
et al. 2018; Warner et al. 2019). However, this information does not
directly reveal gene function per se.

Forward genetics screens by methods such as chemical mutagen-
esis, provide a means of recovering alleles that result in a detectable
phenotype of interest such as sterility, lethality, or altered reporter
expression. These alleles can then be genetically mapped, sequenced,
and functionally analyzed. In this manner, a specific phenotype can
be screened across hundreds of thousands of mutated genomes,
thereby querying a very large search space (Brenner 1974; De Stasio
and Dorman 2001; Kevin et al. 2006). The identification of causal
variants across this space can be a laborious process although a variety
of methods now exist to aid in the sequencing and mapping of mutant
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genomes (Doitsidou et al. 2010; Minevich et al. 2012; Jaramillo-
Lambert et al. 2015; Mok et al. 2017). In contrast, a reverse genetics
screen by RNAI, generates a smaller potential search space by
querying a collection of specific gene knock-down targets for a
detectable phenotype in a limited number of genetic backgrounds
(Fraser et al. 2000; Kamath et al. 2003; Lehner et al. 2006). Conse-
quently, the solution space is relatively well-defined since validated
hits require no genetic mapping, although such screens are generally
confined to knocking down gene expression rather than necessarily
exploring states of altered protein function. Depending upon assay
format, an RNAi screen’s throughput can be comparatively less than a
mutagenesis screen. Furthermore its effects may be problematic,
producing false negatives or weak hits due to incomplete knockdown
or false positives from the knockdown of gene families (Fraser et al.
2000; Parrish et al. 2000; De-Souza et al. 2019). In both screening
methods, the ability to score a detectable phenotype may also be
affected by the presence of redundant paralogs or entire parallel
systems that can compensate for a reduced function (for review see
(Jorgensen and Mango 2002)).

Whether as a result of paralogs or other reasons, phenotypes that
moderately, weakly or partially affect development or fecundity might
be overlooked as stochastic variation while actually influencing over-
all population fitness (Schnabel et al. 1997; Richards et al. 2013; Diaz
and Viney 2014; Perez et al. 2017). Subtle population-wide shifts in
phenotypic fitness require quantitative methods of analysis that go
beyond low-resolution phenotype qualifiers such as slow-growth,
sterile, or lethal. With collections of sequenced strains such as the
mutant strains of the Million Mutation Project (MMP) and the wild
isolates of the Caenorhabditis elegans Natural Diversity Resource
(CeNDR) there are now many sequenced alleles across the C. elegans
genome that could prove informative to deciphering the roles in
organismal fitness of uncharacterized and characterized genes alike
(Thompson et al. 2013; Cook et al. 2017). It remains, however, a
matter of devising an efficient bulk interrogation method for strains
that may only reveal fitness phenotypes under altered conditions such
as temperature and food source or through sensitized genetic back-
grounds via gene knock down (Hirsh and Vanderslice 1976; Lehner
et al. 2006; Diaz and Viney 2014). In recent years, strides have been
made in the quantitative analysis of fitness (Elvin et al. 2011; Ramani
et al. 2012; Crombie et al. 2018). Advances in next generation
sequencing technologies have led to a number of quantitative ap-
proaches to population analysis of singular genetic backgrounds by
comparing deeply-sequenced samples for changes to transcription,
small RNA populations, and heterochromatin (Warf et al. 2012;
Araya et al. 2014; Boeck et al. 2016; Daugherty et al. 2017). More
recently, Webster et al., have reported on the restriction site-associated
DNA sequencing of pooled C. elegans wild isolate populations to
identify long-term starvation-selected phenotypes (Webster et al
2019). Alternatively, by tagging mutated populations with specific
molecular identifiers, only a portion of the genome requires sequenc-
ing, thus reducing the required sequencing burden of an experiment
(Smith et al. 2009; Levy et al. 2015). This form of population barcoding,
while relatively new, has brought insights to how initially homogenous
populations of yeast competitively evolve over time (Levy et al. 2015;
Blundell et al. 2019). Leveraging current sequencing and population
barcoding paradigms to analyze nematode population fitness would
improve the process of strain analysis in large collections such as the
MMP and CeNDR. In turn, unlocking the effects of the variants
harbored within these collections could fast-track the process of
assigning function to poorly characterized genes or alleles across this
invertebrate genome.

3978 | C. Mok et al.

To further expand our knowledge of C. elegans gene function,
we sought to develop an assay that could 1) mimic the allelic
diversity of a forward genetics screen but with a smaller solution
space much like a reverse genetics screen and 2) generate quan-
titative data regarding population fitness to assess potential gene
function. We exploited the self-fertilizing hermaphroditic nature
of C. elegans to grow multiple strains in pools with little or no
genetic mixing. We hypothesized that distinct mutations in each
strain could be treated as a barcode to identify and quantify the
representation of each strain within the pool. To assay the mu-
tations and thus the representation of each strain in these pools,
rather than use cost-prohibitive whole genome sequencing, we
adapted molecular inversion probes (MIPs) to identify strain-
specific variants (Hiatt et al. 2013). We previously used MIPs for
the genetic mapping of temperature-sensitive alleles in a collection
of C. elegans mutant strains (Mok et al. 2017); here we analyze
population growth in a multi-generational competitive fitness
assay to phenotype via MIPs (PhenoMIP) by quantifying the
proportion of each strain in a pool. As a proof of principle, we
utilized the Million Mutation Project as a source for our strains.
The MMP library of 2007 N2-derived mutant strains harbors a
variety of coding alleles including potential null alleles across
8150 protein-coding genes, and coding or splice site-altering SN'Vs
across 19,666 genes (Thompson et al. 2013). The phenotypic
consequences for many of these variants remain relatively un-
explored; we hypothesized that some may play a role in overall
fitness. For each MMP strain, we identified unique genetic markers
suitable for detection by MIPs. Using these strain-specific MIPs,
we effectively generated barcodes for composition analysis of
genotypes within a genetically heterogenous population - analo-
gous to methods used in yeast (Hardenbol et al. 2003). We
analyzed population composition at multiple timepoints to esti-
mate the relative fitness for each individual strain within a pool,
and thereby catalog the potential fitness range of this collection.
Our observations suggest that PhenoMIP has the sensitivity to
categorize strains into a range of population fitness phenotypes.
Overall, we show that PhenoMIP is a cost-efficient and high-
throughput approach to the quantitative analysis of pooled muta-
genized genomes assayed across multiple experimental conditions.

MATERIALS AND METHODS

MIP site selection and design

MIP sites were selected in two rounds. Initially the entire MMP SNV
data set was used to select for sites that were spaced a minimum of
300 bp apart to avoid potential collisions with neighboring probes.
Site selection and rejection was completed in a linear manner based
on the first available SNV on each linkage group within the data set.
Locations were not filtered or optimized to reduce the occurrence of
neighboring SNVs within the 300 bp window. The initial set of MMP
mutant strain MIP sites was then used to remove candidate sites from
the MMP wild isolate data set. Any wild isolate sites within a 350 bp
window of mutant candidate sites was removed from selection. Of the
remaining wild isolate SNV sites, a 350 bp selection window was used
to identify potential MIP sites. The list of candidate MIP sites was
used to design and score MIPs based on previously published criteria
(Mok et al. 2017). The list of designed MIPs was subdivided into each
individual strain where the highest-scoring MIP for each linkage
group was identified. Of the six MIPs designed for each strain, four
were randomly selected for use in population analysis (Supplemental
Data SD1).
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MIP library pooling, preparation, and sequencing

MIPs were pooled based on worm pools being tested and generated
as previously published (Mok et al., 2017). Individual MIPs were
normalized to a concentration of 100 uM and pooled to a maximum
volume of 85 ul. 10 ul of 10X Polynucleotide Kinase (PNK) Buffer
and 5 ul of PNK were added to a volume of 85 ul pooled MIPs before
incubating for 45 min at 37° and 20 min at 80°. This pool was then
diluted to a working concentration of 330 nM. MIP libraries were
generated with 500 ng genomic DNA template (4.86x10°¢ ge-
nomes) and appropriate MIP pools as previously described in
Mok et al. 2017. Libraries were sequenced on Illumina MiSeq or
NextSeq systems. Libraries across pools ranged between 3.3x10° and
32.7x10° combined reads with an average 1566 reads per probe
(Supplemental Data SD5).

Worm maintenance and pooling

Worms were maintained at 20° on standard nematode growth media
(NGM) seeded with OP50. Worm pools were generated from well-fed
source plates using exclusively twenty L1 or L4 animals for each
strain. Starting pools were grown on 15cm NGM made with 8X
peptone and seeded with NA22 or HT115 (transformed with L4440
empty vector) E. coli strains. Pools were grown at 20° for 96-120 hr
which allowed for a brief period of starvation of less than 24 hr to
synchronize any remaining eggs to the L1 stage. Worms were then
washed off with 10-15 ml M9, pelleted and aspirated to 5-6 ml before
population density was assessed. 50-100 ul of pellet was frozen as a
representative sample of the initial pooled population. Pools were
then redistributed in equal-sized populations between 5000 and
10000 animals on 15 cm 8X peptone NGM plates that were seeded
with bacteria based on the reported experimental conditions. RNAi
pooling experiments were carried out on 8X peptone NGM plates
supplemented with IPTG to 4mM and carbenicillin at 25 pg/ml.
RNAi plates were seeded with ~500 ul of saturated overnight cultures
grown with carbenicillin at 25 pg/ml. For each batch of plates
generated, dpy-11 RNAi control plates were used to ascertain the
effectiveness of the RNAI feeding. Populations were grown for ~96 hr
before being transferred to replicate condition plates either by
chunking or washing again. At this point, the transferred populations
were in a “starvation” state for less than 24 hr, and most remaining
eggs hatched and synchronized to approximately the L1 stage. Any
remaining animals were washed from plates with double-distilled
water, pelleted, and frozen as samples for later analysis. Each cycle of
transfer approximately followed a single generation and pooling
experiments were propagated for 6-10 generations. Heavily contam-
inated plates/conditions were terminated from propagation and re-
moved from analysis.

Mapping of mutant strains

Mutant strains were mapped using either the VC20019 mapping
strain or DM7448 (VC20019; Ex[Pmyo-3::YFP]). Briefly, mapping
strain males were crossed with mutant hermaphrodites. 15-20 cross
progeny L4 hermaphrodites were selected to a single 10 cm OP50-
seeded NGM plate and grown to starvation before propagating a
subpopulation to a replicate 10 cm plate. Slow growth mutants were
mapped on 10 cm NGM plates seeded with OP50 and grown at 20°.
ED3052 was mapped on 10cm NGM plates supplemented with
25 pg/mL carbenicillin, 4mM IPTG, and seeded with emb-27 RNAi
or HT115 bacteria. Mapping populations were propagated under
selection for four to seven generations. Representative samples were
chosen to extract genomic DNA as template for MIP-MAP libraries
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and then sequenced on Illumina MiSeq or NextSeq instruments.
MIP-MAP analysis was completed as previously described (Mok et al.
2017). Mapping data replicates are biologically separate samples
generated from Fls of the original mapping crosses.

Head-to-head competitive fitness assessment

The head-to-head assessment of ED3052 fitness vs. VC20019 was
conducted by first seeding 10 cm selection plates with 20 L4 animals
from each strain. Populations were grown approximately 72-96 hr
until brief starvation (< 24 hr) before being chunk-transferred to
replicate plates for continued selection. Samples were grown in
2 selection series (emb-27 RNAIi bacteria) and 2 control series
(HT115 bacteria). Plates were propagated in this manner for 11 cycles
with samples collected each cycle for subsequent sequencing analysis.
Samples from a subset of timepoints were made into genomic DNA
and the VC20019 MIP-MAP series of probes were used to create
sequencing libraries. Incompatible probes were removed from anal-
yses before determining the mean abundances across all probes
within a sample library. This value was used to represent the
abundance of VC20019 within each replicate at each timepoint.

Competitive fitness MIP library data analysis
For each specific MIP pool, reads were initially analyzed as previously
described (Mok et al. 2017) with the exclusion of the normalization
step for each MIP. After the abundance of each MIP was calculated, a
mean abundance was calculated for each strain as well as a standard
deviation across this mean. These values were used in downstream
analysis of population structure across multiple timepoints.
Population structure and fold-change analysis was calculated
across each experiment using the amalgamated data from above.
Strains with a starting abundance value below 2.5x1073 were elim-
inated from downstream population analysis. Remaining data were
further transformed with any values below 1.0x10~3 being converted
to this value to accommodate log, fold-change analysis. Total fold-
change and mean fold change are calculated based on starting and
end-point changes in abundance vs. total generations (one generation
per expansion). In samples with negative trajectories, however, the
final generation of growth was calculated as the first instance of
abundance at or below the lower limit of 1.0x10~3. Mean fold-change
rate was calculated based on the total fold-change abundance in the
final generation of growth divided by the expected number of
generations passed. Each experimental condition may have had
multiple biological replicates (referred to in text as replicates), each
with a time-series of samples. Each fold-change rate calculated for a
single time-series represented a single replicate. Mean fold-change
rate for each strain was therefore a combination of multiple replicates
across multiple experimental conditions (Supplemental Data SD3).

Subgroup and principal component analysis

Comparison of intra-strain growth differences were completed by
identifying pairs of conditions from pool M10 and M11 strains for
which the mean fold-change rate had a difference of more than 20%
between conditions. All pairs of data sets meeting the threshold
difference were then statistically analyzed using Wilcoxon rank-sum
test with p-values adjusted for multiple testing by the Benjamini-
Hochberg method.

Principal component analysis (PCA) of pool M11 was completed
by separating the data set by generation or growth condition. PCA
analysis was completed in R using the prcomp() function (stats
library) with data centered and scaled. Centroids represent each
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group as indicated by the legends, colored with information provided
after PCA was completed.

Data availability

MMP and wild isolate strains are available through the Caenorhab-
ditis Genetics Center (CGC) and the mapping strain DM7448 is
available upon request. File SD1 contains molecular inversion probe
sequences and data for all 2007 MMP strains and 40 wild isolates of
the Million Mutation Project. Four candidate probes for each strain
were designed and listed in this file. File SD2 contains all information
used in the false positive and precision analysis of PhenoMIP. File
SD3 contains all mean FCR data for each strain on each replicate in
each experimental pool and summaries of each strain based on pool
and treatment. Custom scripts used to analyze sequencing data are
available at GitHub (https://github.com/camok/PhenoMIP). Raw
sequence files for pools M1 to MI1 and the wild isolate pooling
are available from the NIH Sequence Read Archive bioproject
PRJNA595923. File SD4 contains all wild isolate pooling information
including strains pooled, fold-change rates by replicate, and ED3052
mapping interval information. File SD5 contains all read depth
information for each MIP within each sequencing library separated
by pool and the mean abundance of each strain within each replicate
separated by pool. Supplemental material available at figshare: https://
doi.org/10.25387/g3.12869570.

RESULTS

Molecular inversion probes reliably track multiple strains
within a mixed sample

Previously, we demonstrated the usefulness of MIPs as a method to
genetically map mutant alleles (Mok et al. 2017). In that study, our
empirical analysis of MIP behavior suggested that their accuracy and
precision were highest when identifying smaller subpopulations of
variants. Based on this observation, we recognized that the MIP assay
could be applied in a large-scale analysis of diverse compositions of
strains with complex mixtures of genomic DNA. The mutagenized
strains of the MMP collection presented an excellent test set. The
MMP strains have an average of nearly 400 single nucleotide variants
(SNVs) per strain, of which, approximately 80 are protein-coding
changes (Thompson et al. 2013). These strains represent a unique
resource for analyzing gene function on a large scale.

As a first step we designed a set of MIPs to track strain-specific
variants (Figure 1A). To avoid targeting closely spaced variants that
might influence the effectiveness of individual MIP assays and to
preserve the ability to make pools from any combination of MMP and
wild isolate strains, we first combined variants from the 2007 mutant
and 40 wild isolates strains of the entire MMP project. We eliminated
shared alleles, and then chose SNV’ separated by a minimum distance
of 300 bp. From this list of unique candidate sites, we generated
candidate MIP sequences (Mok et al. 2017) and for each strain we
identified the highest scoring MIP sequence on each linkage group.
From these top six MIPs, we assigned four representative MIPs
specific to each strain (Figure 1B, and Supplemental Data SD1)
with the purposes of tracking chromosomal representation in the
event of cross-progeny contamination while maintaining minimal
reagent costs.

To ascertain the representation of each strain in a pool, the four
MIPs representing each target strain within a desired composition of
strains were combined into a single pool (Figure 1C) and used in the
generation of MIP sequencing libraries. The libraries were sequenced,
demultiplexed and individual annealing events tracked by the
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unique molecular identifier (UMI) present on each oligo (Figure
1D, E). Probe sets were then combined to determine mean rel-
ative abundance for each target strain within a pooled set of
genomes (Figure 1F). To successfully analyze mixed populations
in an efficient high-throughput manner the PhenoMIP approach
would require 1) a relatively balanced distribution of reads for
each probe; 2) a low false positive rate to determine a reason-
able lower bound on probe accuracy; and 3) precision between
strain-specific targets to ensure that subpopulation analysis was
consistent.

To test the above parameters, we generated a pool of 192 MIPs
designed to target SNV sites for 48 MMP strains (Supplemental Data
SD2). We generated five different sets of genomic DNA mixtures
composed of subsets from 46 of the 48 MMP target strains in different
proportions (two strains failed to yield adequate amounts of DNA)
and used these as template samples for the generation of MIP
sequencing libraries (Supplemental Data SD2). From these libraries
we observed the expected composition and proportion of genotypes
for the original genomic templates, suggesting that overall cross-MIP
interference from multiplexing was negligible (Supplemental Figure
S1A) and that the variant information from sequencing was correct.
We analyzed the total number of UMIs for each MIP to gauge the
efficiency of each probe. We observed eleven MIP targets that, across
all libraries, consistently produced UMI counts below 20% of the
mean number of UMIs per MIP in an individual library; these were
removed from further analyses (Supplemental Figure S1B). To in-
vestigate the read distribution of this adjusted dataset, we normalized
the UMI counts for each MIP against the minimum read number
within its sequencing set. The normalized distribution of reads
spanned across a ~ninefold range with an inter-quartile range of
twofold to sixfold suggesting that our distribution was relatively
unimodal and ranged within a single order of magnitude (Supple-
mental Figure S2A and S2B).

Next, for each sequenced library, we analyzed the MIP reads from
target strains that were excluded from the genomic template, calcu-
lating a total false positive rate of 1.6x10™* across five MiSeq-
generated data sets for which the mean UMI count per MIP was
1630 with 1.2x10° unique capture events across the total set. We also
compared two sequencing runs of the same PhenoMIP library with
false positive rates of 1.49x107* at 3.9x10° total capture events vs.
1.18x10~ *at 5.14x10° total capture events. Combining all data sets we
confirmed a total false positive rate of 1.25x10~* across all MIPs. We
estimated the mean false positive rate per individual MIP to be
1.29x10~* = 1.38x10~*, which compares well with our prior obser-
vations (Mok et al. 2017). Overall, these data suggest that the
introduction of incorrect nucleotides is very infrequent across the
two MIP library amplification steps of gap-filling and linearization.

When initially planning experimental design, we chose to work
with pools of approximately 50 strains per set, resulting in an
expected average initial population abundance of 2x10~2. With such
a low starting abundance it was important to assess the precision
between each set of strain-specific MIPs to ensure that the variation
between these probes was low enough to consider their mean value a
consistent assessment of strain abundance. We observed the mean
standard deviation across all strain-specific MIP sets was 2.33x1073
*+ 6.88x10~ 3. Confirming prior observations, the absolute variance
between strain-specific MIPs was dependent upon relative abundance
within the sample. Subsetting the data, target strains above 5x10~2
abundance had a combined standard deviation between strain-spe-
cific MIPs of 1.62x1072. Samples with abundance =< 2x10~2, how-
ever, had a combined standard deviation between MIPs of 2.12x104,
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Figure 1 Molecular inversion probes as a system of barcoding C. elegans strains. MIP sequences include two annealing arms complementary
to target sites (red), a unique molecular identifier (UMI, blue) and a common backbone used for library amplification and barcoding (gray). MIP
sites were selected for each of 2047 MMP strains across each chromosome by excluding shared variants from all strains and then choosing sites
(regardless of strain) across the genome that were separated by a minimum of 300-350bp. (A) For each strain, MIP candidate sequences were
scored (solid and hatched variants). (B) The highest-scoring MIP on each chromosome (solid green) was identified. (C) Four of the six MIPs were
then selected to identify a target strain among a pool of strain-specific MIPs. The MIPs would therefore have two identifiable states from the gap-
fill segment of a sequencing read (D); either the strain-specific single nucleotide variant (SNV, green), or a sequence identical to the reference
genome (purple). (E) After sequencing, each sample was demultiplexed by MIP target and further by the UMI to count the total number of unique
annealing events specific to the SNV or reference sequences. (F) Values were compared to estimate the percentage of SNV events vs. the total

annealing events.

which is similar in magnitude to our false positive rate. These findings
were in line with our expectations from prior modeling of MIP
behavior (Mok et al. 2017) (Supplemental Figure S2C).

From our analyses, we concluded that relatively consistent and
balanced pools of MIPs could be generated for future analysis on
complex populations; that our false positive rates remained in line
with previous observations; and that overall variance among MIPs for
a specific target strain was low, especially in the lower ranges of
abundance. In combination with our MIP-MAP data (Mok et al.
2017), our analysis conservatively suggests that MIPs can accurately
detect variant abundances as low as five standard deviations above the
estimated false positive rate. We determined that relative abundances
as low as 8.2x10~* would have a high probability of being true signal
as our largest false-positive value from the dataset was 7.4x10~*. For
simplicity, we designated 1x10~3 as the minimum abundance re-
quired to be considered as biologically present within a given pooled
population. Practically speaking, based on an average pooled exper-
iment of 50 strains, this translates to detecting a 20-fold decrease from
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the expected initial abundance for a target strain. The cut-off value of
1x10~3 was the foundation for later analysis of our data sets with
these and other MIP pools (Materials and Methods).

MIPs identify strain fitness defects over

multiple generations

Confident of the estimation capabilities of the MIPs, we selected sets
of MMP strains to pool for growth analysis. Each pool was made up of
45-60 different MMP strains and 8-10 independent replicates were
grown for multiple generations to look for differences in fitness
between the strains (Table 1). In addition, to investigate the effects
of different propagation methods, three food sources (E. coli strains
HT115, NA22 or OP50) were used in different experiments and in
one experiment two different methods of transfer were used (see
below). The proportion of each strain in the pool was assayed at the
start, terminal and various intermediate points. To ensure that a
similar number of animals was present at the start and in each of the
replicates (and different conditions in experiments where more than
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Table 1 Summary of pooled strains

Final sequenced OP50 Combined

Pool name Strains generation HT115 replicates NA22 replicates replicates replicates
M1 56 7 0 8 0 8
M3 57 9 0 10 0 10
M5 45 4 10 0 0 10
M7 41 4 9 0 0 9
M8 42 4 10 0 0 10
M10 60 7 10 8 6 24
M11 59 7 10 (5+5)° 8 (4+4)2 6 24
Total 217° - 49 34 12 95

a. . .
Two different methods of transfer were used for replicates.
Total unique strains.

one condition was assayed), we hand-picked 20 animals from each
strain at either the L1 (pool M1, M3, M5) or L4 (pool M7, M8, M10,
M11) stages to duplicate E. coli seeded plates. Strains observed to have
extremely poor population growth, or a high incidence of sponta-
neous males were excluded from the pooling process. We chose to
grow these “starter” pools until a brief starvation of less than 24 hr
(Jobson et al. 2015) to help hatch remaining eggs, synchronize a bulk
of the population to the L1 stage and identify contamination. We then
combined uncontaminated plates for an estimated 300-700K animals.
This population was collected and aliquots containing 5-10K L1
animals were used to inoculate replicate cultures under their specific
conditions. Cultures were grown for 72-96 hr at 20-22° (about one
generation) at which point aliquots of the briefly starved populations
were transferred to fresh plates. For all pools except M11, animals
were transferred by chunking, while M11 replicates were split into
two groups with transfer either by chunking or by washing (Table 1,
Materials and Methods). This inoculation-to-starvation cycle was
repeated 4-9 times, depending on the experiment. At each cycle, a
fraction of the population was saved for subsequent DNA analysis
(Figure 2).

In toto, we examined 217 MMP strains across seven experimental
pools (Table 1, Supplemental Data SD3) to assay their relative fitness.
To check the reproducibility of the data and observe overall trends we
applied principal component analysis to the datasets. For example,
with the M11 dataset, replicate samples with the same food source
and transfer method tended to cluster tightly, but with clusters from
different generations separating well after the first generation, par-
ticularly along the axis of the first principal component (Figure 3A, B
and Supplemental Figure S3). Samples also separated by the methods
of transfer. PCA analysis on all the M11 samples at a single timepoint
shows the effect of food source as well as method of transfer over time
(Figure 3C, D and Supplemental Figure S4). The OP50 replicates were
not as well-correlated, and it was observed that these populations
starved more quickly than other food sources. Our observations
suggest that under a given experimental condition, population com-
position was changing with each generation in a consistent manner
that was detectable by PhenoMIP analysis.

Confident that the assay was behaving well overall, we next
assessed each strain separately for relative changes in its abundance
over multiple generations across multiple replicates. For each repli-
cate condition within a pooling experiment, this effectively created a
growth profile for each strain consisting of the total fold-change and
the mean fold-change rate (FCR) per generation. For example, Figure
4A plots the relative abundance of strain VC20019 in the M11 pools
under various conditions. The log-fold change is modest, with the
mean across nearly all conditions at close to zero, supporting that this
strain is of average fitness. Closer inspection suggests that some of the
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variation is due to the different growth conditions used in M11, with
replicates grown on NA22 and transferred by washing showing better
than average growth, whereas growth on HT115 and chunk transfer
grew less well. In agreement with the overall PCA analysis, growth on
OP50 resulted in the most variable log-fold change. We combined
results across replicates for all strains to analyze FCR as a distribution
across conditions (Figure 4B and Supplemental Figure S5). We
identified 15 strains that failed to thrive (class 0) in the initial pool
expansion steps (initial abundance < 2.5x1073) suggesting they
harbored potentially strong deficits to population fitness (Supple-
mental Table S1). We classified the remaining 202 strains using
393 sequencing libraries across seven competitive fitness pooling
experiments on 95 replicate conditions to generate profiles for
170 strains grown on the bacteria HT115, 149 strains grown on
NA22, and 105 strains grown on OP50 (Supplemental Figure S6A).
While we observed more subtle differences within some strains for
growth on different bacteria and even for methods of transfer
(Supplemental Figure S6B and C), we observed pronounced differ-
ences in growth profiles between strains and focused further analysis
on this feature. We observed strains that exhibited poor growth with
steep population decline suggesting fitness defects as well as strains
with enhanced growth when compared to our reference strain
VC20019. Based on these observations, we classified each strain into
one of four classes as determined by its mean FCR across all
experimental replicates (Table 2, Supplemental Data SD3). Classes
were designated using a simple 10-generation growth model to
calculate a final abundance (A;y) based on the log,-transformed
mean fold-change rate (FCR) such that

Ai+1 _ Ai*ZFCR

From our initial modeling of MIP behavior, we determined a lower
limit of 1x10~3 on abundance within a pooled sample; we, therefore,
used A;, cut-offs of 1x1073, 1x1072, 1x10~! as boundaries for
determining classes 1 through 4 (Supplemental Figure S5). In par-
ticular, we observed that the MMP strain VC20019, which we had
previously reported as having a rate of growth similar to the lab
reference strain N2 (Mok et al. 2017), fell into class 3 with an FCR of
0.136 or growth multiplier (2F°®) of 1.10 per generation (Figure 4B).
Comparing the FCR across all pools against the standard deviation of
the FCRs used to generate them, we observed a weak negative
correlation between variation in strains with lower FCR, although
this effect was inconsistent between pools (Supplemental Figure S7A).
In contrast, we observed strains to have a moderate positive corre-
lation between FCR and abundance in the starting population for
most pools (Figure 4C), which suggested some potential bias in the
initial pooling process. Indeed, subdividing VC20019 data by

-=.G3:Genes| Genomes | Genetics


https://identifiers.org/bioentitylink/WB:WBStrain00041969?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00037995?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00041948?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00041079?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00041969?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00041079?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00041948?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00041969?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00037995?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00037995?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1534/g3.120.401656
https://identifiers.org/bioentitylink/WB:WBStrain00037995?doi=10.1534/g3.120.401656

Set 5
Set 4
Set 3
Set 2
Set 1

0
o~
—
o
o
>

VC20019
VC20110
VC20152
VC20172
VC20197
VC20239
VC20263
VC20293

[ —
Y

A
A
N

B~

Condn

N

Figure 2 Workflow of PhenoMIP multigeneration competitive fitness assay. (A) MMP strains are selected and grown as separate populations in
relative synchronization before 20 animals of each strain at the L1 (pools M1, M3, M5) or L4 stage (M7, M8, M10, M11) are transferred (B) to a
communal NGM plate seeded with a bacterial lawn. The communal plates are grown in duplicate until the population has starved. (C)
Uncontaminated plates are then washed and combined into a single starting population and counted for population density before being
redistributed (D) onto multiple 150 mm NGM plates of varying conditions. Every 72-96 hr, the plates reach starvation and a subpopulation of animals
is transferred to a new plate of the same experimental condition. (E) The remaining animals are collected for extraction of genomic DNA to generate
MIP libraries for sequencing (F) and data analysis (G) of strain abundance and relative fitness.

experimental pool suggested there was potential for pool-specific
variation (Supplement Figure S7B). The higher FCR for VC20019 in
pool M8 may be a result of over-representation in the seeding
population by double as this strain was also conspicuously absent
from the M7 seeding population, which was pooled in parallel to M8.
Our observations of the FCR across all strains suggests a wide range of
fitness phenotypes across the MMP collection.

The reduced fitness phenotypes of MMP strains were
mapped to candidate mutations

Based on the results of our growth analysis, we hypothesized that
underlying mutations within some strains could account for the
observed growth rates. We proceeded to genetically map a subset
of class 0 and class 1 strains as they exhibited the greatest reduced
fitness in comparison to our control strain VC20019. We used our
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MIP-MAP protocol (Mok et al. 2017) to competitively select against
the reduced fitness phenotype and identify a small genomic region
containing the associated causal variant. Briefly, mutant strains were
crossed with males of the mapping strain VC20019 and the pop-
ulation was grown until starvation. A small portion of the population
was then transferred to OP50-seeded 10cm NGM plates. This transfer
was completed approximately once per generation for up to 6 gen-
erations. Samples were taken at each transfer step and used to prepare
genomic DNA for MIP-MAP libraries and sequencing.

We chose five class 0 and two class 1 strains to map, and
successfully identified a single locus linked to a reduced population
fitness for six strains (Table 3 and Supplemental Figure S8); a seventh
strain appeared to have two loci. After phenotyping individual strains
for possible causes of fitness defects, we were able to assign candi-
date alleles based on genes with shared phenotypes. In particular,
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Figure 3 Principal component analysis of PhenoMIP data suggests consistent population stratification related to growth conditions. (A) PCA of pool
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we verified the mapping results of strain VC40788 by following a
partially penetrant maternal-effect embryonic lethal phenotype (Fig-
ure 4D). From VC40788 and VC20019 cross progeny, we individually
cultured 100 F2 animals and observed F3 and F4 progeny to
specifically identify recombinant populations that failed to produce
dead embryos or those that starved at the same rate as VC20019
controls. Positively identified populations were combined for MIP-
MAP analysis (Materials and Methods). The primary candidate
mutation for VC40788 is a G405R mutation in the mitochondrial
protein B0303.3, which is predicted to have multiple functions in-
cluding an acetyl-CoA C-acyltransferase activity. B0303.3 has no
reported hypomorphic or null mutant alleles but is reported to have
an embryonic lethal phenotype by RNAi (Go6nczy et al. 2000;
Sonnichsen et al. 2005) and its human ortholog HADHB is implicated
in trifunctional protein deficiency phenotype (Spiekerkoetter et al.
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2003; Purevsuren et al. 2009). The identification of a maternal
hypomorphic allele of B0303.3 provides a means with which to study
this disease and its phenotypes in a nematode model.

PhenoMIP of wild isolate pools can identify

RNA; fitness phenotypes

While the MMP mutated strains provide a diverse range of variants,
the 40 wild isolates that were sequenced as part of the MMP provide a
dense library of more than 600K variants from strains that have been
evolving in a natural environment. We selected a subset of 27 wild
isolate strains (Supplemental Data SD4) that maximized genomic
diversity while reducing SNV redundancy and pooled these with
VC20019. We explored the pool’s relative fitness under the selection
of gene knockdown by RNAi feeding (Table 4 and Materials and
Methods). Analyzing the mean FCR from our RNAIi experiments,
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Figure 4 Relative fitness can be quantified by PhenoMIP and classified into subgroups. (A) Line graph of VC20019 growth rate from pool M11 with
y-axis showing fold-change (log,) in abundance relative to initial abundance at generation 0O (starting population) across multiple generations
(x-axis). Replicates are colored by experimental food source and transfer method: HT115 chunk (black squares), HT115 wash (orange circles), NA22
chunk (blue triangles), NA22 wash (green cross), OP50 chunk (pink x) and mean (mean fold change abundance across all replicates, red square). (B)
Violin plots of mean fold-change per generation for a representative panel of strains. Each point represents the mean fold-change rate calculated
from multiple timepoints for an experimental replicate across one or more pooling experiments. Dots are color-coded by experimental condition for
growth on either HT115 (black squares), NA22 (red circles), OP50 (blue triangles) E. coli as a food source with overall mean fold change rate (FCR,
purple ®). Colored dotted lines represent category boundaries using an FCR of -0.4315 (red), -0.0985 (yellow), and 0.2327 (green). VC20019 (bold)
is provided as a reference for comparison to growth rates shown in (A). (C) Scatterplot of mean FCR vs. starting abundances (generation 0) for all
strains across 7 pooled datasets. Spearman correlation across all datasets is moderate with r = 0.51, P < 0.0001. (D) Mapping data for VC40788, a
strain observed to have poor growth rate, identified an interval of interest at 111:7.6-10.8 Mbp (green arrow). Mapping was accomplished using two
replicates by competitive fitness for wild type growth (orange circle and blue diamond) as well as by identifying F2 homozygous wild-type F2
recombinants in a bulk segregant assay (purple triangle). X-axis units are in megabases across each chromosome.

we identified a strong interaction presenting as a partial suppression
of embryonic lethality phenotype in both replicate experiments of
ED3052 grown on emb-27 RNAi (Figure 5A and Supplemental Data
SD4). We confirmed the observed ED3052 phenotype by growing it
as a single strain on emb-27 and in a head-to-head competition vs.
VC20019 (Figure 5B). The emb-27 locus of ED3052 has no coding
variants and 13 variants present within the 5 kbp up- or downstream
of the gene itself — all of which are shared with other wild isolate
strains from the PhenoMIP analysis pool. Using the emb-27 RNAi
phenotype, we mapped this phenotype by MIP-MAP using both a
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competitive fitness selection and direct F2-selection protocol (Mok
et al. 2017). Both sets of mapping data share ED3052 genomic fixation
in the region from 0 Mbp to 3.6 Mbp on LG III for samples grown on
emb-27 RNAI vs. negative controls grown on HT115 (Figure 5C).
This mapped region encompasses 158 variants unique to ED3052
among the other 26 wild isolate strains from the pooled data
(Supplemental Data SD4). These changes encompass 6 protein-
coding variants across 5 genes (Supplemental Table S2). In addi-
tion, there is a 66kb copy number variant deletion within this interval
that encompasses 17 protein coding genes and 1 non-coding RNA.
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Table 2 Mean fold-change rate summary

Lower bound  Upper bound Total % of

Class FCR FCR strains strains
0 NA NA 15 6.9
1 —8.64 < -0.4315 96 44.2
2 = -0.4315 < -0.0985 68 31.3
3 = -0.0985 < 0.2327 29 13.4
4 = 0.2327 9 4.1

There may also be variants that were not positively identified by the
MMP sequencing data due to high divergence from the N2 reference
genome (Thompson et al. 2015). Further investigation into this in-
terval will be required to resolve the relationship between emb-27
RNAI suppression and ED3052. Altogether, these analyses suggest
that the PhenoMIP approach can be used to dissect genomically
complex pools and that PhenoMIP has enough resolution to identify
intra-strain fitness changes attributed to altered growth conditions
such as gene knockdown by RNAi feeding.

DISCUSSION

With advances in sequencing, genome-editing, and imaging, one
remaining bottleneck in the characterization of the C. elegans genome
is our ability to identify the phenotypes associated with gene function
(Houle et al. 2010; Granier and Vile 2014). The ability to quantify
population fitness along a spectrum provides a window into gene
functions that may otherwise be overlooked under current experi-
mental paradigms. Dissecting the varied contributions MMP alleles
will help to generate new gene networks and build upon our un-
derstanding of worm development, reproduction, and overall fitness.
With PhenoMIP, we analyzed strains from the Million Mutation
Project, which offers a unique library of mutagenized genomes with
coding and non-coding elements that remain largely unexplored. We
efficiently identified phenotypic traits related to population fitness in
a high-throughput manner by pooling multiple MMP strains in a
multi-generational experiment and sequencing these populations
with molecular inversion probes.

To use MIPs as a means of barcoding strains for population
analysis, we designed a series of probes for the 2007 MMP strains and
tested a subset on the MMP collection. We observed that we could
accurately gauge a strain’s relative abundance within a sample. By
sequencing multiple genomic mixtures, we confirmed a low false
positive rate, suggesting we could use MIPs to accurately identify
subpopulations with abundance as low as 8x10~* which translates to
better than 1 in 1000 genomes per sample. As a demonstration of this
method, we pooled MMP strains into groups and dissected popula-
tion composition over multiple generations. Our observations sug-
gest that this form of population barcoding is indeed capable of

Table 3 Mapping data summary

identifying specific Million Mutation Project strains with differing
levels of relative fitness. Our analysis demonstrates that PhenoMIP
identifies reproducible condition-dependent population stratification
among populations that have been separated for multiple generations.
Based on the strains tested thus far, we estimate upwards of 82% of
MMP strains may harbor alleles contributing to fitness phenotypes in
the range of class 0 to class 2. Given the mutagenized and inbred
nature of the MMP strains (Thompson et al. 2013), it is not surprising
to find such an array of fitness phenotypes. These strains, however,
represent a valuable resource to study fitness as the causative alleles of
these effects may be in putative essential genes, poorly characterized
genes with only moderate effects on fitness, or even regulatory regions
of the genome. PhenoMIP has the potential to help quickly quantify
these strains into relative fitness categories for researchers to prior-
itize their studies.

The observed population-level phenotypes presented in this work
are a readout of relative fitness in a multi-strain competitive envi-
ronment. Depending on selection and pooling method, weaker
changes to relative fitness may be attributed to the population mixture
rather than the selection variable itself (Li et al. 2018). Although our
PhenoMIP estimates used data from multiple timepoints to estimate
relative fitness within our populations, candidate strains should be
validated outside the context of a pooled population study to gauge
their suitability for further analysis and potential genetic or associ-
ation mapping. Another factor in interpreting our data series is that
pools were initially generated by combining small numbers of larval
animals as a seeding parental population that was expanded before
aliquoting out to replicate experiments. During the initial expansion
of the seed population, the stochastic loss of even a single parental
animal could impact the abundance of a strain in the initial stages of
the experiment. This initial expansion is also influenced by the
relative fitness of strains, which is suggested by the observation of
a moderate correlation between abundance and mean fold-change
rates. Similarly, we observed in our analysis of pool M8, that the
doubling of VC20019 animals in the initial pooling also affected the
population structure and mean fold-change rate of VC20019 itself. A
potential solution to mitigate “seeding” variation would be to syn-
chronize all of the target strains with sodium hypochlorite in the L1
larval stage (Stiernagle 2006) and then combine them in equal
portions into a single population before aliquoting directly to rep-
licate experiments. Another influence on population structure is the
group of class 4 strains identified in our study. Their rapid growth and
expansion can lead to drastic population stratification and the pre-
mature loss of subpopulations. In these cases, the quantitative
phenotyping of less fit strains may be hindered, less informative,
or potentially less accurate when analyzing a multi-generational
experiment. Our observations also suggest that food source can alter
population growth with food scarcity contributing to greater variation

Strain Pools Mean FCR Class Mapping Interval Coding alleles Likely Candidate
VC20019 All but M1 0.136 3 - - -
VC30079 M5, Mé —0.740 1 11:7.49-11.5 Mbp 3 hpo-35

11:5.8-7.6 Mbp 3 dig-1
VC30188 M5, Mé —1.038 1 11:6.2-12.1 Mbp 1 mel-11
VC40196 M1, M3 - 0 IV:8.4-13.9 Mbp 13 -
VC40296 M5, Mé - 0 IV:4.2-6.4 Mbp 2 rme-2
VC40545 M1, M3 - 0 11:4.4-8.1 Mbp 12 tsn-1
VC40611 M1, M3 - 0 11:6.3-8.1 Mbp 7 -
VC40788 M1, M3 - 0 111:7.6-10.8 Mbp 2 B0303.3
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Table 4 RNAI targets for competitive growth of wild isolates

Sequence name Gene name

Reported RNAi phenotypes

F45G2.5 bli-5
CO7H6.5 cgh-1
C14A4.4 crn-3
F10B5.6 emb-27
C25A1.5 fath-1
T23G11.3 gld-1
EO3A3.3 his-69
F20H11.3 mdh-2
ZK686.3 ZK686.3

Adult lethal, larval lethal, reduced brood size

Adult lethal, cell death variant, embryonic lethal, larval lethal, sterile

Embryonic lethal, larval arrest, slow growth

Embryonic lethal, mitosis variant, sterile

Larval arrest, lethal, slow growth, sterile,

Embryonic lethal, maternal sterile, slow growth

embryonic lethal, organismal development variant, shortened life span, slow growth, sterile
Embryonic lethal, larval arrest, reduced brood size

Embryonic lethal, larval arrest, reduced brood size, sick, sterile

aAn additional control targeting GFP was used as a negative control in these experiments.

between replicates. For example, our OP50 replicates may have expe-
rienced premature starvation or uneven food distribution among
populations, leading to lower population sizes and possibly affecting
the consistency of the OP50-grown replicates. For an auxotrophic food
source such as OP50, it would be best to concentrate cultures to
generate a higher density bacterial lawn for nematode populations to
consume. Lastly, the method and timing of population transfer is a
potential source of selective influence. Our data suggested that chunk-
ing vs. washing populations to propagate them did introduce technical
variation within a small subset of strains. A method of population
transfer that was not addressed in this work is the sodium hypochlorite
synchronization method (Stiernagle 2006), which would add the
benefit of removing sporadic contamination while indirectly assaying
developmental timing and fecundity. Some strains, however, may be
differentially sensitive to the sodium hypochlorite solution, starvation
or recovery from starvation (Baugh 2013; Webster et al. 2019). Over
many generations, the above technical variation can amplify within the
population, potentially skewing the changes observed. Therefore, when
applying specific selective pressures to a population (temperature, food
source, RNAj, etc.), the proper use of control conditions and replicates
can help to identify the effects of technical variation with minimal
impact to the sequencing burden of the experiment. Other sources of
technical variation may enter during the library preparation phase via
population sampling of genomic DNA, and sampling variance of the
MIP library during sequencing. The use of multiple experimental
replicates, sufficient sequencing depth, and careful consideration of
experimental design should reduce the impact of this variation in
downstream analyses.

Looking to the future, given the wide range of sequenced strains
available from the Million Mutation Project and Caenorhabditis
elegans Natural Diversity Resource (Cook et al. 2017), a more
extensive competitive fitness assessment by PhenoMIP would set
the stage for generating balanced pools of strains based on similar
growth rates. That we could observe fitness differences between
strains when grown on standard conditions suggests that the muta-
tions present do exert an appreciable effect on fitness. In future
experiments, balancing pooled strains by a similar predetermined
fitness category would benefit long-term population analysis under
varying conditions. This format would reduce fitness differences due
to specific mutations and increase the likelihood of identifying
condition-specific interactions such as food source or gene knock-
down by RNAi-feeding. Cataloging strains of the MMP and CENDR
collections will provide flexibility to future pooling strategies while
identifying pre-existing fitness mutants from the collection that may
also be of interest. Consequently, balanced pools could be generated
randomly or based on parameters such as geographic distribution or
specific genotypes or haplotypes of interest. These pools could be used
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to screen for phenotypic differences in conditions that alter temper-
ature, food source (Dirksen et al. 2016; Zhang et al. 2017), resource
limitation, small molecule exposure, or pathogen infection. Recently,
Webster et al, utilized RAD-seq techniques to assess starvation
resistance on a multiplexed pool of 96 wild isolate strains (Webster
et al. 2019). This form of competitive fitness selection is an ideal
experimental context for PhenoMIP to increase potential throughput
by addressing additional parameters or variables related to starvation
response. Furthermore, the process of pooled competition facilitates
screening on multiple strains in scenarios where the substrates or
reagents tested are not easily obtained or have limited availability. In
combination with GWAS and genetic mapping, PhenoMIP could
prove useful in assembling a greater understanding of the many
unexplored gene and regulatory sequence functions within the C. elegans
genome.

To our knowledge these experiments are the first to use molecular
inversion probes to analyze C. elegans populations for relative fitness.
With PhenoMIP, we analyzed 217 MMP mutant strains across
95 replicate conditions and 29 timepoints for a total of 393 genomic
samples. A similar analysis of our experimental data by whole genome
sequencing with at least a 2000X read depth across the genome on
393 genomic samples would require between 430 and 650 300-cycle
Mumina NextSeq runs. In contrast, our data were generated on the
equivalent of a single 75-cycle NextSeq run. Methods such as harp can
calculate the maximum likelihood estimates of pooled sequence data
(Kessner et al. 2013) using haplotype blocks to reduce the amount of
sequencing coverage while obtaining similar error rates to PhenoMIP,
although datasets were not evaluated at abundances as low as our own
datasets. Furthermore, harp results are most optimal when the di-
vergence between founder genomes is 5-33% and the MMP genomes
are much less divergent at an average of 400 SNV per strain. The wild
isolate strains, while more diverse, may be eligible for such methods.
To match the sensitivity of PhenoMIP, samples would still require at
least 200X coverage per sample or greater than 40 times the sequenc-
ing burden of PhenoMIP itself (Kessner et al. 2013; Tilk et al. 2019).
As a last consideration, the design and production of MIPs as an
initial sunken cost is a commitment required for investigating strains
in this manner. We have included MIP sequences for the 2007 mutant
and 40 wild isolate strains of the MMP (Supplemental Data SD1).
Overall PhenoMIP remains a budget-conscious alternative to WGS,
and its costs can be amortized if members of the community share
probe and experimental development for well-characterized collec-
tions like the MMP and CeNDR. Notably, CeNDR has already
designated six sets of strains that facilitate the association mapping
process — which can potentially be used as experimental PhenoMIP
pools to streamline the deciphering of results. PhenoMIP, however, is
not without its caveats as the data generated is limited to assessing
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Figure 5 ED3052 populations exhibit suppression of emb-27 RNAi embryonic lethal phenotype. (A) Line graph of ED3052 growth rate across
multiple RNAi conditions. Growth on HT 115 is represented as “control” replicates on the graph. (B) Head to head growth of ED3052 vs. VC20019 on
emb-27 RNAi and HT115 control plates. Y-axis represents mean abundance of VC20019 by combining MIP-MAP sequencing data across the
genome into a single mean value at each timepoint. (C) MIP-MAP of ED3052 using direct F2 selection by emb-27 RNAi phenotype (solid red circles)
and using competitive fitness selection on emb-27 RNAi over multiple time-points (solid orange circles) vs. their HT115-grown control counterparts
(blue and purple triangles). A green arrow on LGlII indicates the loss of VC20019 genome in samples grown on emb-27 RNAi vs. HT115 controls.

relative abundance and the variants assessed are limited to the population
of strains in the experiment. We believe, however, that the initial
processing steps and costs as well as the loss in sequencing complexity
of genome data are outweighed by the increase in experimental through-
put. Therefore, targeted sequencing by PhenoMIP complements pre-
existing nematode collections and permits experimentation at a scale well
beyond what is reasonably accomplished by standard WGS.
PhenoMIP has the potential to be applied beyond the MMP and
wild isolate strains to the quantitative analyze of genomic variants in
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many contexts. Coupled with genome-editing techniques, PhenoMIP
could be useful in studying allelic series or mutants of entire pathways
for subtle phenotypic effects. The assay format could be converted
to look at the selection of phenotypes occurring within a single event
or generation, as in a bulk taxis assay or as a method for targeted
genome monitoring under selective conditions. The fundamental
leverage of this method is the use of MIPs to reduce the sequencing
burden while maintaining informative parity with WGS formats in
identifying subpopulation frequency. In doing so, we can vastly
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increase the throughput of population-level experimentation
while minimizing costs.
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