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Abstract: Since Dietl et al. predicted that Co-doped ZnO may show room-temperature ferromag-
netism (RTFM) in 2000, researchers have focused on the investigation of ferromagnetic ZnO doped
with various transition metals. However, after decades of exploration, it has been found that undoped
ZnO nanostructures can also show RTFM, which in general is dependent on ZnO morphologies.
Here, we will give an overall review on undoped ZnO nanomaterials with RTFM. The advanced
strategies to achieve multidimensional (quasi-0D, 1D, 2D, and 3D) ferromagnetic ZnO nanostructures
and the mechanisms behind RTFM are systematically presented. We have successfully prepared
ferromagnetic nanostructures, including thin films, horizontal arrays and vertical arrays. The existing
challenges, including open questions about quantum-bound ZnO nanostructures, are then discussed.

Keywords: dimensional engineering; substrate engineering; thickness-dependence

1. Introduction

In recent years, due to their potential applications in spintronic devices, diluted mag-
netic semiconductors have attracted the attention of researchers [1]. Many research groups
have attempted to look for compounds with room-temperature ferromagnetism (RTFM)
since 2000, which can be obtained with doping transition metal elements into metal oxides
including ZnO [2–6], TiO2 [7–10], SnO2 [11–16], In2O3 [17,18] and HfO2 [10,19–21]. Since it
was predicted based on the Zener model that Co-doped ZnO could exhibit RTFM [22], re-
searchers have gradually focused on transition metal-doped ZnO systems. As an overview
of the many publications on doped ZnO with RTFM, some review articles [4,6,23–33] are
presented in Table 1.

In fact, undoped ZnO can also exhibit ferromagnetic ordering. The spin state related
with Zn vacancy (VZn) was identified first by its electron spin resonance (ESR) spectrum
in electron-irradiated ZnO single crystals [34]. It is worthwhile noting that recent experi-
mental results have shown that nano-engineering can also induce ferromagnetic behavior
in non-ferromagnetic bulk materials [35–37]. The magnetic ordering obtained by the min-
imum number of vacancies was not successfully detected at that time. Amazingly, it
was found later that the miniature of the bulk materials in nanoscale, such as nanoparti-
cles (NPs), could exhibit novel magnetic behaviors in undoped ZnO. In 2006, RTFM (Ms,
~0.0005 emu/g) was observed in sol-gel ZnO NPs [38], which could be attributed to oxygen
vacancies (VO). Subsequently, Banerjee et al. [39]. found that thermal annealing could
induce RTFM in ZnO white powder, owing to the formation of VO clusters during the
thermal treatment. Then, RTFM with a saturation magnetization up to 35.65 emu/g was
also observed in undoped ZnO thin films (TFs) by pulsed laser deposition (PLD) and VZn
located at the surface or the interface of the samples could be the source of RTFM [40]. More
importantly, various ZnO nanostructures with RTFM were obtained by various approaches,
such as ionic layer epitaxy [41], polymer-assisted deposition (PAD) [42–44], electrochemical
deposition method [45], sol-gel [36,46,47], ball milling (BM) [48–50], and PLD [51], etc.
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Here, we will give an overview of the timeline of undoped ZnO nanostructures with
RTFM (Figure 1).

Table 1. Summary of research on ferromagnetic (FM) zinc oxide. RTFM (room-temperature ferromagnetism).

Topic Year References

RTFM of TM-doped ZnO films 2005 [23]
RTFM of TM-doped ZnO films 2008 [4]

Theoretical and experimental studies of ZnO-based DMS 2010 [24]
RTFM of capped ZnO nanoparticles 2011 [25]

Defect-induced magnetism in undoped ZnO 2013 [26]
RTFM in ZnO nanomaterials 2013 [27]

ZnO-from dilute magnetic doping to spin transport 2014 [28]
Defect-driven RTFM in undoped ZnO 2015 [6]

Surface and/or interface RTFM of undoped ZnO nanoparticles 2015 [29]
RTFM in ZnO: TM 2016 [30]

Vacancy defect-induced RTFM in undoped ZnO nanostructures 2017 [31]
ZnO-based dilute magnetic semiconductor 2020 [32]

Figure 1. Timeline showing key developments of ZnO nanostructures with RTFM.

2. Dimension Design

ZnO nanostructures can be divided into the following categories according to dimen-
sions, such as: quasi-0D materials (quantum dots (QDs), and nanoparticles (NPs), 1D materi-
als (nanorods (NRs), nanowires (NWs), nanostructured arrays, capped nanowires/nanotubes
arrays, and other nanostructures), 2D materials (nanosheets, nanoplates, and thin films
(TFs)), and 3D materials (single crystals, and porous microspheres).

2.1. Zero- and Quasi Zero-Dimensional Materials

Qusai-0D materials, such as Quantum dots (QDs), are crystalline particles with sizes
less than 100 nm. ZnO QDs with RTFM (Figure 2) are commonly deposited by sol-gel
(SOL) [36,47,52–54], solid-state reactions (SSR) [38], ball milling (BM) [49,55–61] pulsed
laser deposition (PLD) [51], and coprecipitation (COP) [62,63] and so on. Previous studies
have shown that RTFM of QDs can be controlled by synthetic temperature [52], milling
time, annealing temperature or atmosphere [53,54], Zn source and capping [36,47]. As
another kind of quasi zero dimensional material, nanoparticles (NPs) are about hundreds of
nanometers in size. ZnO NPs with RTFM have been synthesized by BM [49,59], microwave
plasma assisted spray (MPAS) [64], the miceller method (MIC) [39], COP [62] and the
surfactant-free wet chemical method (SWCM) [65] (Figure 2). It has also been found that
RTFM can be controlled by annealing parameters [39,59,62,65], particle size [64] and milling
time [49]. The size-dependent RTFM in ZnO QDs/NPs (Figure 3) can be observed [52].
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Ms is increased gradually by decreasing the diameters of ZnO NPs, and then RTFM will
transform into paramagnetism (PM) or diamagnetism (DM).

Figure 2. Overview of currently available preparation strategies for fabricating ZnO QDs/NPs
with RTFM. Sol-gel (SOL); Pulsed laser deposition (PLD); Solid-state reactions (SSR); Coprecipita-
tion (COP); Ball milling (BM); Miceller method (MIC); Microwave plasma assisted spray (MPAS);
Surfactant-free wet chemical method (SWCM).

Figure 3. The size-dependent RTFM in ZnO QDs/NPs.
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2.2. One-Dimensional Materials
2.2.1. Nanowires/Nanorods

RTFM has been found in ZnO NWs [66] prepared by electro-deposition (ED). Due to
the incomplete oxidation of zinc NWs, zinc clusters are formed in ZnO NWs, which induce
room temperature ferromagnetism. Subsequently, ZnO NRs exhibiting RTFM have been
obtained by hydrothermal method (HYT) [67] with Zn(Ac)2·2H2O and NaOH (Figure 4A).
When the diameters of the NRs decreases, the Ms of the as-grown sample increases. Zni at
the surface of ZnO NRs may be one of the reasons for RTFM.

In addition, VZn can also be produced in ZnO NRs with RFTM (Figure 4B), which were
synthesized by COP [68]. The as-prepared NWs [69] (Figure 4C) show an obvious RTFM
(Ms, ~0.007 emu/g). However, highly crystalline ZnO NWs [69] (Figure 4) prepared by the
pulsed laser vaporization (PLV) process show no RTFM. X-ray fine structure spectroscopy
study confirms that VZn can cause RTFM in ZnO NRs.

Furthermore, ZnO NRs have been obtained in aqueous conditions [70]. As-prepared
NRs show RTFM behavior. Strangely, when the size of the NRs decrease, the magnetization
of ZnO NRs increases. Singly charged oxygen vacancies (VO

+) localized on the sample is the
origin of RTFM. Single-crystalline ZnO NWs with RTFM (Ms, ~0.001 emu/g) (Figure 4D,E)
have been obtained by the vapor transport method (VTM) [71]. RTFM related with VO
can be modulated by selecting different catalysts and changing the growth temperature.
Jana et al. [72] has reported ZnO NRs (Ms, ~0.059 emu/g) using hydrolysis of zinc acetate.
Moreover, polycrystalline ZnO NRs with RTFM have also been prepared by a wet chemical
method (WCM) [73]. RTFM in ZnO NRs (Figure 4) is attributed to VO

+.

Figure 4. ZnO NRs/NWs. (A) ZnO NRs obtained by hydrothermal method (HYT) (Reproduced
with permission from [67]. Copyright 2008, American Institute of Physics). (B) ZnO NRs prepared by
coprecipitation method (COP) (Reproduced with permission from [68]. Copyright 2009, Elsevier).
(C) SEM images of ZnO NWs (Reproduced with permission from [69]. Copyright 2010, Ameri-
can Chemical Society). (D) HRTEM image of ZnO NRs (Reproduced with permission from [69].
Copyright 2010, American Chemical Society). (E) ZnO NRs synthesised by wet chemical method
(WCM) (Reproduced with permission from [72]. Copyright 2018, Elsevier). Electro-deposition (ED);
Chemical vapor deposition (CVD); Pulsed laser vaporization (PLV); Aqueous chemical method
(ACM); Hydrolysis (HYL).
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2.2.2. Nanostructure Arrays

ZnO nanostructure arrays (Figure 5) have been fabricated by various approaches, such
as HYT [74], colloidal template method (CTM) [75], chemical vapor deposition (CVD) [76],
chemical bath deposition (CBD) [76,77], and polymer-assisted deposition (PAD) [42–44].
ZnO NWs are usually synthesized by a seed method. Firstly, ZnO TFs are prepared
by magnetron sputtering and used as seed layer, then ZnO NRs arrays are obtained by
HYT [74]. The defect states are controlled by annealing in O2 and H2 atmosphere at
500 ◦C, respectively. It has been found that VO is closely related to RTFM by PL spectrum
and vibrating sample magnetometer (VSM). Furthermore, vertically oriented NRs arrays
(VNRA) and randomly oriented NRs arrays (RNRA) have been synthesized by CVD and
CBD [76]. These results show that RTFM is originated from the VO

+.

Figure 5. ZnO nanostructure arrays.

Interestingly, ZnO porous arrays (Ms, ~5.7 emu/g) and ring arrays with RTFM (Ms,
~0.25 emu/g) have been fabricated by CTM [75] (Figure 5). When the grain size decreases
to ~3 nm, the Ms can increase to ~5.7 emu/g. The results show that grain size and VO
concentration can affect the RTFM. The presence of the defects in ZnO nanocactuses (Ms,
~3.0 emu/cm3) than in the ZnO NWs (Ms, ~2.3 emu/cm3) was observed [77] in Figure 5.
The low temperature method can generate more defects, and then induce the higher Ms
in nanocactuses. ZnO HNWA [43] and VNPA [44] have also been obtained by PAD in
our lab. Our results show that more VZn can potentiate RTFM [43,44]. Thiol-capped ZnO
NWs/NTs arrays can present RTFM [78]. The M-H loops of the thiol-capped samples reveal
the height-dependent and morphology-dependent RTFM (Figure 6). Combing magnetic
measurements and calculations show that the origin of ferromagnetism is mainly attributed
to spin-polarized 3p electrons in S sites and, therefore, has a strong correlation with Zn–S
bond anisotropy.

In the nanowire system, the change of diameter has no obvious effect on RTFM
(Figure 7). However, the height-dependent RTFM has been observed in capped ZnO
NWs (Figure 6A).
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Figure 6. RTFM of ZnO nanowire (NWs)/nanotube arrays (NTs) is modulated by capping with thiol.
(A) M–H curves for ZnO NWs of different heights. (B) M–H curves for ZnO NW arrays of diameters
~150 nm. (C) M–H curves for ZnO NT arrays. (D) NT arrays (Reproduced with permission from [78].
Copyright 2009, Elsevier).

Figure 7. The size-dependent RTFM in ZnO NWs.

2.2.3. Other Nanostructures

ZnO nanoflowers with RTFM (Ms, ~0.069 emu/g) have been obtained by HYT [79].
TEM images show that this flower sample is composed of closely packed NRs. XPS indi-
cates that isolated vacancy clusters is closely related to the RTFM. In addition, microdiscs
and porous nanoassembly of ZnO have been synthesized by soft-chemical approaches [80].
Furthermore, various types of ZnO nanostructures have been obtained by a microwave as-
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sisted HYT [81]. Spectrum measurements show that the defects may mediate RTFM [80,81].
The morphology-dependent RTFM is shown in Figure 8. ZnO HNWA has the highest Ms
is ~7.1 emu/g.

Figure 8. Saturation magnetizations (Ms) of various ZnO nanostructures. Data from refs. [43,44,75,77,79,81].

2.3. Two-Dimensional Materials
2.3.1. Nanosheets/Nanoplates

Two-dimensional (2D) nanosheets/nanoplates have been synthesized by HYT [45,82,83]
and ionic layer epitaxy (ILE) [41] in Figure 9. The average thickness of ZnO Nanoplates is
estimated to be ~20 nm by the SEM images and XRD peak. Interestingly, it is only when
the thickness is reduced to 5–8 nm, the samples exhibit RTFM. Interestingly, first principles
calculation results show that when the thickness of the NSs decreases to a certain range,
the magnetic moment will be generated; however, when the size of the NWs decreases
along the a-axis and b-axis, the magnetic moment will not be generated. The distorted
bands may be responsible for the RTFM in ZnO nanoplates.

ZnO single-crystalline nanosheets with RTFM have been obtained [45]. TEM images
present that ZnO sheets and dodecyl sulfate bilayers compose the lamellar structure.
The results show the cluster of spin-polarized defects induce RTFM in single-crystalline
ZnO nanosheets.

Two-dimensional ZnO nanosheets with high VZn concentration have been grown
by ILE [41] (Figure 9E,G). The nanosheets annealed in Ar at 400 ◦C for 1h show Ms of
50.9 emu/g in Figure 9G. Significantly, DFT calculations and experimental results suggest
that VZn could be associated with the RTFM.

By contrast with 2D materials, ZnO nanosheets do not show obvious thickness depen-
dence. However, ZnO nanosheets with saturation magnetization up to 50.9 emu/g have
been obtained recently by ILE (Figure 10).
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Figure 9. (A) ZnO nanoplates synthesized by HYT. (B) M–H curves for ZnO nanoplates. (C) The corresponding Ms

and coercivities Hc are plotted in (A). (D) M–H curves for ZnO nanowires and nanoplates (Reproduced with permission
from [82]. Copyright 2012, American Chemical Society). (E,F) AFM images of two-dimensional (2D) ZnO nanosheets
by ILE. (G) M-H curves for 2D ZnO nanosheets (Reproduced with permission from [41]. Copyright 2019, American
Chemical Society).

Figure 10. The thickness-dependent RTFM in ZnO nanosheets.
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2.3.2. Thin Films

In 2007, RTFM has been first observed in undoped ZnO TFs by PLD [40]. The results
suggest that VZn can generate RTFM, where the ferromagnetism is related to the thickness
of ZnO TFs. Soon after, calculations [84] not only showed that undoped ZnO TFs and
NWs can be ferromagnetic but also indicated that VZn is responsible for RTFM in low-
dimensional magnetic ZnO nanostructures. Similar to other nanostructures [38,40,67,80,81],
VZn prefers to reside on ZnO NWs, resulting in stronger RTFM.

The thickness-dependent ferromagnetism in ZnO TFs has been investigated by Kapi-
lashrami et al. [85]. With increasing the film thickness, the ferromagnetism first increases;
when the film thickness exceeds 480 nm (Ms, ~0.62 emu/g), the ferromagnetism then
decreases; with increasing of film thickness, the ferromagnetism will transform into para-
magnetism (PM) or even diamagnetism (DM). The defect is mainly responsible for the
observed RTFM.

Grain boundaries can also mediate RTFM. ZnO TFs were also obtained by liquid
ceramics method [86]. The HRTEM images show that ZnO grains is surrounded by the
amorphous area. Furthermore, RTFM origins from the amorphous regions related the
defects. By decreasing the grain size, the magnetic volume fractions will increase [87].
Tietze et al. [87]. built a magnetic shell model related to the grain boundaries, which
clarified the origin of RTFM in ZnO TFs.

In the ZnO TFs system, VZn [40,84,88–90] can also induce the RTFM. The existence
of VZn is often confirmed by photoluminescence and positron annihilation spectrum.
Xing et al. [88] has found that the sol-gel derived samples contain more VZn, compared
with the MBE-ZnO TFs, which shows much stronger RTFM. Similarly, VZn is also the origin
of RTFM in polycrystalline ZnO TFs prepared by PAD in our lab [89,90].

Additionally, undoped ZnO TFs [91,92] have been fabricated with CVD [93]. Interest-
ingly, a nanosized structure can induce RTFM in ZnO TFs. Similar to ZnO NRs [71,76], VO
can generate RTFM in undoped ZnO TFs obtained by PED [94] and undoped ZnO NPs
prepared by an electrospinning method [95]. Moreover, Zhang et al. [96] indicated that
RFTM in pure ZnO TFs should be related to Zni. The shallow donor caused by Zni defects
might modify the electronic structure of ZnO TFs, leading to the RTFM.

The thickness dependence of RTFM has been observed in films prepared by different
experimental methods (Figure 11). The RTFM of ZnO TFs is affected by the defects on the
surface of the sample or at the interface between the sample and the substrate.

Figure 11. The thickness-dependent RTFM in ZnO TFs.
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2.4. Three-Dimensional Materials

In 1970, Galland et al. [34] irradiated ZnO single crystals with 3MeV electrons. ESR
spectra showed that VZn can generate the high spin state. Furthermore, the intrinsic defect
just like Zni and VO may give rise to the RTFM in single crystalline ZnO [97].

Interestingly, the metal–insulator transition has been found in the ZnO supercells
adsorbed with hydrogen atoms by first-principles calculations [98]. This phase transition
can affect the magnetic transformation. Experimentally, ZnO single crystals have been
obtained by HTY [99]. The hydrogen penetration depth is confirmed at 20 nm by stopping
and range of ions in matter (SRIM) simulation. SQUID measurements indicate that the
Ms increases with the treatment time and the concentration of hydrogen. Subsequently,
hydrogen atoms may trigger the RTFM in ZnO single crystals in Khalid et al. [100]. The Ms
is up to ~4 emu/g. Strangely, the vacancies defects and the interstitial Zn atoms cannot
induce the RTFM in ZnO monocrystal [101].

HYT [102] has been developed to grow Zn5(OH)8Ac2·2H2O microspheres. In fact,
the microspheres are grown from the nanosheets, which are curved and connected to
each other. ZnO porous microspheres [103] have been obtained from Zn5(OH)8Ac2·2H2O
microspheres annealing at 500 ◦C. The RTFM in pure ZnO microspheres origins from VZn
and shallows donors.

3. Ferromagnetism of Undoped ZnO Nanostructures
3.1. Influence of Precursor Selection on Room-Temperature Ferromagnetism (RTFM)

The preparation of materials has always been optimized by selecting more suitable
precursors. In 2019, Zn(NO3)2·6H2O and ZnCl2 were selected as zinc sources to prepare
ZnO NPs [104]. The difference of Ms was nearly four times, which may have been due to
VO in the samples produced by selecting different precursors.

3.2. Substrate Effects on Ferromagnetism

Substrates have played an important role in material synthesis [4,93,94,105–108]. ZnO
TFs have been grown on single-crystalline substrates by MOCVD [93]. M–H curves show
that ZnO TFs on sapphire substrate are non-ferromagnetic (Figure 12A,B). However, the
structural defect located on the substrate–film interface can cause RTFM in ZnO TFs.
Interestingly, different substrates have been used to fabricate ZnO TFs with the same
thickness by PED [94], and their ferromagnetic behaviors are very different. The ZnO TFs
on silicon substrate show stronger ferromagnetism than the others, because more VO can
be created in the TFs [94]. The origin of RTFM may be VO.

ZnO TFs grown on sapphire substrates have been synthesized by PLD [105]. Only the
samples on R-plane sapphire substrate exhibit RTFM. Furthermore, the results suggest that
VZn is probably the reason for the RTFM. In addition, quartz, glass, and silicon have been
selected as substrates to prepare ZnO TFs by PLD, and the RTFM in the samples may come
from the coupling of unpaired electron spins induced by the oxygen 2p orbitals around the
VZn and are enhanced by the in-plane compressive strain [106].

The modulation of RTFM by changing the substrate temperature has also been studied
in ZnO TFs [107]. However, ZnO films grown at low substrate temperatures exhibit a
larger Ms. Ms decreases with increasing the temperature. A similar result is found by
Xu et al. [108]. Notably, the effect is different from that in TM-doped ZnO TFs [4].
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Figure 12. Substrate effects on RTFM. (A) M-H loops of ZnO TFs prepared by CVD on sapphire
substrates (Reproduced with permission from [93]. Copyright 2019, Elsevier). (B) M-H loops of
ZnO TFs deposited by CVD on (111) MgAl2O4 substrates (Reproduced with permission from [93].
Copyright 2019, Elsevier). (C) Ms of ZnO TFs deposited on different substrates (Reproduced with
permission from [106]. Copyright 2009, American Chemical Society).

3.3. Effect of Growth Conditions on RTFM

The RTFM can also be mediated by growth temperature. In 2012, Xu et al. [52]
found that ZnO QDs with different sizes exhibited an obvious RTFM. Furthermore, the
surface-volume ratio was closely related with the size-dependent ferromagnetism.

The size of QDs can also be controlled by milling time, which affects RTFM of QDs. Fur-
thermore, it has been found that milling time is a superior way to mediate RTFM [49,57,58].
The grain size does not change monotonously with milling time, but Ms will increase
monotonously in a certain range. In fact, VZn can induce RTFM in ZnO QDs.

Similarly, the grain size can be changed by milling time, as reported by Kisan et al. [57].
Interestingly, the transition from PM to FM is realized by this strategy. UV-vis spectra [57]
and positron annihilation spectra [109] show that VO can affect the RTFM.

3.4. Influence of Post-Annealing on RTFM

Zhan et al. [110]. observed that RTFM can be produced by annealing in Ar. The
magnetic field strength will affect the observed RTFM. When a magnetic field of 7T is
applied, Ms is as high as 2.7 emu/g. Furthermore, PL spectra indicate that RTFM originates
from VO

+.
Undoped ZnO TFs with RTFM have been obtained by PAD [89]. The magnetization of

the sample can potentiate by annealing in O2 or H2 gas. Positron annihilation spectroscopy
indicates that VZn can induce the RTFM. In addition, we have also fabricated ferromagnetic
Zn0.97Co0.03O TFs by PAD [90]. The Oi and VZn can be mediated with the annealing. The
PL spectra show that the RTFM is closely related to Oi and VZn.

Changing annealing temperature is another strategy to mediate RTFM [53,54] The Hc,
Mr and Ms increase with decreasing the annealing temperature of the samples. PL spectra
show that Zni and VO related defects are closely related to the RTFM.

Interestingly, we have found that as-grown ZnO TFs can be transformed into centimeter-
scale ZnO horizontal NWs arrays [43] by annealing in O2. With the extension of annealing
time, the length becomes longer. After ZnO NWs arrays have been produced, the magnetic
properties of the films transform PM into FM.
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3.5. Dopping with Non-Magnetic Atoms

Notably, doping is also an effective way to modulate the RFTM of ZnO. Many re-
search groups have attempted to look for compounds with RTFM since 2000, which can be
obtained with doping transition metal elements into metal oxides such as Cr [4,111–113],
Mn [2–4], Fe [114], Ni [115], Co [90,116–118], Sc [4,119,120], Ti [120], V [120], and Cu [120,121],
and codoping such as CoFe [122], and MnCo [123]. However, experimental studies
on TM-doped ZnO have produced inconsistent results and the mechanism of RTFM
remains unclear. This promoted search for DMS based on alternative dopants. Manifes-
tation of RTFM has also been undertaken by doping with non-magnetic dopants such as
H [26,98–110,124,125], N [126,127], C [128–131], and S [47,78]. Interestingly, the observation
of RTFM strongly suggests the presence of a spin-split band with a non-zero spin-orbit
coupling in H-ZnO single crystals [100]. In addition, incorporation of N at 60◦ in ZnO
induces the stronger FM, higher band gap reduction, larger reduction in surface roughness
and higher reduction in the grains at RT [126]. Carbon-doped ZnO films show an intrinsic
RTFM, which originates from the Zn-C system in the ZnO environment [128]. Meanwhile,
thiol-capped nanotube arrays have exhibited a higher Ms than the nanowire arrays due
to its larger surface-to-volume ratio and thus higher density of Zn–S bond spins. The
observed dependence of the magnetic anisotropy of ZnO NTs haves suggested that the
change in the ordering of Zn–S spins on the crystal facets can affect the extent of magnetic
ordering and alter the preferred magnetization direction [78].

3.6. Capping

Capping organic molecules is a common method to mediate RTFM of non-magnetic
materials. In 2007, Garcia et al. [36] controlled the ferromagnetism by capping ZnO NPs
with three different organic molecules. The band structure was mediated with capping
molecules, and then the RTFM was induced from DM.

4. Conclusions and Outlook

The present literature analysis reveals that the amount of research focused on un-
doped ZnO nanostructures with RFTM has been increasing over the past two decades. We
have successfully prepared ferromagnetic nanostructures, including thin films, horizontal
arrays and vertical arrays. RTFM could be readily modulated by non-doping means
including precursor selection, substrate effects, growth conditions, post-annealing, and
capping. Some novel ways to drive the transition from DM to FM in undoped ZnO
nanostructures have delivered interesting results, as shown in Figure 12.

The size-dependent RTFM in ZnO QDs/NPs (Figure 3) can be observed [52]. Ms
is increased gradually by decreasing the diameters of ZnO QDs/NPs. However, in the
nanowire system, the change of diameter has no obvious effect on RTFM (Figure 7). Inter-
estingly, RTFM can be induced from non-magnetic ZnO nanosheets and TFs by reducing
the thickness (Figures 10 and 12). Notably, the magnetic anisotropy of ZnO nanostructures
should be further studied.

Through theoretical calculation, it has been found that there is a driving force of phase
transformation in ZnO. Therefore, fabrication of ultrathin (thickness < 2 nm) freestanding
ZnO structures remains challenging. Amazingly, Taniguchi et al. [45] have reported that
organic layers could allow the formation of ZnO nanosheets (~1.5 nm) with RTFM. In
addition, Zhao et al. [132]. have presented the phase transitions of quantum-confined
ZnO NWs by in-site TEM. Experimentally, it is still a great challenge to study RTFM in
quantum-bound ZnO nanostructures.

Even though a variety of magnetic nanostructures have been prepared and studied,
there are still many problems worthy of further study. (1) Development of new ferro-
magnetic nanostructures, such as nano-octagonal stars [133]. In the past, the morphology
characterization mainly focused on 2D characterization. Recently, 3D electron tomography
has emerged to analyze the 3D structure of nanostructures. In addition, the self-assembly
of nanostructures and the evolution of ferromagnetism were further studied by an in
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situ method [133,134]. (2) Development of some emerging methods to prepare and study
the nanostructure. (3) New characterization methods have been employed to investigate
the nanostructures with RTFM [135,136]. The crystal nucleation process of FePt NPs in
four dimensions [135] has been studied by atomic electron tomography (AET) [135]. In
addition, electron tomography (ET) has revealed FeCo nano-octopods with RTFM. (4) The
mechanism of undoped ZnO with RTFM needs further study.
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