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Abstract

Ovarian cancer is the gynecological cancer with the poorest prognosis. One significant reason is 

the development of resistance to the chemotherapeutic drugs used in its treatment. The large 

GTPase, hGBP-1, has been implicated in paclitaxel resistance in ovarian cell lines. Forced 

expression of hGBP-1 in SKOV3 ovarian cancer cells protects them from paclitaxel-induced cell 

death. However, prior to this study, nothing was known about whether hGBP-1 was expressed in 

ovarian tumors and whether its expression correlated with paclitaxel resistance. hGBP-1 is 

expressed in 17% of ovarian tumors from patients that have not yet received treatment. However, 

at least 80% of the ovarian tumors that recurred after therapies that included a tax-ane, either 

paclitaxel or docetaxel, were positive for hGBP-1. In addition, hGBP-1 expression predicts a 

significantly shorter progression-free survival in ovarian cancers. Based on these studies, hGBP-1 

could prove to be a potential biomarker for paclitaxel resistance in ovarian cancer.
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1. Introduction

Ovarian cancer is the most deadly of the gynecologic cancers. Resistance to chemothe-

rapeutics, both innate and acquired, contributes to this poor prognosis. As many as 20% – 

25% of patients have innate drug resistance and fail to respond to chemotherapy initially [1]. 

Although 75% of ovarian tumors will initially respond to chemotherapy, development of 

drug resistance and tumor recurrence are frequent [1]. Treatment usually involves a drug 

cocktail containing a taxane, most frequently paclitaxel. This makes the development of 

resistance to paclitaxel a significant problem in the treatment of ovarian cancer.
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To identify a gene signature for paclitaxel resistance, investigators made three cancer cell 

lines resistant to paclitaxel [2]. Only eight genes were up-regulated in common when all 

three cell lines became resistant. One of these was the large GTPase, human Guanylate-

Binding Protein-1 (hGBP-1) [3]. The Guanylate-Binding Proteins (GBPs) are a family of 

large, cytokine-induced GTPases (reviewed in [4]). hGBP-1 can be expressed in several 

types of primary tumors and the tumor-associated cells within them. Depending on the 

tumor type, the prognosis associated with hGBP-1 expression differs [5] [6] [7] [8] [9]. 

Forced over-expression of hGBP-1 in paclitaxel-sensitive OVCAR8 ovarian cancer cells 

resulted in a four-fold increase in IC50 for paclitaxel [3]. While not identified in the gene 

signature described above, TUBB3 has been implicated in paclitaxel resistance and been 

suggested to interact with and be regulated by hGBP-1 in cultured ovarian cancer cell lines.

We are the first to examine hGBP-1 expression in ovarian tumor samples. We find that 

hGBP-1 is expressed in only 17% of newly diagnosed ovarian cancers prior to treatment but 

in at least 80% of ovarian tumors that recur after treatments that include a taxane. The 

expression of hGBP-1 predicts shorter progression-free survival (PFS) in ovarian cancers of 

all stages, histologies, and grades provided that they received optimal debulking. These 

patients subsequently received chemotherapy that included both paclitaxel and platinum 

[10]. Based on this and other studies, hGBP-1 may be an attractive biomarker for predicting 

prognosis. In addition, it may be a therapeutic target in ovarian cancers once we learn how 

hGBP-1 protects cells from chemotherapeutic drugs.

2. Materials and Methods

2.1. Cells and Plasmids

Cells were obtained from American Type Culture Collection [11]. To generate pCMV2(NH) 

Flag-hGBP-1, the hGBP-1 cDNA was amplified from plasmid #516 (the gift of Peter 

Staeheli, University of Freiburg) and inserted into PCMV2(NH). Flag-tagged TUBB3 in 

pcDNA3.1 and pCMV β-gal were provided by Goufa Liu and Brian Ash-burner, repectively 

(University of Toledo).

2.2. Reagents

The following reagents were purchased from the indicated sources: rabbit anti-actin 

(A2066), Sigma-Aldrich; mouse monoclonal anti-βIII tubulin (clone 5G8), Promega; mouse 

monoclonal anti-bromodeoxyuridine antibody (clone Bu2a), DakoCytomation; anti-phospho 

Histone H3, Cell Signaling; mouse anti-pan epithelial monoclonal antibody (MAB1631), rat 

monoclonal anti-hGBP-1 antibody (1B1; 1B1 antibody does not work on frozen sections), 

and mouse anti-human CD31 (CBL468) monoclonal antibody, Chemicon; rabbit polyclonal 

anti-human CD31 (ab28364) and mouse monoclonal (KP1) to CD68 (ab9555), Abcam; 

Recombinant human interferon gamma (hIFN-γ), PBL Biomedical Laboratories; paclitaxel, 

Calbiochem (cat# 580555).

2.3. Generation and Immunopurification of Polyclonal Anti-hGBP-1 Antisera

Rabbit polyclonal antisera against hGBP-1 were generated by New England Peptide, Inc 

using the sequence Ac-LKKGTSQKDETFNLC-amide for immunization. hGBP-1-specific 
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immunoglobulins were isolated by immunopurification against hGBP-1 immobilized onto 

PVDF membranes.

2.4. SDS PAGE and Western Blot Analysis

Cells were lysed and proteins separated on SDS-PAGE, followed by transfer to PVDF 

membranes [12]. Membranes were probed with anti-hGBP-1 and anti-actin.

2.5. Patient Samples

Tumor samples were obtained from patients undergoing surgery for debulking of new or 

recurrent tumors. The patient cohort consists of White, Hispanic, and African- American 

women between the ages of 32 and 83. A table containing patient information is provided 

(Table 1). These studies were approved by the Institutional Review Board of the University 

of Toledo. All participants provided written informed consent. Tumor pieces were flash 

frozen in liquid nitrogen within 30 min of removal. Tissue samples of normal ovaries were 

provided by the Cooperative Human Tissue Network, funded by the National Cancer 

Institute.

2.6. RNA Isolation and Real Time RT-PCR

Total RNA was isolated from tissue samples using Qiagen RNeasy Kit (Qiagen Inc., 

Valencia, CA). For PCR of the tumor cDNAs, the TaqMan primers used were Hs00801390-

sl for TUBB3, Hs00977005-ml for hGBP-1, and Hs03929097 for GAPDH per 

manufacturers instructions. All samples were assayed in triplicate in an ABI 7500 (Table 1).

2.7. Statistical Analysis

MANOVA was used to compare the patterns or levels of expression levels of the two genes 

from the normal, new, and recurrent groups. Wilk’s lambda one-way ANOVA was used to 

determine which genes were contributing to the global difference and which were not. 

Statistical tests were carried out on log (base 2) of the gene expression data because a log 

transformation was required to achieve normal distribution of values.

2.8. Immunofluorescence

Tumors sections (10 μm) were fixed in 4% paraformaldehyde. Sections were blocked for 2 

hours followed by incubation with primary antibodies for 48 hours at 4°C: polyclonal 

hGBP-1 (1:50), anti-Mab1631 (1:3000), anti-CD31 (1:50), and anti-TUBB3 (1:1000). Slides 

were incubated with highly cross-adsorbed Alexa 594 conjugated anti-mouse (1:500) and 

Alexa 488-conjugated anti-rabbit (1:2000). Nuclei were stained with DRAQ5 (Cell 

Signaling Technology, Danvers, MA) (5 μM) or DAPI. Confocal images were collected 

using a TCS-SP spectrophotometric laser scanning confocal microscope (Leica 

Microsystems).

2.9. Tunel Assay

SKOV3 cells were plated onto coverslips in 6-well dishes and transfected with pCMV2-Flag 

or pCMV2 Flag-hGBP-1 and pCMV-β-gal at a 3:1 ratio. After 24 hours, the cells were 
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treated with paclitaxel (5 μM) or vehicle (DMSO) for 18 hours, stained for β-gal, and 

analyzed for apoptosis by DeadEnd Fluorometric TUNEL system (Pro-mega Corp.).

2.10. Analysis of Mitotic Cells

SKOV3 cells were transfected as described. Cells were treated with 5μM paclitaxel or 

vehicle (DMSO) for 24 hours and analyzed for percent mitotic cells by indirect 

immunofluorescence for phosphohistone H3. At least 200 cells from each condition were 

scored as phosphohistone H3 positive or negative.

2.11. Progression-Free Survival

To determine progression-free survival (PFS) as a function of gene expression, KmPlot was 

used (http://kmplot.com/analysis/index.php?p=service&cancer=ovar). The 2015 version of 

the TCGA database with 1648 ovarian samples was screened for hGBP-1 expression with 

the Affymetrix probe of ID number 202269_x_at. The results are expressed as median 

progression-free survival for all stages, histologies, grades, and p53 status of ovarian cancers 

that underwent optimal debulking and chemotherapy that contained a taxol and platinum. 

For TUBB3 the search conditions were the same but the Affymetrix probe was 

202154_x_at.

3. Results

3.1. hGBP-1 Protects SKOV3 Ovarian Cancer Cells from Paclitaxel-Induced Death in Vitro

hGBP-1 makes ovarian cancer cells less sensitive to paclitaxel [3] [13]. To confirm that 

hGBP-1 protects ovarian cancer cells from paclitaxel-induced killing, SKOV3 cells lacking 

hGBP-1 (Figure 1(d)) were transfected with hGBP-1 and treated with paclitaxel. hGBP-1 

blocked paclitaxel-induced apoptosis (Figure 1(a)). Induction of hGBP-1 in SKOV3 cells by 

IFN-γ also protects them from paclitaxel-induced apoptosis (Figure 1(b), Figure 1(d)). 

Paclitaxel kills cells, at least in vitro, by inducing mitotic block. Expression of hGBP-1 in 

SKOV3 cells reduces the number of paclitaxel-treated cells in mitosis (Figure 1(c)).

3.2. Paclitaxel Does Not Induce the Expression of hGBP-1 within 48 Hours

To determine whether paclitaxel-initiated intracellular signals directly induced the 

expression of hGBP-1, SKOV3 cells were treated with paclitaxel. Paclitaxel did not induce 

hGBP-1 expression within 48 hours (Figure 1(d)). These cells are competent to express 

hGBP-1, as evidenced by the induction of hGBP-1 by IFN-γ

3.3. Expression of hGBP-1 in Newly Diagnosed Ovarian Tumors

All data on hGBP-1 and paclitaxel resistance were generated in cultured cells [2] [3] [13]. 

To examine the status of hGBP-1 expression in ovarian tumors, samples were obtained from 

women during surgery for initial diagnosis and debulking of ovarian cancer or from tumors 

that recurred after chemotherapy. Five normal ovary samples were obtained from The 

Comparative Human Tissue Network (CHTN) (Table 1). The mean value for hGBP-1 RNA 

in the benign ovarian sample 41 was set to 1 for comparison to tumor samples (Figure 2). 

The values of normal ovaries were close to the value for this sample. There was no 
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significant difference between the levels of hGBP-1 mRNA in normal ovaries and those in 

newly identified ovarian tumors prior to chemotherapy. Of the 18 new tumors, only three 

(17% of the total 18) had hGBP-1 RNA levels 2-fold or greater compared to control (Figure 

2(a)).

3.4. hGBP-1 Expression in New Ovarian Tumors Predicts Shorter PFS

To determine if the expression of hGBP-1 in newly isolated ovarian tumors altered disease 

prognosis, PFS of patients with ovarian tumors was determined for tumors with low or high 

initial hGBP-1 expression [10]. The data used for this analysis were limited to those tumors 

isolated from patients who underwent optimal debulking surgery. The data included ovarian 

tumors of all stages, histologies, grades, and p53 status. These filters reduced the 2015 

TCGA database of 1648 ovarian tumors to 1306 patients. Matching tumors with high 

expression of hGBP-1 to those with low expression, further reduced the sample size to 341 

tumors with high and 340 tumors with low expression. The PFS of patients with ovarian 

tumors with elevated levels of hGBP-1 is significantly shorter than that for tumors with low 

levels (Figure 2(b)). If the tumors are further filtered to include only those that were 

subsequently treated by chemotherapy that included a combination of paclitaxel and a platin, 

there were 174 with low levels of hGBP-1 and 175 with high levels of hGBP-1. These 

tumors with high hGBP-1 also have significantly shorter PFS (Figure 2(c)).

3.5. Expression of hGBP-1 in Recurrent Ovarian Cancers

The median level of hGBP-1 RNA in recurrent tumors was significantly higher than in new 

tumors (Figure 2(a)). The tumors were coded based on whether the patient had previously 

received a taxane as part of her chemotherapy (Figure 2(d)). Of the recurrent tumors, 7 of 

the 10 had hGBP-1 RNA values greater than controls, and 4 of the tumors had values greater 

than 2-fold higher than sample 41 (40%). However, laser capture micro-dissection was not 

used to separate tumor cells from surrounding cells. While the primary tumor samples were 

essentially 100% tumor, some of the recurrent samples contained lower percentages of 

tumor cells. In that case even if hGBP-1 expression was elevated within the tumor cells, the 

results for hGBP-1 RNA might not reach 2-fold elevation. To determine whether the 

recurrent tumors expressed hGBP-1, recurrent tumors number 5, 12, 25, 30, 32, 37, 38, and 

69 were stained for both Mab 1631 and hGBP-1 (Figure 2(e)). All of these tumors expressed 

hGBP-1, except tumor 12. Interestingly this recurrent tumor was from a patient that had not 

received a taxane as part of her treatment regime. This raises the percentage of hGBP-1-

positive recurrent tumors to at least 80%. It also reveals the flaws behind analyses of tumor 

samples, especially recurrent, that have not been laser capture microdissected.

3.6. Expression of TUBB3 in Ovarian Cancers in Vivo

TUBB3 has been associated with paclitaxel resistance in vitro and suggested to be regulated 

by hGBP-1 [13]. TUBB3 mRNA levels were higher in both new and recurrent tumors when 

compared to normal ovaries (Figure 3(a)). Of the 17 new tumors analyzed for TUBB3 RNA 

(Table 1), two had very high levels of expression (tumors 73 and 77) (Figure 3(b) and Figure 

3(c)). TUBB3 RNA was up-regulated in 10 of 17 (59%) new ovarian tumors. When ovarian 

tumors of all histologies, grades, and stages were segregated into those with low and high 
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TUBB3 expression, the differences in TUBB3 expression in ovarian cancers were not 

correlated with changes in PFS (Figure 3(d)).

3.7. Co-Expression of hGBP-1 and TUBB3 in Vivo

To determine if hGBP-1 and TUBB3 are expressed in the same cells within the tumors, 

tumor sections were stained for hGBP-1 and TUBB3. In tumors such as tumor 73 with 

elevated expression of both hGBP-1 and TUBB3 (and it’s a primary tumor so the sample 

was all tumor) both proteins are expressed in all tumor cells (Figure 4(a)). In tumors such as 

tumor 37 where there were relatively few tumor cells within the sample, both proteins are 

co-expressed. However, not all recurrent tumors that expressed hGBP-1 also expressed 

TUBB3. Therefore, both hGBP-1 and TUBB3 may be expressed in the same tumor cells but 

it is not a prerequisite for the recurrent tumors.

3.8. Immunolocalization of hGBP-1 in Ovarian Tumors

Analysis of hGBP-1 mRNA levels from tissue samples does not identify the cell types 

expressing hGBP-1. In fact, IHC for hGBP-1 in breast cancers, where it correlates with 

improved prognosis, the protein is expressed strongly in tumors but also in the surrounding 

stroma [6]. To determine the cell types expressing hGBP-1 in ovarian cancers, flash frozen 

tumors were stained for hGBP-1 and co-stained for CD68 (macrophages), a pan-epithelial 

marker (Mab 1631), and CD31 (endothelial cells). Using an epithelial cell marker (Mab 

1631), the tumor cells themselves robustly express hGBP-1 (Figure 4(b)). As previously 

demonstrated in a studyof colon cancers, hGBP -1 can also be expressed within endothelial 

cells (CD31) and monocytes (CD68) within the tumors (Figure 4(c) and Figure 4(d)). 

However, the hGBP-1-expressing cells within tumors are primarily tumor cells with few 

infiltrating hGBP-1-positive non-tumor cells. This is in contrast to observations of breast and 

colon cancer, where hGBP-1 is robustly expressed by infiltrating cells and surrounding 

stroma and is correlated with better prognosis [6][14] .

4. Discussion

Resistance to paclitaxel is a significant impediment to successful treatment of ovarian 

cancer. Understanding how ovarian tumor cells become resistant to paclitaxel would be an 

important first step toward developing ways to overcome this resistance. The large GTPase, 

hGBP-1, contributes to resistance to paclitaxel in cultured ovarian cancer cells [2] [3] [13] 

(Figure 1). What had yet to be examined was whether hGBP-1 was expressed in ovarian 

tumors and whether its pattern of expression correlated with paclitaxel resistance. While the 

current study contained a relatively limited number of patient samples, it still provided 

important information. hGBP-1 was expressed in only 17% of newly identified ovarian 

tumors that had not yet been treated (Figure 2). We also showed that elevated hGBP-1 in 

ovarian tumors is correlated with significantly shorter PFS (Figure 2). Although we only 

obtained 10 samples from women with recurrent tumors, 9 of the 10 were examined for 

hGBP-1 protein expression. The only tumor sample negative for hGBP-1 protein expression 

was the recurrent tumor from a patient who had not received either paclitaxel or docetaxel. 

Therefore, all of the tumor samples that we were able to examine and that came from 

patients with disease that returned after treatment with a taxane, were positive for hGBP-1. 
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In this study, hGBP-1 was a more reliable marker for recurrence than TUBB3. In addition, 

hGBP-1 expression in recurrent tumors did not depend on the expression or activity of 

TUBB3.

All these data indicate that fewer than 20% of newly isolated ovarian tumors express 

elevated hGBP-1. Further, patients with those ovarian tumors initially expressing elevated 

hGBP-1 have a significantly shorter PFS than patients whose tumors do not. However, upon 

recurrence at least 80% of the tumors now express hGBP-1 strongly suggesting that those 

tumors that are initially negative or express hGBP-1 at low levels begin to express hGBP-1 

as the tumors recur after therapies that include a taxane. Because ovarian cancer is not a very 

common cancer and the majority of patients with recurrent tumors do not have a secondary 

debulking surgery, the data for new and recurrent tumors from the same patient will be 

difficult to obtain. In fact, all published array data on gene expression changes in ovarian 

cancer accompanying drug resistance have been generated using ovarian cancer cells in 

culture or orthotopic growth of human tumors in mice. The array data that have been used to 

predict genes involved in drug resistance in ovarian cancer were obtained from tumors at 

initial debulking or biopsy and statistical analysis of PFS or survival was performed as a 

function of expression of particular genes.

Probing protein arrays of kinases with hGBP-1 identified an interaction with the kinase, 

PIM1 [13]. Molecular modeling also predicted hGBP-1 could interact with PIM1 [15]. 

Recently an inhibitor of this interaction was developed but its effect on sensitivity to 

paclitaxel has not been explored [16]. PIM1 has two isoforms [17]. This is the consequence 

of the use of two different translation start sites. The larger isoform is 44 kDa and the 

smaller is 33 kDa. Little is known about the functional differences between the isoforms. 

Most studies involve the 33 kDa isoform. Screening a panel of ovarian cancer cell lines that 

included ES2, OVCA194, OVCAR4, OVCAR3, and OVCA420 showed that all of the 

ovarian lines expressed the 33 kDa form of PIM1 [9], while the breast cancer cell lines, 

MCF-7, MCF-10A, MDA-MB-231 and MDA-MB-435 expressed the 44 kDa isoform of 

PIM1 [9]. The affymetrix probes used for generating the data in the TCGA database do not 

distinguish between the two isoforms. However, in ovarian cancer where the smaller isoform 

is expressed, PIM1 expression alone is not correlated with changes in RFS [9]. In breast 

cancer, where the larger isoform is expressed, elevated PIM1 correlated with improved RFS 

[9]. It is possible that the reason that hGBP-1 functions one way in ovarian cancer and 

another in breast cancer is because it interacts with adifferent isoform of PIM1.

This first examination of a role for hGBP-1 in paclitaxel resistance in ovarian patients 

provides evidence that is consistent with the cell culture data on cells that are paclitaxel 

resistant. In fact, it goes further. It shows that TUBB3 expression does not correlate with 

tumor recurrence after taxane treatment in ovarian cancer as well as hGBP-1 expression 

does.But it also leaves some questions unanswered. This pilot study should set the stage for 

additional studies on the role of hGBP-1 in treatment outcomes for ovarian patients.
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Figure 1. 
hGBP-1 blocks paclitaxel-induced death in SKOV3 cells. (a). Cells were transfected with 

Flag-hGBP-1 or control (empty vector) and pCMV-β-gal and treated with paclitaxel (5 μM) 

or vehicle (DMSO) for 18 hours, stained for β-gal expression, and analyzed by TUNEL. The 

results represent the average percent of β-gal positive cells that were also TUNEL positive ± 

SD (n = 3; * = p < 0.01). (b). SKOV3 cells were treated with IFN-γ (500 U/ml) or untreated 

and were examined by TUNEL assay after 24 hours. Results are expressed as mean TUNEL 

positive cells ± SD (n = 3; * = p < 0.05). (c). Cells were transfected with control vector or 

hGBP-1 and treated with 5 μM of paclitaxel or vehicle for 24 hours and stained for 

phosphohistone H3 and anti-FLAG. Results are expressed as mean percent mitotic cells ± 

SD (n = 3; * = p < 0.05). (d). Cells were plated for 24 hours and left untreated, or treated 

with paclitaxel (5 μM) or IFN-γ (500 U/ml) and analyzed for hGBP-1 and actin.
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Figure 2. 
Expression of hGBP-1 mRNA in ovarian tumors. (a). Fold difference of hGBP-1 RNA in 

normal, new, and recurrent tumors was plotted for each individual tumor. (b). PFS was 

determined as described in Materials and Methods. The data from 340 tumors with low 

hGBP-1 and 341 tumors with high expression are shown. (c). PFS was determined from the 

tumors in part B but with the additional filter of subsequent treatment with paclitaxel and 

platin. (d). hGBP-1 RNA expression in recurrent ovarian cancers. (e). Sections from 

recurrent tumors were stained by indirect immunofluorescence for both Mab 1631 and 

hGBP-1.
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Figure 3. 
Expression of TUBB3 mRNA in ovarian cancers. (a). Fold increases of TUBB3 RNA in 

normal, new, and recurrent tumors. (b). Level of TUBB3 RNA in all new tumors of ovarian 

cancers. (c). New tumors are shown without tumors 73 and 77. (d). PFS was determined as 

described on 174 tumors with low TUBB3 and 175 tumors with high TUBB3.
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Figure 4. 
(a). Co-localization of hGBP-1 and TUBB3 in ovarian tumors. Frozen sections where 

examined for TUBB3 and hGBP-1 as described in Methods. The staining data from tumors 

73 and 37 are shown. (b)-(d). Sections from tumor 13 were stained with affinity-purified 

anti- hGBP-1 antisera and Mab 1631 (b), anti-CD31 (c), or anti-CD68 (d).
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