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Abstract: Small intestinal bacterial overgrowth (SIBO) is characterized by abnormal and excessive
amounts of bacteria in the small intestine. Since symptoms and lab tests are non-specific, the diagnosis
of SIBO is highly dependent on breath testing. There is a lack of a universally accepted cut-off point
for breath testing to diagnose SIBO, and the dilemma of defining “SIBO patients” has made it more
difficult to explore the gold standard for SIBO diagnosis. How to validate the gold standard for breath
testing without defining “SIBO patients” has become an imperious demand in clinic. Breath-testing
datasets from 1071 patients were collected from Xiangya Hospital in the past 3 years and analyzed
with an artificial intelligence method using cluster analysis. K-means and DBSCAN algorithms were
applied to the dataset after the clustering tendency was confirmed with Hopkins Statistic. Satisfying
the clustering effect was evaluated with a Silhouette score, and patterns of each group were described.
Advantages of artificial intelligence application in adaptive breath-testing diagnosis criteria with
SIBO were discussed from the aspects of high dimensional analysis, and data-driven and regional
specific dietary influence. This research work implied a promising application of artificial intelligence
for SIBO diagnosis, which would benefit clinical practice and scientific research.

Keywords: SIBO; breath testing; cluster analysis; data driven; artificial intelligence

1. Introduction

Small intestinal bacterial overgrowth (SIBO) is an unbalanced status of intestinal
micro flora characterized by an excessive concentration of bacteria in the small intes-
tine, which presents with abdominal distention, nausea, diarrhea and other nonspecific
symptoms in clinic [1–3]. Specific gastrointestinal diseases associated with SIBO include
irritable bowel syndrome (IBS), inflammatory bowel disease and chronic pancreatitis, etc.
SIBO is also closely related to extensive diseases such as type 2 diabetes, atherosclero-
sis, Bechet disease, autism spectrum disorder, chronic renal disease and other systemic
diseases [2,4–11]. At the 21st Century Gut Microbiology Conference, it was proposed that
the intestinal micro-ecosystem is a newly acknowledged physiology system that plays
a significant part in human health. Either overgrowth or insufficient bacteria in the gut
could result in various health issues. However, the misdiagnosis of SIBO is common in
clinic with the lack of generally accepted diagnostic criteria. Thus, establishing better and
well-acknowledged diagnostic criteria for SIBO is an urgent demand for both scientific
research and clinical treatment.
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For decades, several methods have been proposed, including small intestinal aspira-
tion/culture, breath testing, clinical symptoms and diagnostic treatment [11,12]. Although
not fully validated, small-bowel aspiration/culture is the current gold standard for SIBO
diagnosis. Small-bowel aspiration is obtained during an upper gastrointestinal endoscopy
by placing a sterile tube and collecting fluids in jejunum. Aspirates are then transferred
immediately and cultured for bacteria growth. During the process of aspirates’ collection,
contamination from oral and esophageal micro flora may lead to a false positive result and
limited culture techniques could result in a false negative [13,14]. Moreover, the cut-off
point of small-bowel aspiration is debatable with a historical view of bacterial concentra-
tion ≥105 colony forming units (CFU)/mL and the current but not well-validated view of
bacterial concentration ≥103 CFU/mL [15–20]. The application of small-bowel aspiration
is fairly limited in clinic, with other shortcomings including but not limited to invasive
procedures, and time-consuming and complicated operations.

In clinical practice, breath testing is widely used for the diagnosis of SIBO with the
benefits of being non-invasive, available and cost-friendly. H2 and CH4 are produced via
bacteria in the gut by digesting carbohydrates, and are absorbed into blood circulation
and finally expired through the lung [1]. Since human cells cannot produce H2 and CH4,
when the amount of carbohydrates is settled the measurement of H2 and CH4 in exhaled
breath could reflect the concentration of gut bacteria, which is the principle behind breath
testing. A series of research has explored the sensitivity and specificity of breath testing.
Breath testing based on lactulose presented with a sensitivity of 31–68% and a specificity of
44–100% [15]. In the North American Consensus (2017), it was suggested that until better
data are available, an increase of ≥20 p.p.m. in hydrogen from baseline by 90 min should
be considered a positive test for SIBO [21]. It was also noted in the consensus that there
was a lack of a validated gold standard for diagnosing SIBO with breath testing and there
was an urgent demand for a better-acknowledged diagnosis criterion.

With the absence of specific symptoms and limited application of small-intestinal
aspiration in clinic, the diagnosis of SIBO is highly dependent on breath testing in clinical
practice, which brings a question when exploring standard for breathing testing. Who are
the SIBO-positive patients? In most situations, the diagnosis can be identified by patho-
logical evidence or comprehensive indicators from symptoms, imaging and lab testing,
but SIBO is a nonspecific disease identified mostly based on breath testing, which leads
to the dilemma of identifying positive controls. For decades, most research focusing on
breath testing took “small-bowel aspiration positive patients” or “patients with abdominal
discomfort” as “SIBO patients” and clarified the diagnosis criteria with a cross-over trail.
However, as we discussed above, patients with abdominal discomfort cannot represent
SIBO patients. The high risk of false positive and debatable cut-off of small-bowel aspira-
tion resulted in aspiration positive patients as suspectable SIBO-positive controls. Thus,
how to explore the diagnosis criteria for SIBO without definitive SIBO patients remains an
urgent challenge for clinical and scientific purposes.

In recent decades, artificial intelligence (AI) developed rapidly and was applied
dramatically in medicine. Deep learning, reinforcement learning, transfer learning, data
mining and other AI algorithms are widely used in various research and applications that
used to be considered achievable only by humans, such as autonomous diagnosis, drug
development and image interpretation [22–26]. Esteva reported an AI system for skin-
cancer classification using deep neural networks with datasets containing 129,450 clinical
images of 2032 different diseases [27]. A comparison between experienced dermatologists
and the AI system presented no significant difference in terms of classifying skin cancers.
Yishan He summarized an AI-based detection and diagnosis tool for gastrointestinal lesions,
which demonstrated that AI was promising in providing an effective and practical method
for lesion detection and characterization with endoscopy [28].

Machine learning is the core of artificial intelligence (AI). It specializes in computer
simulation or implementing human learning behaviors to acquire new skills and reorganize
existing knowledge structures to continuously improve its performance. According to the
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training data, machine learning can be divided into supervised learning and unsupervised
learning. For a given group of data (X, Y), in which X is the data example and Y is the
corresponding label, machine learning provides a series of methods to build up models
that could best fit the data. Supervised learning methods such as K-Nearest Neighbor
(KNN) and Support Vector Machine (SVM) could be applied when Y is available. However,
when Y is not provided, in which situation the supervised learning method does not work
anymore, unsupervised learning should be considered.

Cluster analysis is a sub-branch of unsupervised machine learning that attempts to
fit the training data without any prior knowledge of the classes. Cluster analysis is a
hot topic in AI when dealing with unlabeled data [29,30]. It is also helpful to build up a
classification model when no prior knowledge of the data is available [31,32]. Data are
divided into several clusters according to the inherent nature and regularity of the data.
With the proverb which says “birds of a feather flock together”, the goal of clustering is
to make the datasets in the same cluster share high similarity while datasets in different
clusters present with distinction. Application of cluster analysis on medical data processing
has drawn much attention in recent years [33–38]. Marks-Garber presented a cluster
analysis-based clinical profiling of Idiopathic Pulmonary Fibrosis (IPF), which may help in
developing a diagnostic algorithm for earlier diagnosis of IPF [39]. Manuel Rubio-Rivas
investigated clinical phenotypes and prediction of chronicity in sarcoidosis using cluster
analysis in a cohort of 694 patients [40]. He identified 6 different clinical patterns with
similar phenotypic variables and predicted chronicity, which may be helpful in improving
the efficacy of clinical decisions.

Could we break through the dilemma of identifying SIBO patients with the help of
AI techniques? Past clinical research focused on breath-testing diagnosis criteria for SIBO,
most based on the idea of classification, with which “positive” and “negative” are labeled
and an analytical model is built based on the labeled data. When new data come, the model
would classify it into the positive group or negative group. However, classification is not
the best way for SIBO since there is no identified positive SIBO patient. Can we analyze
SIBO with the idea of clustering instead? With clustering, there are no previously labeled
data. Data are gathered into groups automatically with inner characteristics, in which
process there are no human biases.

There is a lack of a universally accepted cut-off point for breath-test diagnosis of SIBO,
and the dilemma of defining “SIBO patients” has made it more difficult to explore the gold
standard for a breath test. How to validate the gold standard for a breath test without
defining “SIBO patients” has become an imperious demand in clinic. This project was
proposed to use cluster analysis to process breath-testing data collected from Xiangya
Hospital and develop a new diagnosis standard for SIBO by identifying new patterns of
hydrogen generation.

2. Materials and Methods
2.1. Subjects

Data samples from 1101 lactulose-based breath tests were collected in the past 3 years
at Xiangya Hospital, Central South University. We excluded 8 data samples with atypical
interval time, and 22 were excluded because of incomplete process. There were 22 testing
results presented with all zeros in 8 time points, which could be the result of carelessness in
equipment operations. The source code raised a reading error when opening and loading
data from some data files, which were damaged somehow. We tested 8 data samples fewer
than 8 times during a breath test; typically, 6 or 7 bags of breath air were collected and tested.
The 1071 breath-testing samples were applied in this study. The research was approved by
the Ethics Committee of Xiangya Hospital, Central South University (identification code:
202004283, identification date: 10 April 2020). Written informed consent was obtained from
each patient enrolled.
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2.2. Breath Testing

Patient preparation: Patients were instructed to avoid dairy products, soy products
and high-fiber vegetables, which can produce H2. Rice, meat and eggs are a suitable source
of food and over satisfaction should be avoided. Patients were encouraged to eat rice soup
the evening before testing and start fasting at least 12 h before the test. Soft drinks, gum
and smoking (including passive smoking) were to be avoided. Patients were not allowed
to eat, drink, sleep and exercise during the test.

Gas collection: Fast gas was collected in the first bag by installing “specimen bag 1” on
the breathing tube. Patients were asked to hold the filter in their mouth and exhale calmly
(avoid deep inhalation and deep exhalation). After blowing up the specimen bag, the bag
was taken off immediately. After the first exhalation, 10 g of lactulose was mixed in 250 mL
water, and patients were asked to drink it within 30 s. Gas was collected every 20 min as
described before, until finishing the 8th bag in 140 min. Then, 8 bags of gas collection were
tested in the gastroenterology laboratory of Xiangya Hospital within 24 h.

Gas testing: After turning on the detection instrument and running it for a few minutes
to exhaust the residual gas in the machine, we drew 20 mL of “standard gas” into the
breath-tracker gas chromatograph (Quintron Instrument Co.inc, Milwaukee, WI, USA)
through the filter tube for calibration. After calibration, we used a syringe to extract the
gas in the 20 mL sample bag and inject it into the machine through the filter hall for
measurement.

2.3. Cluster Analysis

Focusing on the research interest of this paper, breath-testing data with a test interval
of 20 min were collected for machine learning, and an optimized diagnosis criterion without
subjective biases was expected.

2.3.1. Clustering Tendency Evaluation

For a given dataset, clustering-tendency evaluation is necessary before clustering since
analysis is only meaningful when there is nonrandom structure in the data. Clustering-
tendency evaluation determines whether a given dataset has a nonrandom structure that
can lead to meaningful clustering. When there is no nonrandom structure in a dataset,
such as uniformly distributed points in the data space, clusters for this dataset could still
be calculated with a clustering algorithm, but the clusters are random and meaningless.
Clustering requires nonuniform distribution of data.

Hopkins Statistic is used to verify the randomness of spatially distributed variables.
It can be applied to evaluate the clustering tendency of a dataset. Hopkins Statistic is
calculated as the following: Let X be the dataset for cluster analysis, which contains n
samples. First, generate a dataset S that contains r (r < n) samples randomly selected from
X and let α1, α2, . . . , αr be the distance of the sample in S to their nearest neighbors within
the original dataset X. Secondly, generate a synthetic dataset R randomly in the domain
of the data space and let β1, β2, . . . , βr be the distance of the sample in R to their nearest
neighbors within the original dataset X. Then, the Hopkins Statistic H can be evaluated
using the function

H =

r
∑

i=1
βi

r
∑

i=1
αi +

r
∑

i=1
βi

=

r
∑

i=1
βi

r
∑

i=1
(αi + βi)

, (1)

Theoretically, the value of the Hopkins Statistic varies from 0 to 1 for different datasets.
A uniformly distributed dataset will have a Hopkins Statistic value of 0.5 since the value of
αi and βι are very similar. For a clustered data, the Hopkins Statistic will be closer to 1 since
the value of αi is much lower than βi. Therefore, a high value of the Hopkins Statistic H
indicates a high tendency of data points [41]. Practically, it can be believed that the dataset
has high clustering tendency if the Hopkins Statistic is in the range (0.7, 1). The Hopkins
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Statistic is useful to evaluate the dataset before clustering. However, there is no ability to
reveal cluster numbers within the dataset.

2.3.2. K-means Cluster Algorithm

K-means is a typical unsupervised learning method for cluster analysis. The core idea
of the K-means clustering algorithm is to divide the data objects into different clusters
according to their similarity, so that the generated clusters are as compact and independent
as possible.

Similarity is usually measured by space distance between two data examples. The
smaller the distance, the higher the similarity. There are three imperative properties
of distance:

1. non-negativity, d(i, j) > 0 if i 6= j, and d(i, i) = 0
2. symmetry, d(i, j) = d(j, i)
3. triangle inequality, d(i, j)<= d(i, k) + d(k, j)

The general formula for distance calculation is the Minkowski Distance, which is

d(i, j) = h
√∣∣xi1 − xj1

∣∣h + ∣∣xi2 − xj2
∣∣h + · · ·+ ∣∣xin − xjn

∣∣h, (2)

where n is dimension of data example. When h = 1, the distance will be Manhattan Distance.
When h = 2, the distance will be Euclidean Distance, which is most widely used. In this
paper, Euclidean Distance is used unless otherwise specified.

Without losing generality, assuming the training dataset is D = {X1, X2, · · · , Xn},
centers of k clusters is µ = {µ1, µ2, · · · , µk}, and sample number of each cluster is N =
{N1, N2, · · · , Nk}, if the dataset is well clustered, for any sample in cluster j, the distance to
µj will be less than any other cluster centers.

Construct a target function as the following,

J(µ) =
1
2

k

∑
j=1

Nj

∑
i=1

d2(Xi, µj), (3)

thus, for a clustering algorithm, the dataset will be well clustered only if J(µ) is equal
to its minimal value. According to the idea of convex optimization, partial derivatives
function (3) with respect to µj, and set derivatives equals to 0,

∂J(µ)
∂uj

= −
Nj

∑
i=1

d(Xi, uj) = 0, (4)

the following function can be derived by solving function (4),

µj =
1
Nj

Nj

∑
i=1

Xi, (5)

When applying the K-means cluster algorithm, first, k samples are randomly selected
as the center of the initial k clusters, and then the remaining objects are assigned to the
nearest cluster according to their distance from the center of mass of each cluster. The
iterative relocation process is repeated until the objective function is minimized to find the
center of mass of the newly formed cluster.

The K-means cluster algorithm is relatively efficient compared to other cluster algo-
rithms. When dealing with large datasets, the algorithm can also guarantee good scalability.
However, there are also some cautions when using K-means. First, the number of clusters
k must be predefined before clustering. Secondly, the K-means algorithm is not good at
dealing with non-convex-shaped clusters. Finally, the algorithm usually terminates at local
optimum, but it can be improved by a global optimization technique.
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2.3.3. DBSCAN Cluster Algorithm

DBSCAN is another widely used cluster analysis method in the data-mining area.
Unlike K-means, which is a distance-based method, DBSCAN is a density-based cluster
method. Clusters were identified as high-density areas that were separated by low-density
areas in DBSCAN. It is able to discover oddly shaped clusters and does not require a
predetermined cluster number. Additionally, DBSCAN has advantages in processing data
with noises.

For a dataset D = {X1, X2, · · · , Xn}, assuming x ∈ D, then ε neighbor of x can be
defined as

Nε(x) = {y ∈ D : d(x, y) ≤ ε}, (6)

Apparently, x ∈ Nε(x). Then the density of dataset D at sample x, ρ(x), is defined as
the number of samples in the ε neighbor of x.

A sample x is a core point in dataset D when ρ(x) > M, where M is a nonnegative
integer. And the set of all core points within dataset D is donated as Dc.

For any x, y ∈ D, y is directly density-reachable from x if x ∈ Dc, y ∈ Nε(x). Moreover,
for any x, y ∈ D, if there exists a sample sequence p1, p2, . . . , pT, where p1 = x, pT = y, and
pi+1 is directly density-reachable from pi, then y is density-reachable from x.

DBSCAN regards the maximum density reachable set derived from the density reach-
able relationship as a cluster. When applying DBSCAN method, radius of ε neighbor and
minimum sample number of core point should be specified. Then the algorithm starts from
a randomly selected core point, finds out all density-reachable samples and denotes them
as a cluster. After this, a new core point that belongs to no previous discovered clusters is
selected to find a new cluster by searching all density-reachable samples. Such procedures
continue until all core points are checked.

Compared with K-means algorithm, the difference between them is that no prede-
termined number was needed as a vital parameter in DBSCAN. Moreover, DBSCAN can
find the clustering cluster of any shape, rather than being generally only used for convex
sample clustering classes such as K-means.

2.3.4. Clustering Validation

When conducting cluster analysis, the cluster algorithm returns a model that divides
n samples into k clusters. However, the algorithm never promises a meaningful clustering
result. It is vital to validate quality of cluster analysis results to guarantee further analysis
and application. A criterion for clustering validation is necessary after applying the
cluster algorithm.

Silhouette score is a usually used evaluation method of clustering effect. It combines
two factors, namely cohesion and separation. It can be used to evaluate the influence
of different algorithms or different parameters on clustering results based on the same
original data. Silhouette score is calculated as the following:

1. For sample Xi, calculate its average distance to samples within the same cluster, let
the average distance be ai;

2. For sample Xi, calculate its average distance to samples of any clusters without Xi, let
the average distance be bi;

3. The Silhouette score of Xi can then be calculated by the formula

Si =
bi − ai

max(ai, bi)
(7)

4. The overall Silhouette score is the average of all data points.

Theoretical value of Silhouette score is between −1 and 1. The higher the Silhouette
score is, the better the clustering is. The absolute values of Silhouette score provide a good
intuitive evidence of the clustering quality.
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2.4. Data Processing Procedure

Shown in Figure 1 is the data processing flow-chart in this paper, which mainly
consists of 5 steps.

First, data cleaning is carried out after breath-testing data collection. Data exclusion
strategy was described in detail in Section 2.1.

Secondly, Hopkins Statistic of the dataset is evaluated for confidence of cluster analysis.
Thirdly, K-means cluster analysis is conducted with different cluster numbers, namely

k = 2, 3, 4, 5, 6, and 7. DBSCAN method is applied to analyze the data as well.
Then, Silhouette scores corresponding to each cluster number are evaluated to decide

the best cluster result for further analysis.
Finally, the best results of both K-means and DBSCAN clustering are analyzed

and discussed.
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Figure 1. Data processing flow-chart.

3. Results
3.1. Data Visualization

Among the dataset, 1071 samples qualified for further analysis. Before further analysis,
the baseline of breath test H2 level was subtracted from test values.

The datasets ready for analysis were saved in an 8 × 1071 matrix. Every column of
the matrix corresponded to a data sample. Numeric value in each row of a specific data
sample was H2 change value relative to the baseline.

A principal component analysis (PCA) was conducted for an intuitive understanding
of the dataset. Figure 2 illustrated data distribution of the first two principal components,
which contained 93.96% of data variability (85.32% and 8.04%, respectively). The third
component contained only 2.43% of variability, which could be ignored in visualization.

Data distribution in Figure 2 highly suggested data aggregation. The most compact
data group gathered around (0, 0), among which data point markers covered up each other.
Another group of data lay next to the first group, but it was relatively loose with clear gaps
observed between data points. Several data points between the two groups of data were
ambiguous to be classified into the first or second group from intuition. In addition, some
sparse and sporadic data points spread at the right side of the figure. The outline shape
of the visualized data groups exhibited spherical distributions, which indicated that the
K-means clustering algorithm was suitable for our dataset.
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Figure 2. Data visualization using PCA.

3.2. Clustering Tendency

After data cleaning and visualization, clustering tendency evaluation was demon-
strated with the Hopkins Statistic of dataset calculation. The Hopkins Statistic of the dataset
was 0.9460, which was very close to 1. The Hopkins Statistic of the dataset highly suggested
that the dataset has strong clustering tendency.

3.3. K-Means Cluster Results

When clustering with K-means, the number of cluster k was an important input
parameter to divide the dataset into clusters. Centroids of each cluster were randomly
initialed without any possible subjective biases. The K-means algorithm was run with k = 2,
3, 4, 5, 6, and 7. The initial value k = 2 was selected classically since the North American
criterion determines 2 kinds of SIBO status: positive or negative. The last evaluated value
k = 7 was selected based on expert knowledge.

The Silhouette score was used to validate the clustering result. The Silhouette score
corresponded to different cluster number and was calculated after clustering using the
K-means algorithm. Results are listed in Table 1. Figure 3 shows the tendency of the
Silhouette score with respect to the cluster number.

Table 1. Silhouette scores of different cluster numbers.

k 2 3 4 5 6 7

Silhouette score 0.7050 0.6913 0.3971 0.2807 0.2751 0.1986

Figure 3. Silhouette score trend with respect to cluster numbers.
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Table 1 and Figure 3 indicate that the Silhouette score decreased as the cluster number
increased from 2 to 7. When the cluster number changed from 3 to 4, the Silhouette score
decreased dramatically to almost half of the previous value. If only the best Silhouette
score was considered, then k = 2. However, it was unignorable that the Silhouette score
was almost the same when k = 2 or 3; the difference was less than 5%. Therefore, the cluster
results of k = 2 and k = 3 were both illustrated and analyzed.

Figure 4 shows data distribution of clustering results when k = 2.
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Figure 4. Cluster result when k = 2.

The most compact data group and some scattered data points around it were regarded
as a cluster (blue ones in Figure 4) while the relatively loose data group and spread data
points at the right side were regarded as the other cluster (red ones). The 3 blue data points
located at the lower right corner of the first cluster were noticeable since they seem closer to
the second cluster(red). The demarcation line between the two clusters was not very clear.

Different typologies of data curves are shown in Figure 5. The solid curve in the figure
was mean value of H2. In Figure 5a, the H2 curve is approximately flat since the increase of
H2 level was not remarkable. Additionally, the mean value and median value of H2 level
did not exceed 20 p.p.m. within 140 min. According to the North American consensus,
this pattern could be confidently regarded as SIBO. However, it was also noticeable that
some data samples of this kind exceed 20 p.p.m. within 90 min, which challenged the
North American consensus. In Figure 5b, the H2 level mean value curve increased steadily
after taking lactulose and exceeded 20 p.p.m. at 60 min. This curve could be confidently
believed as SIBO-positive.

Figure 5. Graphical demonstration of the boxplot and mean values of clusters when k = 2.
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Figure 6 shows data distribution of the clustering result when k = 3. A major difference
with the result of k = 2 was that the spread of sparse data points at the right side were
regarded as a new cluster. The K-means algorithm treated those data points as a cluster
different from the two relatively compact ones.
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Figure 6. Cluster result when k = 3.

Shown in Figure 7 are different typologies of data curves. The solid curve represents
the mean value of H2. Like that in Figure 5a, the H2 curve in Figure 7a is relatively flat
compared to other curves. The increase of H2 level was not remarkable, and the mean value
and median value of H2 did not exceed 20 p.p.m. within 140 min. According to the North
American consensus, this pattern could be confidently regarded as SIBO-negative since
less H2 gas was produced after taking in lactulose. In Figure 7b, the H2 curve increased
steadily after the beginning of breath testing. The H2 increasing level exceeded 20 p.p.m.
around 60 min. The trend of the pattern in Figure 7b is similar to the pattern in Figure 5b.
In Figure 7c, the H2 curve increased dramatically after the beginning of the breath test. The
H2 increasing level exceeded 20 p.p.m. earlier than 60 min. The increasing speed slowed
down after 80 min, but kept increasing until the end of breath testing.

Figure 7. Graphical demonstration of the boxplot and mean values of clusters when k = 3.

Though the Silhouette score of k = 2 is larger than that of k = 3, there were more outliers
in Figure 5 than Figure 7. In Figure 5, the outliers deviated further from the maximum of
box plots as well. These phenomena suggest that k = 3 was better than k = 2.

Figure 8 is the result of using the North American Consensus presented with PCA di-
mensional reduction. Samples were labeled SIBO-negative in blue if the H2 level increased
less than 20 p.p.m. from baseline within 90 min with the standard of 2017 North American
Consensus. The North American Consensus threshold was stiff since it seemed to classify
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the samples into positive group and negative group by forcing a cut-off line in the data
space without considering the data boundaries. As a result, a large amount of data samples
were regarded as SIBO-positive by the North American Consensus, though they were very
similar to the negative ones from the perspective of data-space distribution.
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Figure 8. Diagnosis results according to the North American Consensus.

3.4. DBSCAN Cluster Results

The cleaned data were analyzed using the DBSCAN algorithm as well. Shown in
Figure 9 is data distribution of clustering results using the DBSCAN method. The cluster
result of DBSCAN is similar to that of K-means when k = 3. The major difference was the
relative low-density data points around high-density data points. To be more specific, the
group of green points above red ones, and the two green points on the left of blue ones.
They were clustered into different classes when using the DBSCAN method. Such results
were caused by the difference between the two methods in basic theory.
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Figure 9. Cluster result using DBSCAN.

Figure 10 shows different breath data curves corresponding to every class identified
by the DBSCAN method. Like the curves in Figure 7, the solid curve represents the mean
value of H2. The H2 curve in Figure 10a could be confidently regarded as SIBO-negative
since the mean value and median value of H2 did not exceed 20 p.p.m. within 140 min.
Figure 10b,c are both SIBO-positive, but they were identified as different SIBO-positive
types by DBSCAN according to their density in data space.



Diagnostics 2021, 11, 1445 12 of 16

Figure 10. Graphical demonstration of the boxplot and mean values of clusters using DBSCAN.

4. Discussion

SIBO is a disease identified with small intestinal bacteria overgrowth and it presents
with abdominal distention, diarrhea or even developmental retardation when nutrition
absorption is blocked. SIBO shares an extensive relationship with overall health, but the
diagnosis of SIBO is debatable in clinic with the lack of a well-acknowledged diagnosis
standard. Breath testing is the most significant and widely applied method for SIBO
diagnosis. However, the criterion of breath testing in diagnosing SIBO remains invalidated.
The difficulty of exploring SIBO diagnosis with breath testing is identifying SIBO-positive
patients when the diagnosis of SIBO is based mainly on breath testing. Past research
solved this problem with two ways: defining SIBO-positive with either small intestinal
aspiration/culture positive or patients with unspecific symptoms. However, neither of
these two could optimally represent SIBO patients as we discussed in introduction. In our
research, we proposed a solution for this dilemma with cluster analysis, in which datasets
were gathered with their internal characteristics and information without human biases.

During the research, both K-means and DBSCAN clustering methods were used to
analyze the data. We confirmed the clustering tendency of the breath testing dataset by
calculating with Hopkins Statistic. The Hopkins Statistic of the 1071 samples collected
from Xiangya Hospital for the past 3 years highly suggested that the dataset presented
with a strong clustering tendency and clustering analysis was suitable for breath testing.
As a classical method of cluster analysis, K-means clustering was applied and a satisfying
clustering effect was evaluated with a Silhouette score. DBSCAN was applied to the dataset
as another classical clustering method as well.

As shown in Figures 4 and 6, the dataset was clustered to 2 and 3 groups with the
intrinsic information. Both of these two clustering strategies presented with good clustering
effect as the demarcation line between the groups was clear. There was a difference when
the dataset was clustered into different number of groups. As shown in Figure 4 when the
dataset was clustered into 2 groups, the 3 blue points located at the lower right corner of
the first cluster (SIBO-negative) were noticeable since they seem closer to the second cluster
(SIBO-positive). However, when the dataset was clustered into 3 groups, the 3 points
that were considered to be first cluster were now assigned into second cluster, which
seems intuitively more reasonable. The spread of sparse data points at the right side were
regarded as a new cluster, which is different from the two relatively compact ones in
Figure 6. This result suggested that clustering the dataset into 3 groups (k = 3) seemed to be
more reasonable. The patterns of each group are also illustrated in Figures 5 and 7. More
wild data points were observed in Figure 5, which indicated that there was a potential risk
of misclassification. The patterns in Figure 7b,c were significantly different from each other,
which indicated that clustering of 3 groups might be a more appropriate choice.

When comparing Figures 6 and 9, the major difference between K-means and DBSCAN
analysis results was the SIBO-positive patterns. K-means regarded the spread sparse data
points on the right side as the third cluster, while DBSCAN regarded the relative low-
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density data points spread around the relative high-density data groups as the third cluster.
Comparing Figures 7 and 10, it could be easily observed that H2 curves share almost
the same patterns in (a) and (b). Differences mainly appeared in (c). In Figure 7c, the
H2 curve rose dramatically to more than 120 p.p.m. within 80 min and then steadily
increased to more than 160 p.p.m. in the following 1 h. In Figure 10c, the H2 curve also
rose dramatically within 80 min and then increased slowly but steadily. Both K-means
and DBSCAN effectively identified several significant clusters with the dataset, which
supported our hypothesis of applying a clustering algorithm to SIBO diagnosis.

The overall results based on cluster analysis were in accordance with the standard in
the 2017 North American Consensus, while they also presented with differences. For SIBO-
negative, the mean value and median value of the H2 level increase relative to baseline
was less than 20 p.p.m. within 90 min, which was in agreement with the Consensus.
However, as shown in Figure 8, there were samples that were diagnosed positive with
the 2017 North American Consensus clustered to the negative group, which indicated
that some data samples that were believed SIBO-positive according to North American
Consensus standard should be regarded as SIBO-negative according to cluster analysis
since they share a higher similarity to SIBO-negative samples in the data space. The North
American Consensus threshold was stiff since it seemed to classify the samples into a
positive group and a negative group by forcing a cut-off line in the data space without
considering the data boundaries. As a result, a large amount of data samples was regarded
as SIBO-positive by consensus though they shared considerable similarity to the negative
ones from the perspective of data-space distribution. A considerable numbers of patients
who were diagnosed positive by the consensus should be SIBO-negative according to the
clustering analysis.

In the view of data analysis, diagnosis of SIBO using North American Consensus
is simply a threshold comparison. A threshold for diagnosis could be easily carried
out in clinical practice based on numerical examinations such as blood tests. However,
breath-testing data are more like a vector in 8-dimensional space, in which each dimension
corresponds to an H2 value at a time point. Unlike in the North American Consensus,
which compares data from 2 time points (0 min and 90 min), more information is enrolled in
the analysis based on the machine-learning algorithm. The similarity of two data samples is
evaluated based on their density or distance in data space. The relative difference in value
at each time interval is counted as well. Additionally, high-dimensional analysis provides
the potential to precisely classify SIBO-positive samples into several patterns. A threshold
diagnosis using the North American Consensus could only distinguish SIBO-positive
and -negative with the restriction by its intrinsic nature. Cluster analysis is a data-driven
method. No prior knowledge or background information is needed for unsupervised
learning methods, which means they can “learn” the intrinsic nature and underlying
knowledge that are veiled deep within the messy and human-unfriendly data. With the
dilemma of identifying SIBO-positive patients in clinic, a cluster analysis seems to be a
perfect choice for SIBO diagnosis. Moreover, as the hospital accumulates clinical test data
day by day, a data-driven method is able to automatically update the model or renew the
algorithm by learning from the newly generated data.

Meanwhile, the regional-specific dietary structure may influence the collected dataset
and contribute to the difference in the SIBO diagnosis standard from Consensus and our
result. Unlike in the North American Consensus, which used data collected mostly from
North American and Europe, data from Xiangya Hospital were collected from Hunan
Province, South China. The result of breath testing is influenced by multiple factors
including PPI (proton pump inhibitor), antibiotic usage history, position, sports activities
and dietary structure [13,42–44]. A harder found high-caloric diet could result in significant
gas retention [45,46]. Multiple studies demonstrated that a diet with abundant beans,
potato, flour and corn led to increased H2, while meat as well as rice would not. Numerous
studies showed dietary structure could impact bacteria flora in multiple ways [46]. For
example, in the Chinese dietary structure, the energy supply from fat is higher than that in
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Europe, while dietary fiber and vitamins are lower than in Europe and Japan [47]. With
the evidence of food structure influencing gut bacteria that we posed in the introduction,
we considered the question of whether the breath-testing baseline and pattern vary in
different areas with different dietary structures. In the North American Consensus (2017),
an increase of ≥20 p.p.m. from baseline in hydrogen by 90 min should be considered a
positive test for SIBO and a decrease of ≥10 p.p.m. means methane positivity, based on a
database mostly from North American and European areas [21]. With the experience from
Xiangya Hospital, we found that CH4 rising >15 p.p.m. related to clinical symptoms with
the background of spicy food flavors in Human Province. Until now, there was no research
about the region-specific breath-testing baseline based on various dietary structures in
different areas. In future work, we plan to further explore the region-specific diagnosis
standard in different areas based on the influence of dietary structure.

Our results showed the advantages of artificial-intelligence application in adaptive
breath-testing diagnosis criteria with SIBO. The method of data clustering presented with
natural advantages with data which own a strong clustering tendency. Our research was
based on breath-testing data collected from real clinical work without any prior knowledge
or expert experience. The patterns we found were relying on objective, automated and
intelligent analysis, which could reflect internal characteristics of gut bacteria. Furthermore,
comparing with the standard based on single-point threshold in the North American
Consensus, our method analyzed data distribution in high-dimensional space, in which
much more information was included. There were also challenges and limitations in our
work. There was potential risk of deviation in sample collection. Doctors would prescribe
breath testing to patients only when they were suspicious of SIBO, and thereby there was a
lack of data from people presented without any symptoms. This problem could be solved
by enrolling healthy volunteers or conducting regular non-discriminatory tests on patients
in the future work.

5. Conclusions

A new SIBO diagnosis criterion was proposed in this paper based on cluster analysis
using K-means and DBSCAN algorithms. Breath-testing datasets from 1071 patients were
collected from Xiangya Hospital from the past 3 years. This research work implied the
potential of applying machine learning techniques to clinical datasets for SIBO diagnosis.
Advantages of artificial intelligence application in adaptive breath testing diagnosis criteria
with SIBO were discussed from the aspects of high dimensional analysis, data-driven
and regional-specific dietary influence. This research work also developed a promising
diagnosis standard for SIBO, which would benefit clinical practice and scientific research.
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