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Minimal exposure of lipid II cycle intermediates
triggers cell wall antibiotic resistance
Hannah Piepenbreier1, Angelika Diehl1 & Georg Fritz 1

Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet,

our understanding of antibiotic action is limited, as many strains devoid of all resistance

determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-

target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive

theory for the bacterial cell wall biosynthetic pathway and study its perturbation by anti-

biotics. We find that the closed-loop architecture of the lipid II cycle of wall biosynthesis

features a highly asymmetric distribution of pathway intermediates, and show that antibiotic

tolerance scales inversely with the abundance of the targeted pathway intermediate. We

formalize this principle of minimal target exposure as intrinsic resistance mechanism and

predict how cooperative drug-target interactions can mitigate resistance. The theory accu-

rately predicts the in vivo efficacy for various cell wall antibiotics in different Gram-positive

bacteria and contributes to a systems-level understanding of antibiotic action.
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Theoretical modelling of key biological processes has
advanced our understanding of how cells respond towards
environmental perturbations, such as antibiotic treatment.

For instance, in Escherichia coli mathematical modelling accu-
rately predicted non-trivial susceptibility patterns against
ribosome-targeting antibiotics at different growth rates1, showed
that a positive feedback on resistance gene regulation can lead to
growth bistability of an E. coli population under chloramphenicol
treatment2, and revealed how non-optimal responses to DNA
stress under ciprofloxacin treatment can lead to suppressive drug
interactions when combined with ribosome-targeting antibiotics3.
Jointly, these studies demonstrate that intricate interactions
between well-characterised biological parts elicit emergent and
sometimes counterintuitive physiological responses, which can
hardly be understood without theoretical frameworks. However,
to date most of the predictive models for drug-target interactions
focussed on translation-inhibiting antibiotics, which is facilitated
by a well-established theoretical framework describing ribosome
partitioning within bacterial cells4–6. Thus, to gain a better
understanding of antibiotics targeting other essential processes,
such DNA synthesis, transcription, and cell envelope biogenesis,
theoretical models for these essential processes are urgently
needed.

Antibiotics targeting the cell wall biosynthetic pathway are
amongst the most important, clinically relevant last-resort anti-
biotics, such as ramoplanin, vancomycin and other
glycopeptides7,8. Despite decades of experimental studies of the
cell wall biosynthetic pathway in various organisms, to date there
remain significant gaps in our understanding of cell wall anti-
biotic action. Most strikingly, for many cell wall antibiotics there
are vast differences between their in vivo efficacy compared to the
in vitro binding affinity for their molecular target—even in strains
deleted for resistance determinants that could reduce antibiotic
potency in vivo. For instance, in mutants of Bacillus subtilis,
Staphylococcus aureus and Enterococcus faecalis lacking all known
resistance determinants against nisin, ramoplanin or vancomycin,
the minimal inhibitory concentrations (MICs) against these
antibiotics are 20–200-fold higher9–14 than the dissociation
constants (KD) for the respective drug-target interaction15–17,
highlighting that these antibiotics are significantly less active
in vivo than in vitro. This apparent in vivo efficacy gap led to the
notion that either all of these organisms might carry additional,
yet undiscovered resistance determinants, or that the antibiotics
might be inactivated in vivo, e.g., via sequestration to auxiliary
cellular structures, effectively reducing the concentration of active
antibiotics10,16,18. The variety of compounds, as well as the
diversity of species displaying an in vivo efficacy gap, raises
doubts about these hypotheses and suggests that there might be
another, more universal origin of this phenomenon.

A more parsimonious explanation for this gap could emerge
from the complex dynamics of the cell wall biosynthetic pathway
itself, which is highly conserved across the bacterial world
(reviewed e.g. in 8,19,20). At the core of this pathway is the lipid II
cycle, which encompasses all membrane-associated reactions of
cell wall biosynthesis and is responsible for shuttling pepti-
doglycan (PG) subunits across the cytoplasmic membrane
(Fig. 1a). Briefly, MraY and MurG sequentially attach the PG
precursors UDP-MurNAc-pentapeptide and UDP-GlcNAc to
the lipid carrier undecaprenyl phosphate (UP), giving rise to the
lipid I and lipid II intermediates, respectively. Various flippases
translocate lipid II to the outer leaflet of the cytoplasmic mem-
brane, where penicillin-binding proteins (PBPs) incorporate the
subunits into the growing PG layer. The resulting pyropho-
sphorylated state of the lipid carrier (UPP) is dephosphorylated
by UPP phosphatases (UppPs) to yield the initial substrate UP
for another round of PG subunit transport. Given that these

cyclic reactions represent the rate-limiting step of cell wall bio-
synthesis, it is not surprising that a wide range of antibiotics act
by blocking progression of the lipid II cycle. This is achieved by
either targeting the activity of the involved enzymes, e.g. PBPs
(inhibited by beta-lactams) and MraY (inhibited by tunicamy-
cin), or by directly sequestering the intermediate substrates of the
lipid II cycle, e.g. UP (sequestered by friulimicin), UPP
(sequestered by bacitracin) or lipid II (sequestered by ramopla-
nin, vancomycin and nisin), see Fig. 1a for an illustration and8,20

for reviews.
To gain a quantitative understanding on how cell wall anti-

biotics interfere with this essential pathway, we here set out to
derive a detailed, computational model of the lipid II cycle. By
incorporating experimentally determined parameters from the
literature, our theory accounts for key biochemical knowledge of
this pathway and reconciles it with the in vivo inhibition patterns
under antibiotic treatment. In particular, by focussing on the
Gram-positive model organism Bacillus subtilis, we provide clues
on the inner working mechanisms of cell wall biosynthesis and
predict the in vivo efficacy of different cell wall antibiotics from
first principles. In particular, we focus on antibiotics targeting
different intermediates of the lipid II cycle (substrate-sequestering
antibiotics), i.e. bacitracin, friulimicin, ramoplanin, vancomycin
and nisin (Fig. 1a), which are active against a broad range of
Gram-positive bacteria. Our results reveal that the in vivo efficacy
gap is an emergent property of the lipid II cycle, leading us to
suggest a novel principle of minimal target exposure as an
intrinsic resistance mechanism towards substrate-sequestering
cell wall antibiotics. Strikingly, our theory predicts that this
intrinsic resistance can be circumvented—at least partially—by
drugs that cooperatively bind their targets, providing a quanti-
tative explanation for the pivotal role of cooperative binding
for the potency of vancomycin and other glycopeptide
antibiotics21–23. Thus, the theory presented here not only pro-
vides insights into the response of a universally conserved
metabolic pathway towards perturbations, but also guides the
design of novel antimicrobial compounds to efficiently block this
core process of cell wall biosynthesis.

Results
Rationale of this study. The bacterial cell wall consists of
an alternating polymer of N-acetylglucosamine (GlcNAc) and
N-acetylmuramic acid (MurNAc), cross-linked by a MurNAc-
attached pentapeptide (Fig. 1a)24,25. Even though Gram-negative
and -positive bacteria greatly vary in cell wall thickness and some
organisms show specific modifications in peptidoglycan compo-
sition (e.g. variations in the GlcNAc-MurNAc-pentapeptide
known for Staphylococci) or cross-linking properties (e.g. in
Corynebacteria)26, the central lipid II cycle of cell wall bio-
synthesis is highly conserved throughout the bacterial world
(Fig. 1a). Accordingly, it seems plausible that the basic working
principles of the lipid II cycle are similar between Gram-negative
and Gram-positive bacteria. Most biochemical work on the
enzymes and intermediates of the lipid II cycle, however, was
focussed on the Gram-negative model organism E. coli. There-
fore, in the following we will first perform some general con-
siderations on the kinetics of cell wall synthesis in E. coli, which
will lead us to a first quantitative model for this essential process
in Gram-negatives. Given that most antibiotics targeting the
intermediates of the lipid II cycle are ineffective against Gram-
negatives (due to the permeability barrier posed by the outer
membrane), we will adapt the model to Gram-positive-specific
cell wall synthesis in a second stage. This will allow us to make
testable predictions for cell wall antibiotic action in B. subtilis and
other Gram-positive bacteria.
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Physiological constraints on PG synthesis. In a first step we
wondered about the total demand of PG synthesis of a bacterial
cell, and accordingly, how fast the lipid II cycle has to shuttle PG
monomers across the cytoplasmic membrane. During bacterial
growth the synthesis of the wall has to precisely match the volume
expansion of the cell, and any misbalance induced by antibiotic
inhibition can lead to destabilization and lysis of the cell27,28.
Accordingly, given that the sacculus of E. coli contains N= 3.5 ×
106 PG monomers (at a doubling time TD= 36 min)29 and that
~δ= 50% of the produced PG is degraded by hydrolases30,31,
balanced growth requires that the total rate of PG monomer
translocation across the membrane, jPG, has to equal jPG ¼
1þ δð ÞN ln 2ð Þ

TD
� 105 PG monomers per minute. This high rate of

transmembrane transport is supported by attaching PG mono-
mers to a limited number of 1.5 × 105 lipid carrier molecules32,33.
At the required synthesis rate, this implies that each lipid carrier
transitions within 90 seconds through all states of the cycle (UPP
> UP > lipid I > lipid I> UPP >…) (see Supplementary Note 1 for
detailed estimation). Thus, each carrier undergoes an average of
~24 transport cycles before it gets diluted due to cell growth. This
suggests that instead of synthesizing lipid carriers for one-time
“use-it and lose-it” transport, lipid carrier recycling is the pace-
maker of PG monomer transport across the membrane. Under
these conditions the lipid II cycle can be approximated as a
closed-loop system, in which the pool levels of lipid II cycle
intermediates quickly equilibrate, leading to cyclic flux-balance
between all of the states, i.e. j1 = j2 =… = j6 (Fig. 1b, blue arrows;
Supplementary Note 1 and Supplementary Fig. 1a, b). For
instance, if one reaction is limited by either the catalytic rate or
the abundance of the respective enzyme, the substrate of this

reaction will accumulate and all other intermediates will deplete
until all fluxes in the cycle are equal. Experiments in E. coli indeed
revealed a highly asymmetric distribution of lipid II cycle inter-
mediates, with a ~100-fold excess of UPP and UP (1.2 × 105 and
0.3 × 105 molecules per cell, respectively)33 over lipid I and lipid
II (700 and 1000, respectively)32 (Supplementary Table 1a). Also,
it is noteworthy that under normal growth conditions cells
homeostatically control cytoplasmic UDP-MurNAc-pentapeptide
and UDP-GlcNAc at levels that saturate MraY and MurG,
respectively34,35 such that the rate of wall synthesis is not limited
by soluble PG precursor abundance. Instead, under these condi-
tions the total flux of PG subunits across the cytoplasmic mem-
brane (Fig. 1b; red arrows) is only limited by the membrane-
associated steps of wall synthesis and is identical to the individual,
cyclic fluxes in the lipid II cycle, i.e. jPG = j1 = j2 = … = j6.

Kinetic model of the lipid II cycle. Are the molecular properties
of the cycle compatible with the overall demand for cell wall
synthesis outlined above? To test this, we developed a detailed
kinetic model of the lipid II cycle, which integrates key bio-
chemical knowledge from literature and simulates the overall rate
of PG synthesis, jPG. Briefly, the model takes into account the
reactions depicted in Fig. 1a, by considering Michaelis-Menten
kinetics for all characterised enzymes, and first order kinetics in
case of the flipping reactions for UP, UPP and lipid II, since less is
known about the latter. By further assuming production of UPP
in the cytoplasm and dilution of all cycle intermediates due to cell
growth, the model describes the dynamic changes in the con-
centrations of cycle intermediates in the inner and outer leaflet of
the membrane (see Supplementary Fig. 1c and Methods). To
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Fig. 1 The lipid II cycle of Gram-positive bacteria is a prime target for antibiotics. a The lipid II cycle, as the core pathway of cell wall biosynthesis, drives the
transport of PG subunits across the cytoplasmic membrane via attachment to lipid carrier molecules. The cytoplasmic production of UDP-MurNAc-
pentapeptide (M) from UDP-GlcNAc (G) is catalysed by the MurA-F ligases34,75,76. Subsequently, at the internal leaflet of the cytoplasmic membrane the
translocase MraY and the transferase MurG sequentially attach UDP-MurNAc-pentapeptide and UDP-GlcNAc to the lipid carrier undecaprenyl phosphate
(UP), giving rise to the lipid I and lipid II intermediates, respectively. Various flippases translocate lipid II to the outer leaflet of the cytoplasmic membrane,
where penicillin-binding proteins (PBPs) incorporate the subunits into the growing PG layer. This leaves the lipid carrier in its pyrophosphate form (UPP),
which has to be recycled to UP by dephosphorylation to allow a new round of PG monomer transport. Given that all known UPP phosphatases (UppPs) act
at the external leaflet of the cytoplasmic membrane77,78, carrier recycling requires flipping of UP to the internal leaflet by a yet unknown mechanism68,69.
Finally, dilution of lipid carriers is counterbalanced by cytoplasmic synthesis of UPP by UppS, but likewise to UP flipping, the required mechanism to present
UPP to the externally acting phosphatases is unknown. Several antibiotics inhibit key steps of cell wall biosynthesis by forming complexes with UP, UPP or
lipid II, as indicated by the T-shaped red lines. b The lipid II cycle can be considered as a closed-loop system, in which all fluxes ji from one state of the cycle
into the next balance each other. Since UDP-MurNAc-pentapeptide and UDP-GlcNAc use lipid II cycle intermediates as carriers for the transport across the
cytoplasmic membrane, the flux of PG precursors, jPG (red arrows), is equal to the flux of the cycling reactions (blue arrows)
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calibrate the parameters in the model, we fixed all catalytic rates
(kcat) and Michaelis–Menten constants (KM) to the values
obtained from literature (Supplementary Table 1) and applied a
constrained optimisation approach to estimate the remaining
parameters (see Supplementary Note 1). In particular, by
imposing that the overall flux within the lipid II cycle has to
match the overall PG demand of the cell and by fixing the total
abundances of cycle intermediates to the asymmetric distribu-
tions reported in literature (Supplementary Table 1a), we
obtained precise estimates for the levels of the lipid II cycle-
associated enzymes, as well as for the rates for lipid carrier flip-
ping (Supplementary Fig. 1d). Interestingly, the theoretically
predicted enzyme levels are in excellent agreement with a pre-
vious proteomics study36 (Supplementary Table 2), showing that
our model describes the quantitative dynamics of the lipid II cycle
in a self-consistent manner—compatible with biochemical and
physiological constraints.

When the flux across all reactions of the lipid II cycle is
balanced, the model predicts an asymmetric distribution of cycle
intermediates across the two leaflets of the cytoplasmic
membrane. Especially, UPP and lipid II are predominantly found
in the external leaflet, while UP displays an even distribution
(Fig. 2a). Within the model, this is caused by highly efficient rates
of UPP and lipid II flipping across the membrane, whereas the
flipping of UP is predicted to be ~2 orders of magnitude slower.
This is consistent with the fact that lipid II is actively transported
from the internal to the external leaflet via MurJ and other
flippases37–39 and suggests that UPP could similarly follow an
active transport route. In contrast, UP may follow a passive
translocation process from the outer to the inner leaflet of the
membrane (see Discussion). Taken together, this initial mathe-
matical model for the lipid II cycle provides a first holistic view on
this essential metabolic pathway in the Gram-negative model
organism E. coli, integrating key biochemical properties, enzyme
concentrations and pool levels of cycle intermediates.

Even though for Gram-positive bacteria a comprehensive
biochemical understanding of the PG synthetic machinery, and in
particular of the PBPs, has not been laid out, we next integrated
all existing quantitative knowledge from diverse species to
consolidate them in a modified mathematical model for the
Gram-positive cell wall synthesis. First of all, while E. coli features

a PG thickness of 1.5 glycan layers on average40, B. subtilis and
many other Gram-positive bacteria have a much thicker wall of
about 20 layers8. Thus, when comparing Gram-negative and
Gram-positive cells of equal sizes and at similar doubling times,
the lipid II cycle has to transport PG precursors at a ~13-fold
higher rate in the latter (see Supplementary Note 1 and
Supplementary Table 3a for a comparison between E. coli and
B. subtilis). Theoretically, increases of the PG synthesis rate can
be achieved by tuning three factors: (i) increasing the abundance
of enzymes in the lipid II cycle, (ii) increasing the concentrations
of lipid carriers, or (iii) increasing the catalytic rates of all
associated enzymes. Interestingly, although proteomic studies in
B. subtilis and E. coli revealed differences in the absolute enzyme
abundances36,41, their surface concentration is almost invariant
between organisms—with typically between 50 and 100 molecules
per μm2 for each enzyme species (Fig. 2b and Supplementary
Table 3b)—showing that Gram-positive bacteria do not simply
increase the abundance of the PG synthetic machinery. Instead, in
a range of Gram-positive bacteria the surface concentrations of
the lipid carriers UP, UPP and lipid II are 10- to 20-fold higher
compared to E. coli (Supplementary Table 3c), suggesting that
these increased substrate levels are required to fully saturate the
enzymes of the lipid II cycle in Gram-positives. Consistent with
this, literature suggests that the KM value of MraY is eight-fold
higher in B. subtilis (KM= 160 μM42) compared to E. coli (KM=
20 μM43). However, if the goal is to speed up PG synthesis—why
does the Gram-positive PG synthetic machinery feature lower
substrate affinity while increasing substrate abundance, ultimately
leading to comparable levels of enzyme saturation as in Gram-
negatives? A potential origin could lie in the speed/affinity trade-
off known in enzyme kinetics44,45, according to which speeding
up the kcat value of an enzyme can lead to a sacrifice in substrate
affinity and a concomitant increase of the KM value (Fig. 2c). For
highly efficient enzymes, in particular, the kcat value is larger than
the substrate dissociation rate k−1, leading to an inverse
relationship between affinity (KM

−1) and speed, i.e.,
KM � kcat=k1.

Taken together, the most parsimonious model for the Gram-
positive lipid II cycle is that the ~13-fold higher demand for PG
synthesis (compared to Gram-negative bacteria) is met by faster
enzymes with 10–20-fold higher catalytic rates. The speed-affinity
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trade-off then dictates that all substrate affinities will be 10–20-
fold lower in Gram-positive enzymes, as observed for the KM

value of MraY. This model is also consistent with the
experimentally observed 10–20-fold higher lipid carrier substrate
pools, which would then be required to achieve similar levels of
enzyme saturation as in Gram-negatives, such that enzymes can
operate close to their maximal speeds. Accordingly, to establish a
self-consistent generic model for the Gram-positive cell wall
biosynthesis, we scaled all parameters for the lipid II cycle in E.
coli, i.e., the kcat and KM values, as well as the rate of UPP de novo
biosynthesis, by a factor of 13 (see Supplementary Note 1).
Accordingly, within this rescaled model both the overall PG
synthesis rate, as well as all lipid carrier concentrations increase
by this factor, while the relative stoichiometries between the lipid
carrier intermediates remain identical to the model for E. coli
(Fig. 2d). Although we are well aware that this coarse-grained
scaling is an approximation for the lipid II cycle in B. subtilis, it is
the most parsimonious choice of model parameters and leads to
testable predictions for the cellular response towards cell wall
antibiotics, as studied in the following.

Predicting cell wall antibiotic action from first principles. As
introduced above, many cell wall antibiotics bind to externally
exposed lipid II cycle intermediates, thereby sequestering lipid
carriers from the cycle. For the five antibiotics under considera-
tion (friulimicin, bacitracin, vancomycin, nisin and ramoplanin,
see Fig. 1a) both the molecular targets as well as the equilibrium
dissociation constants (KD) for the antibiotic/target interaction
have been characterised in vitro (Supplementary Table 4a). This
allowed us to integrate these binding reactions into our quanti-
tative model for the lipid II cycle (see Methods)—thereby creating
a tool to generate predictions of cell wall antibiotic action without
invoking further fit parameters. In the following we will first focus
on the two antibiotics that bind their target non-cooperatively
and later consider the effect of cooperative binding for the
remaining three antibiotics.

First we studied the action of the cationic antimicrobial peptide
bacitracin, which is widely used as a medicine and feed additive.
Bacitracin binds to UPP by forming an amphipathic shell around
its pyrophosphate group, thereby sequestering the target46. When
incorporating the binding of bacitracin to UPP into our model
(KD

BAC= 1 μM47) we predict a hyperbolic decrease of the total
PG synthesis rate with increasing antibiotic concentration,
reaching 50% of the maximal PG synthesis rate at 1.8 μM
bacitracin (IC50

BAC) (Fig. 3a). To understand why the predicted
IC50 almost coincides with the KD value in the model, we
analysed the relative abundances of lipid II cycle intermediates at
different bacitracin concentrations (Fig. 3b). Here it turned out
that the IC50 coincides with a decrease of the free external lipid II
pool to approximately 50% of its untreated level, consistent with
the role of lipid II as substrate for the final step of PG precursor
incorporation. The reduction of free lipid II pools is correlated
with an increase of the bacitracin-bound form of external UPP
(commencing at the KD value), which effectively sequesters lipid
carriers from the cycle and thereby triggers a concerted decrease
of all free cycle intermediates (Fig. 3b). Thus, for the binding of
bacitracin to UPP, which constitutes the largest pool of lipid II
cycle intermediates, our model predicts only a marginal in vivo
efficacy gap, i.e., an IC50 very similar to the in vitro KD value.

Next, we focussed on the commonly used food preservative
nisin—a polycyclic antibacterial peptide that binds with high
affinity to lipid II, the latter of which constitutes the smallest pool
of externally accessible cycle intermediates. To our surprise, for
nisin our model predicted an IC50 value (IC50

NIS= 10 μM) about
700-fold higher than the in vitro dissociation constant entering

the model simulation (KD
NIS= 0.015 μM48) (Fig. 3c)—qualita-

tively similar to the in vivo efficacy gap reported in literature (see
Introduction). What is the origin of this discrepancy in the
model? When again considering the relative abundances of cycle
intermediates at varying antibiotic concentrations, it turns out
that nisin—at low levels around the KD value—also effectively
binds to its target, leading to a pool level of nisin-lipid II
complexes comparable to the free form of lipid II (Fig. 3d).
However, this sequestration of lipid II only corresponds to ~1%
(104 molecules) of the total number of lipid carriers in the cycle
(Fig. 3d, g), thereby not reducing the overall abundance of free
carriers significantly. Accordingly, the circular flux of carriers
within the lipid II cycle quickly replenishes the free form of lipid
II molecules and leads to a similar PG synthesis rate as in the
absence of nisin (99% of max). Only when increasing the nisin
concentration 700-fold over its KD value, the amount of
sequestered carriers (nisin-lipid II) rises to ~50% of the total
abundance of cycle intermediates (Fig. 3d, h), thereby reducing
also the free lipid II pool and hence the overall PG synthesis rate
to 50% of its maximal value (Fig. 3c, d, h). Thus, within our
model the small pool size of externally accessible lipid II (~1/100
of total lipid carriers) leads to inefficient sequestration of lipid
carriers, thereby reducing the susceptibility of cell wall biosynth-
esis towards lipid II-binding antibiotics. In contrast, the binding
of bacitracin to external UPP, constituting the largest pool of
cycle intermediates (~2/3 of total lipid carriers), leads to efficient
sequestration of lipid carriers already at concentrations around
the KD value (Fig. 3e, f). In summary, these results indicate that
the in vivo efficacy gap results from asymmetric distributions of
externally accessible targets, and that the discrepancy between KD

and IC50 increases for decreasing target pool sizes.
To assess the predictive power of our model, we next compared

the theoretical IC50 values with experimentally determined MICs
for the given antibiotics (Fig. 3a and Supplementary Table 4b).
On first sight, the in vivo MIC of wildtype B. subtilis strain W168
(MICBAC= 180 μM bacitracin49) was ~100-fold higher than the
predicted IC50 value (IC50

BAC= 1.8 μM). However, the model did
not factor in the action of the BceAB resistance pump, which
confers high levels of bacitracin resistance to wildtype B. subtilis
cells49. The MIC of a strain deleted for bceAB (W168 ΔbceAB;
MICBAC= 1.7 μM bacitracin49); instead closely matches the
model-predicted IC50, confirming that the in vivo efficacy gap
is only ~two-fold for the UPP-binding antibiotic bacitracin
(Fig. 3a). Similarly, the model prediction for nisin (IC50

NIS=
10 μM) is only a factor of two higher than the experimental MIC
of a strain deleted for the primary nisin resistance determinant
(W168 ΔpsdAB; MICNIS= 4.8 μM11), revealing a 330-fold higher
in vivo MIC compared to the in vitro KD (Fig. 3c). Here, the
slightly lower experimental MICNIS compared to the predicted
IC50

NIS might be caused by membrane pore formation triggered
by high nisin levels16,50,51, which will increase the potency of
nisin but is not reflected in the model. These results indicate that
our model provides an accurate description of the lipid II cycle
under antibiotic treatment, and allows for precise predictions of
the in vivo antibiotic susceptibility from first principles.

Analytical expression of the in vivo efficacy gap. Next, we
wanted to derive an intuitive mathematical formula describing
how antibiotic susceptibility depends on the pool size of the
targeted lipid carrier, thereby rationalizing the origin of the
in vivo efficacy gap. To obtain a closed analytical expression for
the PG synthesis rate as a function of the antibiotic concentration,
we considered a simplified model of the lipid II cycle (see
Methods and Fig. 4a): This model takes into account first order
reactions between the antibiotic, A, and its unbound lipid carrier
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target, Sunbound, with association- and dissociation rates kass and
kdiss, respectively. Moreover, all other (non-target) lipid carrier
intermediates of the cycle are summarised as a bactoprenol
reservoir, Sreservoir, which can be interconverted into the unbound
lipid carrier with first order rate constants k1 and k−1, leading to
PG synthesis at a rate jPG ¼ k�1 Sunbound½ � (and in equilibrium also
jPG ¼ k1 Sreservoir½ �). Under the assumption that the lipid II cycle
runs much faster than the doubling rate k1; k�1 � γð Þ the PG

synthesis rate decreases with the antibiotic concentration [A]
according to

jPG �
~KDð1þ ~KGÞ

A½ � þ ~KD 1þ ~KG

� � ; ð1Þ

highly reminiscent of the hyperbolic decrease observed in the full
model above (cf. Fig. 3a, c). Interestingly, the half-maximal rate of
PG synthesis is reached at an antibiotic concentration of
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IC50 � ~KD 1þ ~KG

� �
, which is strikingly different from the naïve

in vitro expectation for the antibiotic-target interaction
IC50 ¼ KDð Þ. Indeed, the IC50 in vivo is not only governed by the
biochemical properties of antibiotic binding, but strongly influ-
enced by two factors governing the lipid II cycling reactions: First,
the dissociation constant for the antibiotic-target interaction is
substituted by the in vivo dissociation constant, ~KD ¼ kdissþγ

kass
,

which can deviate up to approximately three-fold from the

in vitro value KD ¼ kdiss
kass

� �
, depending on the growth rate γ, as

well as the kinetics of antibiotic binding and unbinding from its
target (see Supplementary Note 1, Supplementary Table 4c and
Supplementary Fig. 4c, e). Second, the in vivo dissociation con-
stant is scaled by a buffering factor, which we define as 1þ ~KG

� �
.

Here ~KG ¼ ½R�½T� � k�1
k1

describes the ratio between the size of the
bactoprenol reservoir (serving as a buffer) and the size of the
carrier target in the absence of antibiotic (Fig. 4b). For example, if
the buffering reservoir is small compared to the target pool
~KG � 1

� �
, the model predicts only a marginal shift in the

c

ed

Antibiotic binding
reaction

Cycling reaction

Sunbound

Sbound

a

103

102

101

100

10–1 100 101 102 103

b

10–3

%
 o

f m
ax

im
al

P
G

 s
yn

th
es

is
 r

at
e

10–1 101 102

IC50

KD

Antibiotic [μM]
100

50

0

n

10–2 100

10–3 10–1 101 10210–2 100

KD IC50

1 2 3 4 5
Hill coefficient (n)

n = 1

n = 1

n = 2

100

50

0

99.6

Bactoprenol reservoir

Target pool
(KG)
~

Antibiotic [μM]

n = 2

IC
50

K
D

B
uf

fe
rin

g 
fa

ct
or

 (
   

   
)

~

103

102

101

100

IC
50

K
D

B
uf

fe
rin

g 
fa

ct
or

 (
   

   
)

~

= 22

MIC

K LII
G

~

K UP
G

~

KG

~UPP

K LII
G

~
≈ 180

≈ 4.6K UP
G

~

≈ 0.3K UPP
G

~

IC50

KD
= 487

Sreservoir

PG
A

k–1

k1

kass

kdiss

%
 o

f b
ou

nd
 v

s.
to

ta
l L

ip
id

 II

Buffering factor = √1 + KG
~

Fig. 4 A reduced model for the lipid II cycle rationalises the in vivo efficacy gap and elucidates the boost of antibiotic potency by cooperative drug-target
interactions. a The reduced model for the lipid II cycle considers antibiotic (A) binding to its lipid carrier target (Sunbound) via first order reactions with
association- and dissociation rates kass and kdiss, respectively, leading to the antibiotic-bound form of the target (Sbound). The model summarises all non-
target lipid II cycle intermediates as a bactoprenol reservoir (Sreservoir), which can be converted into the unbound lipid target intermediate and vice versa via
first order kinetics at rate constants k1 and k-1, respectively. b The buffering factor IC50

~KD
¼ 1þ ~KG

� �
, which is the major determinant of the in vivo efficacy

gap, increases for increasing bactoprenol reservoir size relative to the unbound target pool in the absence of the antibiotic (Starget) according to ~KG ¼ Sreservoir
Starget

.
Buffering factors are indicated for antibiotics binding to external lipid II ~KLII

G

� �
, external UP ~KUP

G

� �
,or UPP ~KUPP

G

� �
. c Influence of cooperative drug-target

interaction on the IC50 value predicted for lipid II-binding antibiotics. Assuming identical in vitro KD values (corresponding to the in vitro value of
vancomycin; blue line) the model predicts that for an antibiotic variant binding in a cooperative manner (Hill coefficient n= 2; black and red dashed lines),
the IC50 is approximately 22 times lower than for a non-cooperative antibiotic binding (n= 1; grey and pale red lines). The experimentally measured MIC
for vancomycin (red solid line 9), is close to the predicted IC50 for the cooperative variant. d Scaling of the in vivo efficacy gap with the Hill coefficient n
within the reduced model (see Supplementary Fig. 2 for further details). e For the simulated vancomycin variants (binding to lipid II), the reduction of the
PG synthesis rate to 50% requires that the equilibrium is strongly shifted towards the bound form of lipid II (99.6% bound vs. total lipid II). As increasing
Hill coefficients n generally lead to steeper binding curves, the required level of target binding is achieved at a 22-fold lower antibiotic concentration by
cooperative antibiotic binding (black) compared to the non-cooperative variant (grey)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10673-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2733 | https://doi.org/10.1038/s41467-019-10673-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


IC50 IC50 � ~KD

� �
, indicating that in this case 50% of the total

bactoprenol carriers are easily sequestered by an antibiotic con-
centration equal to the in vivo ~KD value. In contrast, if the buf-
fering reservoir is large compared to the target pool ~KG � 1

� �
, an

antibiotic concentration equal to the in vivo ~KD value only
sequesters a small amount of the overall bactoprenol carrier level,
leading to substantial shifts in the IC50 IC50 � ~KD

� �
. Specifically,

when considering that the external lipid II pool in B. subtilis
(15 μM) is expected to be much smaller than the sum of all other
carrier intermediates (2700 μM), the model predicts a buffering
factor for the lipid II binding nisin of 1þ ~KG

� � �180-fold
(Fig. 4b). In contrast, for the UPP pool (2100 μM) the other lipid
carriers constitute a much smaller reservoir (600 μM), which
leads only to a marginal buffering factor for bacitracin of
1þ ~KG

� � � 1.3-fold (Fig. 4b). These results demonstrate that the
asymmetric distributions of lipid carrier intermediates lead to a
buffering effect against antibiotic attacks, which is particularly
pronounced for lipid II binding antibiotics, displaying a several
100-fold in vivo efficacy gap. Thus, although other factors, such as
the difference between the in vitro and in vivo dissociation
constant and enzyme saturation (see Supplementary Note 1 and
Supplementary Fig. 3g) have additional impact on antibiotic
susceptibility in the full model, the buffering effect is the major
cause for the in vivo efficacy gap for antibiotics targeting small
lipid carrier pools.

Cooperative drug-target interaction boosts antibiotic efficacy.
Next, we focussed on another long-standing debate in the field of
antibiotic resistance research, which is related to the effect of
cooperative drug-target interaction on antibiotic susceptibility.
Here, it is well documented that antibiotics binding in a coop-
erative manner to lipid II cycle intermediates, e.g., via multimeric
complex formation with the target, have a higher potency than
antibiotic variants unable to multimerise23,52–54. For instance,
dimer formation plays a key role in the efficient action of the
clinically important antimicrobial peptide vancomycin, as well as
in many other glycopeptides52–54, and has been recognised to
enhance the potency of engineered antimicrobial peptides23.
However, until now the mechanism behind the cooperativity-
induced activity boost remained elusive.

We therefore studied the quantitative impact of cooperative
drug-target interactions on antibiotic efficacy within our
mathematical model. To this end we considered the case of
vancomycin, which has a dissociation constant of KD

VAN=
0.03 μM15 and interacts with lipid II molecules55 via vancomycin
dimerization56. In vitro, cooperative antibiotic-target interactions
typically lead to sigmoidal binding curves of the form
½A�n= Kn

D þ ½A�n
� �

, with a Hill coefficient n ranging between 1–2
for dimeric binding. For instance, if drug dimerization occurs at a
concentration around the dissociation constant to the target, the
Hill coefficient will be close to 2, while both strong and weak
dimerization relative to target binding will generally lead to n < 2
(see Methods and Supplementary Fig. 2c). When analysing the
effect of two hypothetical vancomycin variants with identical KD,
but different Hill coefficients within our model (Fig. 4c), we find
that for a non-cooperatively binding variant (n= 1) the model
predicts an in vivo efficacy gap similar to nisin KD

MIC ¼ 470
� �

, while
this is significantly reduced for a cooperatively binding
vancomycin variant (n= 2), for which the model predicts a 20-
fold lower efficacy gap KD

MIC ¼ 22
� �

. Interestingly, the experimen-
tally measured MIC for vancomycin in B. subtilis (MICVAN=
0.35 μM9) is remarkably similar to the value predicted for the
cooperatively binding variant (IC50

VAN= 0.65 μM) (Fig. 5),

consistent with the observation that dimerization of vancomycin
is key for blocking the lipid II pool. Strikingly, also for the dimeric
glycolipodepsipeptide ramoplanin, our model predicts almost the
same in vivo efficacy gap as for vancomycin (IC50

RAM=
0.41 μM), which we find in excellent quantitative agreement with
experimental data (MICRAM= 0.49 μM10) (Fig. 5).

Why does dimerisation have such a drastic influence on the
IC50 in our model? To rationalise this behaviour, we extended the
simplified model (Fig. 4a) by accommodating cooperative drug-
target interactions (see Methods). Under similar assumptions as
in the previous section k1; k�1 � γð Þ the PG synthesis rate now
takes the form

jPG �
~Kn
D 1þ ~KG

� �

A½ �n þ ~Kn
D 1þ ~KG

� � : ð2Þ

Following a similar rationale as before, the half-maximal rate of
PG synthesis is now reached at an antibiotic concentration of

IC50 ¼ ~KD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~KG

n

q
, where the generalised buffering factorffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~KG
n

q
gets attenuated by the Hill coefficient via the n-th

root. Thus, the higher the cooperativity n, the lower the buffering
factor and the smaller the gap between MIC and KD value. This
attenuation of the buffering effect is particularly pronounced if
the buffering factor is large, e.g. for antibiotics targeting the lipid
II pool ~KG � 180

� �
(Fig. 4d). Intuitively, the mitigating role of

cooperativity can be understood as follows: Since the buffering
factor is large, the cycle is slowed down only if the antibiotic-
target complexes vastly exceed the free target, such that the IC50

for lipid II-binding antibiotics is only achieved if the ratio
between bound and unbound lipid II molecules is 99.6% (Fig. 4e).
Clearly, if the drug-target interaction follows a sigmoidal binding
kinetics (as incurred by a Hill coefficient n= 2), a similar level of
target binding is achieved at a 22-fold lower antibiotic
concentration compared to hyperbolic binding kinetics (n= 1)
(Fig. 4e). This explains why in vivo vancomycin (n= 2) is
drastically more active than nisin (n= 1), although both
antibiotics have almost identical in vitro dissociation constants
to lipid II. Thus, cooperativity in drug-target interactions can
greatly boost the vivo efficacy of the drug by more efficiently
sequestering the target as soon as the KD value is exceeded.

However, we also noted that cooperative drug-target interac-
tions do not always confer such drastic effects. For antibiotics
targeting the largest pools of cycle intermediates, UPP and UP,
the respective buffering factors are already low (1þ ~KG � 1:3 and
1þ ~KG � 5:6, respectively) such that increasing cooperativity
only leads to a mild reduction of the buffering effects in our
model, with virtually no change for UPP-binding antibiotics
(Fig. 4d). Only for UP-binding antibiotics the model predicts that
changing cooperativity from monomeric (n= 1) to dimeric target
binding (n=2) will increase antibiotic potency by a factorffiffiffiffiffiffi
5:6
p � 2:4. Interestingly, while it has been controversial whether
the UP-targeting lipopeptide antibiotic friulimicin binds its target
as monomer or dimer57, our model predictions for monomeric
binding (IC50

FRI= 1.46 μM) are in excellent agreement with the
experimental susceptibility in B. subtilis (MICFRI= 1.15 μM58)
(Fig. 5), suggesting that friulimicin inhibits its target in a non-
cooperative manner.

Discussion
Over the last decade quantitative experimentation and theoretical
modelling has fostered significant progress in our understanding
of antibiotic action against bacteria3,59–61. While previous theory
uncovered a range of non-trivial effects in the action of ribosome-
targeting antibiotics1, our work rationalises similarly
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counterintuitive effects for cell wall antibiotics. In particular, our
theory predicts an inverse correlation between the tolerance
towards substrate-sequestering cell wall antibiotics and the
abundance of their cellular target, suggesting the principle of
minimal target exposure as an intrinsic resistance mechanism
against cell wall antibiotics. We show that resistance emerges
from the cyclic nature of the cell wall biosynthetic pathway, in
which high-abundance intermediates provide a buffer against
sequestration of low-abundance intermediates. In this light it
seems plausible that bacteria may have evolved to minimise the
abundance of externally exposed lipid II molecules, e.g. by
speeding up the rate of PG monomer insertion into the cell wall,
in order to evade blocking by lipid II-binding antibiotics, which
are ubiquitously produced by competing species, such as Lacto-
bacillus lactis (nisin), Amycolatopsis orientalis (vancomycin) or
Actinomycetes species (ramoplanin)62–65.

Our theory further resolves a longstanding conundrum dating
back to the 1990s, where it was first observed that cooperative
drug-target interactions play a crucial role in the in vivo efficacy
of glycopeptide antibiotics18,22. Although molecular studies have
revealed how cooperativity can emerge from glycopeptide–lipid II
interactions66, it remained enigmatic why it has such a drastic
effect on antibiotic efficacy in vivo. Our work reveals that coop-
erativity alleviates the buffering effect within the lipid II cycle,
such that much less antibiotic is required to achieve a similar level
of target-inhibition compared to a non-cooperatively binding
drug (Fig. 4e). Interestingly, our results indicate that the most
pronounced advantage of cooperative drug-target binding arises
when the buffering effect is large (Fig. 4d), and to our knowledge,

all cooperatively acting antibiotics bind to lipid II, for which this
is the case.

Taken together, our theory correctly predicts the in vivo action
of five different antibiotics against the Gram-positive model
organism B. subtilis (Fig. 5). Since our theory is based on
cumulative information about lipid II cycle properties in diverse
bacterial species, we wondered whether the derived principles also
apply to other organisms, including clinically relevant bacteria.
Indeed, S. aureus strains deprived of all known resistance deter-
minants also display pronounced in vivo efficacy gaps for
nisin (MICNIS/KD

NIS= 82 13) and for vancomycin (MICVAN/
KD

VAN= 24 12), and also the MIC of E. faecalis against vanco-
mycin exceeds the in vitro dissociation constant 47-fold14—all
very similar to the values in B. subtilis (Fig. 5 and Supplementary
Table 4b). Thus, both the in vivo efficacy gap as well as its
molecular origin—namely the asymmetric distribution of lipid II
cycle intermediates—seem to be conserved between diverse
Gram-positive organisms, highlighting the universality of
our model.

Besides the prediction of antibiotic susceptibility in vivo, our
theory provides clues about physiological features of the lipid II
cycle, which have not been experimentally accessible to date. For
instance, our quantitative considerations of lipid II cycling put
constrains on the enzyme copy numbers, their reaction kinetics
and, most notably, on the so far unknown processes of UP and
UPP flipping. Here, our analysis indicates that the flipping of
UPP from the inner to the outer leaflet of the cytoplasmic
membrane is about as fast as lipid II flipping, both of which are
>100-fold faster than the flipping of UP from the outer to the
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inner leaflet (Supplementary Table 2). Given that the dual
negative charge of the UPP headgroup energetically strongly
disfavours spontaneous flip-flop between bilayers67, such rapid
flipping can only be achieved by active UPP transport across the
membrane, but a specific UPP flippase has yet to be
discovered68,69. The 500-fold slower UP flipping suggests that it
might follow a passive flip-flop mechanism driven by con-
centration- and/or charge-gradients, but further experiments are
needed to shed light on this.

Another intriguing insight from literature mining was that
Gram-negative and -positive bacteria feature similar levels of lipid
II cycle-associated enzymes per surface area (Fig. 2b), despite
their vastly different demand for peptidoglycan synthesis (Sup-
plementary Table 3a, b). As a consequence, our analysis suggests
that the Gram-positive lipid II cycle is driven by faster enzymes,
which sacrificed some of their substrate recognition in a speed-
affinity trade-off (Fig. 2c). This is consistent with the idea that the
increased levels of lipid carrier intermediates found in Gram-
positive bacteria are required to saturate these faster enzymes. But
why do Gram-positive bacteria not simply produce higher levels
of lipid II cycle-associated enzymes to meet this demand? One
reason could be that these enzymes are either integral membrane
or membrane-associated proteins, such that raising the abun-
dance of the PG synthetic machinery could exceed the carrying
capacity of the membrane. Indeed, in E. coli the cytoplasmic
membrane bears a total of ~33.000 proteins per μm2 70,71, and the
sum of all enzymes in the lipid II cycle constitutes ~1–3% of the
membrane proteome. Thus, raising the PG synthetic machinery
by a factor of 13 to meet the PG demand of Gram-positive
bacteria could clearly lead to fitness trade-offs with other essential
transport- and biosynthetic processes. Comparative experimental
studies of the PG synthetic machinery in Gram-positive and
-negative organisms will help to further elucidate the quantitative
differences in this rate-limiting step of bacterial cell wall
synthesis.

The insights gained here can help guiding the design of new
drugs—by suggesting that novel cell wall antibiotics will perturb
the lipid II cycle most effectively by (i) binding low-abundant
cycle intermediates in a highly cooperative manner or by (ii)
targeting the high-abundant intermediate pools. In addition, our
model of the lipid II cycle provides the basis for broader analyses
of various further classes of cell wall antibiotics, such as drugs
inhibiting the enzymes in the lipid II cycle (e.g. beta-lactams
inhibiting PBPs) or drugs targeting the substrates of PG precursor
production (e.g. fosfomycin). To this end, the model will need to
be expanded, e.g., to explicitly incorporate the biochemical
characteristics and copy numbers of all redundant PBPs (as
opposed to treating them as one effective reaction, as in the
present model), highlighting the importance of further bio-
chemical studies of PBPs and other lipid II cycle-associated
enzymes for developing a complete systems-level description of
this essential cellular pathway. Likewise, the seamless biochemical
characterization of enzymes involved in PG precursor synthesis
and cell wall recycling will enable quantitative modelling of drugs
interfering with these important aspects of cell wall synthesis.
Hence, the presented model serves as an excellent starting point
to develop a whole-cell model of antibiotic action. One important
aspect will be the development of theoretical models describing
the regulation and action of known resistance mechanisms
(which are deleted in the strains considered in this work), to
provide a systems-level description of antibiotic action in wild-
type cells. First steps in developing such models have been made,
e.g., for the bacitracin resistance determinant BceAB in B. sub-
tilis72 and for beta-lactamases in S. aureus73. Coupling our theory
of wall synthesis with the bacterial growth laws1,4–6 will lead to
new insights into the growth-rate dependency of antibiotic action

and may advance our understanding of antibiotic tolerance of
slow- and non-growing cells74. Beyond this, a comprehensive
model will contribute to a quantitative understanding of whole-
cell physiology, which is the starting point to predict drug–drug
interactions between antibiotics targeting different physiological
pathways. Finally, we believe that such rational approaches to
understand the physiological targets of antibiotics are urgently
needed to develop novel strategies in our fight against anti-
microbial resistance.

Methods
Mathematical model of the lipid II cycle. Our computational model of cell wall
synthesis focuses on the core reactions of the lipid II cycle and describes pepti-
doglycan synthesis for each individual cell (Supplementary Fig. 1c). Time-
dependent changes of the pool levels of lipid II cycle intermediates are described by
deterministic differential equations to monitor the dynamics of cell wall synthesis.
Diverse model assumptions, based on the current state of knowledge about the
lipid II cycle, determine the frame of the kinetic model:

(i) The individual states of lipid carrier are included as time-dependent variables
in the model, distinguishing between lipid carriers localised in the inner (IN)
and outer (OUT) leaflet of the cytoplasmic membrane:

● UPPIN = internal pool of undecaprenyl pyrophosphate (UPP)
● UPPOUT = external pool of undecaprenyl pyrophosphate
● UPIN = internal pool of undecaprenyl phosphate (UP)
● UPOUT = external pool of undecaprenyl phosphate
● LI = pool of lipid I
● LIIIN = internal pool of lipid II
● LIIOUT = external pool of lipid II

(ii) The cytoplasmic production of soluble PG precursors (UDP-MurNAc-
pentapeptide and UDP-GlcNAc) is not described in detail in the model.
Since the precursor pool levels are homeostatically controlled34,35 at
sufficiently high levels to saturate the enzymes of the corresponding
reactions (Supplementary Table 1), the rate of cell wall synthesis is normally
not limited by PG precursor abundance. Although we are well aware that
this assumption does not accurately reflect the situation when PG precursor
synthesis itself is targeted, e.g. by fosfomycin, it is plausible to assume
constant pools of PG precursors when considering antibiotics targeting the
membrane-anchored steps of PG synthesis only.

(iii) The de novo synthesis of UPP in the cytoplasm has to balance the overall
growth-driven dilution of all lipid II cycle intermediates. To this end, we

assume a constant UPP production rate α ¼ ln 2ð Þ
TD

P
Si½ � in the cytoplasm,

balancing dilution within one generation time TD. Likewise, the growth-
dependent dilution of all individual lipid intermediate pools occurs at a rate

γ ¼ ln 2ð Þ
TD

.
(iv) The individual enzymatic reactions are modelled by Michaelis-Menten

kinetics, for which substrate levels (Si), enzyme levels (E), catalytic constants
of the enzymes (kcat) as well as the Michaelis–Menten constants (KM)
parameterise the reaction dynamics.

(v) Since the biochemical properties of the enzymes catalysing the flipping
reaction of lipid II (LIIIN to LIIOUT) are largely unknown, and the flipping of
UPP (UPPIN to UPPOUT) and UP (UPOUT to UPIN) was only hypothesised,
for parsimony reasons we assumed first order kinetics for these reactions, as
quantified by an effective rate constant ki (i=UP, UPP, LII).

Under these assumptions the following set of ordinary differential equations
describes the time-dependent changes of the lipid II cycle intermediate pools and
the concomitant effect on the rate of PG synthesis, jPG

d UPPIN½ �
dt

¼ α� kUPP UPPIN½ � � γ UPPIN½ � ð3Þ

d UPPOUT½ �
dt

¼ kUPP UPPIN½ � � vUppPsmax
UPPOUT½ �

KUppPs
M þ UPPOUT½ �

þ vPBPsmax
LIIOUT½ �

KPBPs
M þ LIIOUT½ � � γ UPPOUT½ �

ð4Þ

d UPOUT½ �
dt

¼ vUppPsmax
UPPOUT½ �

KUppPs
M þ UPPOUT½ � � kUP UPOUT½ � � γ UPOUT½ � ð5Þ

d UPIN½ �
dt

¼ kUP UPOUT½ � � vMraY
max

UPIN½ �
KMraY
M þ UPIN½ � � γ UPIN½ � ð6Þ

d LI½ �
dt
¼ vMraY

max
UPIN½ �

KMraY
M þ UPIN½ � � vMurG

max
LI½ �

KMurG
M þ LI½ � � γ½LI� ð7Þ
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d LIIIN½ �
dt

¼ vMurG
max

LI½ �
KMurG
M þ LI½ � � kLII½LIIIN� � γ½LIIIN� ð8Þ

d LIIOUT½ �
dt

¼ kLII LIIIN½ � � vPBPsmax
LIIOUT½ �

KPBPs
M þ LIIOUT½ � � γ LIIOUT½ � ð9Þ

jPG ¼ vPBPsmax
LIIOUT½ �

KPBPs
M þ LIIOUT½ � ð10Þ

Simulations of antibiotic treatment. In order to accommodate cell wall antibiotic
treatment in the theoretical model of the lipid II cycle, we considered ligand-
binding between the antibiotic (A) and its target (T) (where T can be any of the
dynamic variables in Eqs. (3–9))

A½ � þ T½ �  !KD AT½ �;
with the in vitro equilibrium dissociation constant KD ¼ kdiss

kass
, defined as the ratio

between dissociation and association rate, respectively. Consequently, the model
for the lipid II cycle defined in Eqs. (3–10) was extended by one differential
equation describing the dynamics of the antibiotic-bound lipid intermediate pool
(AT),

d AT½ �
dt
¼ kass A½ � T½ � � kdiss AT½ � � γ AT½ �: ð11Þ

Since the individual dissociation and association rates were rarely studied in vitro,
we set the association rate to the fixed value of kass= 0.75 μM−1 × min−1 (as
measured for the binding of bacitracin to its target UPP 72) and calculated the
dissociation rates from experimentally determined in vitro dissociation constants
KD ¼ kdiss

kass
(Supplementary Table 4a). As we are well aware that association rates can

be different for different antibiotics, we subsequently investigated the robustness of
our model predictions against variations in the association rates (see Supplemen-
tary Note 1; Influence of binding dynamics on the IC50).

Given that the five antibiotics analysed here vary in both the binding dynamics
(quantified by the KD values) as well as the cooperativity of antibiotic-target-
interactions (defined by the Hill coefficient n) (Supplementary Table 4a), we
integrated an effective quantitative description of the multimer formation as well as
the antibiotic binding reaction into our model:

n A½ �  !Kcoop ½An� þ T½ � !KD AnT½ �

Keff ¼ Kcoop ´KD:

Since it was not always clear (e.g. in case of vancomycin) whether the antibiotic
multimerisation occurs before or after target-binding, and also the stoichiometry
within the antibiotic-target-complex was not always known precisely, we asked if
all differential binding scenarios generate cooperativity, i.e. a Hill coefficient n > 1.
To this end, we deduced the Hill expression describing the probability of bound
and thereby inactivated target Pbound from analysing all possible states of antibiotic-
target-interaction (Supplementary Fig. 2a, b) and estimated the Hill coefficient n
arising from this (Supplementary Fig. 2c). Here, the Hill coefficient n and thereby
the cooperativity reaches its maximum if the dissociation constants of multimer
formation and antibiotic binding are comparable, i.e. Kcoop � KD. Obviously, if one
of the two reactions dominates the other, that is dimerization is significantly
weaker than target binding or vice versa, the effect of cooperativity disappears.
Hence, in order to study cooperativity in our model, we took a coarse-grained
approach assuming an effective Hill coefficient and binding threshold Kn

eff ¼ kdiss
kass

,

leading to the following kinetic equation

d AnT½ �
dt

¼ kass A½ �n T½ � � kdiss AnT½ � � γ AnT½ � ð12Þ

Within this expanded model including the quantitative description of antibiotic-
target-interaction, we studied the effect of antibiotic action on the lipid II cycle for
the five different cell wall antibiotics. In particular, we determined the antibiotic
concentration necessary to decrease the PG synthesis rate to its half-maximal level
to quantify the antibiotic efficacy and defined this concentration as the IC50

(Fig. 3a, c and Supplementary Fig. 3a, c, e). Additionally, we analysed the changes
in the pool sizes of the different lipid II cycle intermediates Si under varying
antibiotic concentrations (Fig. 3b, d and Supplementary Fig. 3b, d, f).

Reduced model of the lipid II cycle. To arrive at an analytical expression for the
PG synthesis rate in dependence on the antibiotic concentration, we developed a
reduced model of the lipid II cycle (Fig. 4a). Similar to the full model in Eqs.
(3–12), the antibiotic (A) can bind to its free target (Sunbound) within the lipid II
cycle with in vitro dissociation constant KD ¼ kdiss

kass
, leading to a pool of bound target

(Sbound), but now the sum of all other, non-target lipid II cycle intermediates are
represented as ‘bactoprenol reservoir’ (Sreservoir). For simplifying reasons, the inter-
conversion of one species into the other follows first order kinetics, determined by

the equilibrium constant KG ¼ k�1
k1
. As in the full model, production of new lipid

carriers at rate α balances the overall growth-driven dilution of all reaction species
with rate γ:

d Sreservoir½ �
dt

¼ α� k1 Sreservoir½ � þ k�1 Sunbound½ � � γ Sreservoir½ � ð13Þ

d Sunbound½ �
dt

¼ k1 Sreservoir½ � � k�1 Sunbound½ � � kass Sunbound½ � A½ � þ kdiss Sbound½ � � γ Sunbound½ �
ð14Þ

d Sbound½ �
dt

¼ kass Sunbound½ � A½ � � kdiss Sbound½ � � γ Sbound½ � ð15Þ

Here, we assume that the production of new lipid carriers enriches the bactoprenol
reservoir (Sreservoir), and later consider the scenario in which new lipid carriers feed
the free target pool (Sunbound), the latter of which is the case for UPP-binding
antibiotics. In flux-balance d

dt ¼ 0
� �

the fraction of antibiotic-bound target relative
to the total abundance of cycle intermediates (STOT = Sreservoir + Sunbound + Sbound)
is given by

½Sbound�
STOT

¼ A½ �
A½ � þ γ

k1
þ ~KD 1þ ~KG

� � ;

where ~KD ¼ kdissþγ
kass

and ~KG ¼ k�1þγ
k1

are the respective in vivo equilibrium constants.

Moreover, when new lipid carriers feed the free target pool, arrive at an analytical
solution of a similar form

½Sbound�
STOT

¼ A½ �
A½ � þ ~KD 1þ ~KG

� � ;

where ~KG ¼ k�1
k1þγ. However, as the cycling reactions dominate the de novo synth-

esis, i.e. k−1, k1 ≫ γ (see Supplementary Note 1; Quantitative considerations of the
peptidoglycan synthesis in E. coli), both solutions can be approximated by

½Sbound�
STOT

� A½ �
A½ � þ ~KD 1þ ~KG

� � ;

with ~KD ¼ kdissþγ
kass

and ~KG � k�1
k1
: Likewise, the unbound form of the target takes the

form

½Sunbound�
STOT

�
~KD

A½ � þ ~KD 1þ ~KG

� � ;

such that the relative reduction of the PG synthesis rate in presence of the anti-
biotic (concentration [A]) compared to the unperturbed synthesis rate is

jPG A½ �ð Þ
jPG A½ � ¼ 0ð Þ ¼

k�1 Sunbound½ � A½ �
k�1 Sunbound½ � A½ �¼0

¼
~KD 1þ ~KG

� �

A½ � þ ~KD 1þ ~KG

� � :

When incorporating cooperative drug-target binding as in Eq. (12), we
analogously obtain

jPG A½ �ð Þ
jPG A½ � ¼ 0ð Þ ¼

~Kn
D 1þ ~KG

� �

A½ �nþ~Kn
D 1þ ~KG

� � ;

representing the key result for in vivo antibiotic action in the main text. Thus, the
half-maximal rate jPG is reached at an antibiotic concentration

A½ � ¼ IC50 ¼ ~KD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~KG

n

q
. Given that in the absence of the antibiotic

~KG � k�1
k1
� Sreservoir½ �

Starget½ � , the IC50 clearly scales with the n-th root of the ratio between

bactoprenol reservoir and target pool in the absence of antibiotic (Starget).
Finally, taking cycling rates and pool level distributions equal to the full model

into account, we show that the reduced model reproduces the model predictions of
the full model (Supplementary Fig. 3g). The only subtle differences arise from the
fact that the reduced model considers first order kinetics, leading to a linear
dependency between the lipid pool sizes and the individual fluxes from one
intermediate to the next. Consequently, a reduction of the pool sizes to 50% of their
maxima by antibiotic binding directly leads to a half-maximal rate of PG synthesis.
In contrast, the Michaelis-Menten kinetics implemented in the full model features
saturation effects. Since the pool levels of lipid carrier are on the same order as the
KM values of the respective enzymes (Supplementary Table 1), most enzymes are
on the brink of saturation, indicating that there is not necessarily linear
dependency between the flux from substrate to product pool and substrate levels.
Indeed, the substrate pools have to be reduced by slightly more than 50% to
concomitantly reach a halved PG synthesis rate, requiring slightly higher antibiotic
concentrations as predicted from the simplified scenario (Supplementary Fig. 3g).

Model simulations and parameter fitting. The numerical solution of the dif-
ferential equations and all simulations were performed with custom scripts
developed in MATLABTM R2017b software (The MathWorks, Inc.). To constrain
the model to a physiological parameter regime we followed the rationale detailed in
the Supplementary Note 1. These constraints lead to eleven objective functions
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with seven unknown parameters. To solve this over-determined non-linear data-
fitting problem, we used the function lsqnonlin imbedded in the MATLABTM

software, solving nonlinear least-squares curve fitting problems of the form

mink f xð Þk22 ¼ min f1 xð Þ2þf2 xð Þ2þ¼ þ fn xð Þ2� �
:

by using a trust-region-reflective Newton algorithm. As outputs, it returns the
optimum �x of the problem as well as the squared 2-norm χ2 of the residual at
�x χ2 ¼P

f �xð Þ2� �
. To account for the presence of local optima, 100 independent fits

were performed with randomly chosen initial parameter sets. Eventually, the best-
fit result (minimal χ2) was defined as the final parameter set (Supplementary
Table 2).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files.

Code availability
Matlab code used in this project for data analysis is available from the corresponding
author upon reasonable request.
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