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Abstract 

Reprogramming of cellular metabolism is a hallmark of cancers. Cancer cells more readily use 
glycolysis, an inefficient metabolic pathway for energy metabolism, even when sufficient oxygen is 
available. This reliance on aerobic glycolysis is called the Warburg effect, and promotes 
tumorigenesis and malignancy progression. The mechanisms of the glycolytic shift in tumors are 
not fully understood. Growing evidence demonstrates that many signal molecules, including 
oncogenes and tumor suppressors, are involved in the process, but how oncogenic signals 
attenuate mitochondrial function and promote the switch to glycolysis remains unclear. Here, we 
summarize the current information on several main mediators and discuss their possible 
mechanisms for triggering the Warburg effect. 

Key words: the Warburg effect; reprogramming of glucose metabolism; aerobic glycolysis; tumor metabolism; 
glycolytic switch. 

Introduction 
Reprogramming of glucose metabolism is a key 

event in tumorigenesis. Cancer cells undergo a 
metabolic switch from oxidative phosphorylation 
(OXPHOS) to glycolysis in which a molecule of 
glucose is degraded to two molecules of pyruvate (Fig 
1). Depending on the supply of oxygen for the cells, 
pyruvate is either reduced to lactate in the absence of 
oxygen via an anaerobic glycolysis pathway, or 
oxidized to yield acetyl-coenzyme A in the presence 
of oxygen and then oxidized completely to CO2 and 
H2O via citric acid cycle. The majority of cancer cells 
depend on high rates of glycolysis for growth and 
survival, even when there is sufficient oxygen [1, 2]. 
This type of aerobic glycolysis is called the Warburg 
effect, and the mechanisms underlying this 
reprogramming are not fully understood. The 
Warburg effect has long been linked to hypoxia, but it 

is not solely adaptive to hypoxia, as it also occurs 
under normoxic conditions [1, 2]. Although 
mitochondrial dysfunction in cancer cells can cause a 
shift in energy metabolism, a majority of tumor cells 
demonstrate normal mitochondrial function and 
OXPHOS [3-5], and the high glycolytic flux in cancer 
cells does not mean impairment of OXPHOS [6]. The 
high rates of glycolysis provide advantages for the 
survival and growth of cancer cells [7]. Three possible 
explanations for tumor cell use of the glycolysis 
pathway, an inefficient metabolic pathway, have been 
proposed [8, 9]. First, compared to OXPHOS, the rate 
of ATP production through glycolysis is much more 
rapid [10]. Secondly, high glycolytic flux provides 
sufficient glycolytic intermediates to meet the 
biosynthesis needs of the rapidly proliferating cells 
[11-13]. Finally, NADPH, derived from the enhanced 
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pentose phosphate pathway (PPP) due to the 
accumulation of glycolytic intermediates, enables 
cancer cells to maintain adequate levels of reduced 
forms of glutathione for resistance to 
chemotherapeutic agents. 

Several mechanisms have been proposed to 
enable cancer cells to maintain high glycolytic flux 
[11]. First, phosphofructokinase-1 (PFK1) serves as a 
critical driver of glycolytic flux. The expression of 
PFK2 is upregulated in cancer cells and promotes the 
production of fructose-2,6-bisphospate, which acts as 
a potent allosteric activator of PFK1 to overcome 
negative allosteric feedback inhibition of PFK1 by 
high ATP levels. Second, re-generation of NAD+ and 
lactate production mediated by lactate dehydrogenase 
(LDH) is instrumental in maintaining glycolysis. In 
addition, the expression of pyruvate kinase M2 
(PKM2) is upregulated in cancer cells. Allosteric and 
covalent inhibition of PKM2 channels glycolytic 
intermediates upstream of pyruvate into biosynthetic 
pathways [11]. Although metabolic reprogramming 
has long been observed as a feature of neoplasia and 
tumor growth, the mechanism triggering and 

modulating this process remains largely unclear. In 
this review, we mainly focus on the mechanism 
underlying the regulation of glycolytic switch in 
tumors. In addition to signal molecules and 
transcription factors HIF-1α, c-Myc, Akt, and mTOR, 
the main regulators which have been well 
documented, several other regulators including 
oncogene K-Ras, tumor suppressor p53, energy sensor 
adenosine monophosphate activated protein kinase 
(AMPK), non-coding RNAs, and sirtuin family 
proteins and deacetylation will also be discussed. 

Master regulator HIF-1α 
Hypoxia-inducible factor-1 (HIF1) consists of 

two subunits, HIF-1α and HIF-1β, also known as 
ARNT. Under physiological oxygen levels, the 
HIF-1α subunit is sensitive to oxygen concentration 
and is hydroxylated by prolyl-hydroxylases (PHD) 
and targeted for proteasomal degradation. Increase of 
reactive oxygen species (ROS) under hypoxia inhibits 
PHD and stabilizes the HIF-1α subunit. HIF-1α is a 
master regulator of glycolysis and plays an important 
role as an activator of aerobic glycolysis and lactate 

 
Figure 1. Main steps in glycolysis and possible key enzymes regulated in the Warburg effect. The three reactions catalyzed by hexokinase (HK), 
phosphofructokinase-1 (PFK1), and pyruvate kinase (PK) in this process are rate-limiting steps. During glycolysis, four molecules of ATP are produced per molecule 
of oxidized glucose via substrate-level phosphorylation, and the net yield is two molecules of ATP after deduction of two ATPs consumed in phosphorylation. The 
fate of pyruvate depends largely on the availability of oxygen for the cells. Pyruvate is reduced to lactate under hypoxia via an anaerobic glycolysis pathway or, under 
aerobic conditions, oxidized to yield acetyl-coenzyme A, which is then oxidized completely to CO2 via the citric acid cycle, resulting in the production of large 
amounts of ATP. G-6-P, glucose-6-phosphate; G6DP, glucose-6-phosphate dehydrogenase; GLUT, glucose transporter; Fru-2,6-P2, fructose-2,6-bisphosphate; LDH, 
lactate dehydrogenase; MCT, monocarboxylate transporter; TPI, triose phosphate isomerase. 
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production. It potentiates the transcription of glucose 
transporters (GLUT) and glycolytic enzymes 
including GLUT1, hexokinase II (HKII), pyruvate 
dehydrogenase kinase (PDK), and PKM2 [14-16]. The 
upregulation of HIF-1-mediated HKII results in a high 
glycolytic rate in hypoxic solid tumor [17]. 
Phosphorylation of pyruvate dehydrogenase leads to 
its inactivation and inhibits conversion of pyruvate 
into acetyl-CoA for the tricarboxylic acid (TCA) cycle 
[18, 19]. PKM2 is less catalytically active than is 
PKM1. A higher level of PKM2 in tumor cells, leading 
to accumulation of carbohydrate intermediates, 
facilitates the biosynthesis of macromolecules and 
tumor cell proliferation. HIF-1α drives expression of 
many glycolytic enzymes, and hypoxic glycolysis is, 
in turn, necessary for maintaining HIF-1α activity. 
This constitutes a novel feed-forward mechanism of 
glycolysis-HIF-1α signaling (Fig 2) [20]. 

 

 
Figure 2. HIF-1α is a master regulator of the Warburg effect and plays a critical 
role as an activator of aerobic glycolysis. Hypoxia increases the production of 
ROS, which stabilizes HIF-1α. HIF-1α induces expression of glucose 
transporters and glycolytic enzymes, facilitating glycolysis that is, in turn, 
essential for maintaining HIF-1α activity. Many oncogenes and tumor 
suppressors are involved in the regulation of HIF-1α. EZH2, enhancer of zeste 2 
polycomb repressive complex 2; GRIM-19, gene associated with 
retinoid-interferon-induced mortality-19; LSD1, lysine specific demethylase 1; 
ROS, reactive oxygen species; RPS7, ribosomal protein S7; TKTL1, 
transkelolase-like 1; VEGF, vascular endothelial growth factor; VHL, von 
Hippel-Lindau; WWOX, WW domain-containing oxidoreductase. 

 
HIF-1α activity is tightly regulated by oncogenes 

and other factors. For example, the WW 
domain-containing oxidoreductase (WWOX), lacking 
in many cancer types, interacts with HIF-1α and 
modulates its levels and transactivation function. 
WWOX absence is associated with enhanced 
glycolysis, and WWOX-deficient cells are more 
tumorigenic [21]. Enhancer of zeste 2 polycomb 
repressive complex 2 (EZH2), a multifaceted 
oncogenic protein, promotes glioblastoma 

tumorigenesis and malignant progression through 
activation of HIF-1α and the Warburg effect. HIF-1α 
activation is necessary for EZH2-mediated metabolic 
adaption [22]. Ribosomal protein S7 (RPS7) inhibits 
glycolysis in colorectal cancer by suppressing the 
expression of HIF-1α as well as of GLUT4 and lactate 
dehydrogenase B (LDHB) [23]. Vascular endothelial 
growth factor (VEGF) enhances glycolysis in 
pancreatic cancer via upregulation of HIF-1α [24]. 
Histone demethylase JMJD1A facilitates glycolysis via 
coactivation of HIF-1α and promotes cancer 
progression [25]. 

HIF-1α activity can be regulated by modifying 
its stabilization. Transkelolase-like 1 (TKTL1) 
contributes to carcinogenesis through increased 
HIF-1α stabilization and the upregulation of 
downstream glycolytic enzymes and aerobic 
glycolysis [26]. The von Hippel-Lindau (VHL) gene is 
a tumor suppressor involved in the regulation of 
HIF-1α stability. VHL protein serves as an E3 
ligase that ubiquitinates HIF-1α and results in its 
degradation by the proteasome. HIF-1α becomes 
constitutively activated in the absence of VHL [27]. 
The gene associated with retinoid-interferon-induced 
mortality-19 (GRIM-19), a potential tumor suppressor, 
promotes VHL-mediated HIF-1α ubiquitination and 
degradation in glioblastoma cells [28]. Lysine specific 
demethylase 1 (LSD1), a histone demethylase, 
prevents HIF-1α from subsequent acetylation- 
dependent degradation and maintains the 
HIF1α-dependent glycolytic process [29]. 

Akt and mTOR signaling 
Akt is a serine/threonine kinase that promotes 

cancer growth and has been called ‘Warburg kinase,’ 
because it facilitates a glycolytic switch in tumor cells 
under normoxic conditions [30, 31]. Akt activation 
promotes the expression and activity of glucose 
transporters and glycolytic enzymes. The 
transcription of GLUT1, a widely expressed glucose 
transporter, is enhanced upon the activation of Akt 
[32, 33]. Lack of S-phase kinase-associated protein 2 
(Skp2), an E3 ligase, impairs Akt activation, GLUT1 
expression, glycolysis, and cancer progression [34]. 
Akt signaling induces the expression of HKII, a 
rate-controlling enzyme of glycolysis [33, 35]. Akt 
phosphorylates and activates PFK2 to produce 
fructose-2,6-bisphosphate, an allosteric activator of 
PFK1 [36]. Active Akt accumulates in the 
mitochondria during hypoxia and phosphorylates 
pyruvate dehydrogenase kinase 1 (PDK1) to 
inactivate the pyruvate dehydrogenase complex, 
switching tumor metabolism toward glycolysis [37]. 
Importantly, Akt-mediated aerobic glycolysis does 
not affect the rate of OXPHOS. Increased glycolytic 
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flux is required for rapidly proliferating tumor cells to 
obtain essential metabolic intermediates. 
Akt-mediated enhanced aerobic glycolysis results in 
acquired radioresistance of tumor cells [38]. 
Constitutively active Akt leads to cell death in 
low-glucose conditions [31]. 

The mammalian target of rapamycin (mTOR) is 
also a serine/threonine kinase downstream of Akt 
and consists of two complexes, mTORC1 and 
mTORC2. mTOR acts as a central activator of the 
Warburg effect by inducing expression of glycolytic 
enzymes under normoxic conditions. 
mTOR-mediated upregulation of PKM2, a 
rate-limiting glycolytic enzyme expressed exclusively 
in tumor cells, is critical to aerobic glycolysis and 
tumor growth [39]. Tuberous sclerosis protein 1 and 2 
complex (TSC1/TSC2) negatively regulates the 
expression of GLUT3 through the inactivation of 
mTORC1 signaling [40]. The transmembrane mucin 
MUC16 increases glycolysis through activation of 
mTOR. The mTOR-mediated expression of glycolytic 
proteins involves activation of HIF-1α, NFκB, and 
c-Myc [39-42]. Upon stimulation, the receptor tyrosine 
kinases (RTKs) activate membrane PI3K, which 
recruits and activates Akt. Thus, 
RTKs-PI3K-Akt-mTOR signaling plays a critical role 
in the regulation of aerobic glycolysis and tumor 
growth (Fig 3) [43-45]. 

Oncogenes and tumor suppressors 
Oncogenic K-Ras promotes metabolic 

reprogramming in tumors [46, 47]. Mutated K-Ras has 

been found to upregulate the expression of the 
GLUT1 and facilitate cell survival in low-glucose 
culture conditions via increased glucose uptake and 
glycolysis [48]. Thus, K-Ras mutated tumor cells are 
highly vulnerable to the glycolytic inhibitor [48]. The 
small guanosine triphosphatase (GTPase) 
ADP-ribosylation factor 6 (ARF6) is a target of 
mutanted K-Ras and promotes the Warburg effect 
and pancreatic cancer growth [49]. The K-Ras G12D 
mutation stimulates glucose uptake and drives 
glycolytic intermediates into the nonoxidative PPP 
[50]. K-Ras (G12V) activation leads to mitochondrial 
dysfunction, promoting a metabolic switch from 
OXPHOS to glycolysis and enhancing the 
tumorigenicity of the transformed cells [51]. The 
K-Ras G13D mutation is associated with increased 
expression of glycolytic proteins in colorectal cancer 
[52].  

Tumor suppressor p53 negatively regulates 
cellular glycolysis, contributing to tumor metabolic 
reprogramming via promotion of mitochondrial 
OXPHOS and suppression of glycolysis via several 
routes [53, 54]. It downregulates the expression of 
glucose transporters GLUT1, GLUT3, and GLUT4 [55, 
56] and promotes the ubiquitination-mediated 
degradation of phosphoglycerate mutase (PGM) [57]. 
p53 also directly inhibits glucose-6-phosphate 
dehydrogenase (G6PD), the first and rate-limiting 
enzyme in the PPP [58]. Inactivation of p53 and the 
resultant enhanced PPP glucose flux may increase 
glucose consumption and channel glucose 
to biosynthesis in tumor cells. In addition, p53 may 

 
Figure 3. The RTKs-PI3K-Akt-mTOR signal pathway plays an important role in the regulation of aerobic glycolysis. Akt and mTOR are central activators of the 
Warburg effect, promoting the expression of glucose transporters and glycolytic enzymes, which is regulated by many signal molecules. AMPK, adenosine 
monophosphate activated protein kinase; MUC16, mucin 16; mTOR, mammalian target of rapamycin; RTKs, receptor tyrosine kinases; Skp2, S-phase 
kinase-associated protein 2; TSC1/TSC2, tuberous sclerosis protein 1 and 2 complex. 
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inhibit glycolysis through its target genes [59-61]. For 
example, p53 induces Ras-related associated with 
diabetes (RRAD), which in turn inhibits the 
translocation of GLUT1 and glycolysis in lung cancer 
cells [59]. p53 downregulates glycolysis by 
transcribing TP53-induced glycolysis and apoptosis 
regulator (TIGAR) [60, 62]. TIGAR degrades 
fructose-2,6-bisphosphate (Fru-2,6-P2) to 
fructose-6-phosphate and causes a significant 
reduction in cellular Fru-2,6-P2 levels. Fru-2,6-P2 
serves as an allosteric activator of PFK1 and promotes 
the production of fructose-1,6-bisphosphate in 
glycolysis. p53 also negatively regulates the 
PI3K-Akt-mTOR pathway through its target genes. 
p53 activates adenosine monophosphate activated 
protein kinase (AMPK), a major upstream negative 
regulator of mTOR, and induces Pten and TSC2 to 
negatively regulate PI3K-Akt signaling and mTOR 
activity [63, 64]. HKII-mediated aerobic glycolysis is 
required for Pten-/p53-deficiency-driven tumor 
growth in xenograft mouse models of prostate cancer 
[65]. Pten deletion promotes HKII mRNA translation 
via the activation of the Akt-mTORC1-4EBP1 axis 
[65]. Absence of p53 enhances HKII mRNA stability 
through the inhibition of miR143 biogenesis [65].  

Given the high mutation rate of p53 in human 
tumors, the loss of p53 function could be an important 
factor contributing to the Warburg effect. It has been 
determined that tumor-associated mutant p53 
(mutp53) drives the Warburg effect under normoxia, 
and inhibition of glycolysis impairs 
mutp53-promoting tumorigenesis [66]. Mutant R175H 
and R273H p53 proteins trigger PKM2 
phosphorylation via mTOR signaling [67]. CD147 
promotes reprogramming of glucose metabolism by 
inhibiting the p53-dependent signaling pathway [68]. 

Upregulation of glucokinase, PK, and PFK2 
levels was observed in the liver of c-Myc transgenic 
mice about two decades ago, suggesting that 
transcription factor c-Myc is a regulator of glycolytic 
enzymes [69]. c-Myc promotes glucose uptake via the 
upregulation of GLUT1 [14, 70] and potentiates 
transcription of glycolytic enzymes HKII, PFK [14], 
and lactate dehydrogenase A (LDHA) [14, 71, 72]. 
c-Myc upregulates the expression of monocarboxylate 
transporter (MCT) through direct transcriptional 
activation or by suppressing transcription of miR-29a 
and miR-29c [73]. c-Myc promotes transcription of 
polypyrimidine tract binding protein (PTB), which 
binds to PKM pre-mRNA and switches PKM splicing 
to favor the PKM2 variant, ensuring a high 
PKM2/PKM1 ratio [74, 75]. Inhibition of c-Myc in 
tumor cells blunts hypoxia-dependent glycolytic 
reprogramming and is a potential strategy for tumor 
therapy [76, 77]. 

Some molecules promote glycolysis via 
regulation of c-Myc activity. Proto-oncogene human 
pituitary tumor-transforming gene (PTTG) regulates 
GLUT1 and several glycolytic enzymes via the c-Myc 
pathway [78]. N-Myc downstream-regulated gene 
(NDRG) family members can manipulate 
Myc-mediated tumor metabolic pathways and 
ultimately modify the Warburg effect [79]. NDRG2, a 
tumor suppressor, acts as a critical regulator of 
glycolysis via repression of c-Myc through 
downregulation of c-Myc transcriptional activator 
β-catenin, consequently suppressing the expression of 
GLUT1, HKII, PKM2, and LDHA in colorectal cancer 
cells [80]. Inhibitor of differentiation 1 (Id1), a 
transcription factor, promotes a metabolic shift to 
aerobic glycolysis in hepatocellular carcinoma cells by 
regulating the expression levels of c-Myc [81]. 
lncRNA-MIF, a c-Myc-activated long non-coding 
RNA, inhibits aerobic glycolysis by promoting c-Myc 
degradation. lncRNA-MIF acts as a molecular sponge 
for miR-586, competing with Fbxw7 mRNA for 
miR‐586. Fbxw7 serves as an E3 ligase for c-Myc that 
promotes c-Myc degradation [82]. 

Energy sensor 
Cellular energy metabolism is strictly regulated. 

Adenosine monophosphate activated protein kinase 
(AMPK) is a metabolic sensor that helps maintain 
cellular energy homeostasis [83]. Increases in 
AMP:ATP and ADP:ATP ratios activate AMPK, 
potentiating the metabolic process from an anabolic 
condition to a catabolic state by switching off the 
synthesis of lipids, carbohydrates, ribosomal RNA, 
and proteins [84, 85]. This leads to downregulation of 
glycolytic enzymes and glucose transporters. Thus, 
AMPK negatively regulates aerobic glycolysis in 
tumor cells and suppresses tumor growth in vivo [86]. 
Inactivation of AMPK promotes a metabolic shift to 
aerobic glycolysis, which requires normoxic 
stabilization of HIF-1α [86]. 

AMPK is involved in the regulation of glycolysis 
in many tumors, but its underlying mechanism 
remains unclear. The role of AMPK in glycolytic shift 
is also controversial. Several studies report a 
glycolysis-promoting effect of AMPK. For example, 
AMPK supports the growth of aggressive 
experimental tumors in part through positive 
regulation of glycolysis [87]. Manganese superoxide 
dismutase (MnSOD/SOD2) upregulation in cancer 
cells increases mitochondrial ROS that sustains 
AMPK activation and the metabolic shift to glycolysis 
[88]. Astrocyte elevated gene-1 (AEG-1) mediates 
glycolysis and tumorigenesis in colorectal carcinoma 
cells via AMPK signaling [89]. Prostate cancer cell 
growth mediated by androgen receptor signaling is 
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involved in an AMPK-mediated metabolic switch to 
glycolysis [90]. miR-101-3p targets AMPK in triple 
negative breast cancer to regulate glycolysis [91]. 
AMPK is also essential to balance glycolysis and 
mitochondrial metabolism in acute T cell 
lymphoblastic leukemia [92]. 

Non-coding RNAs 
microRNAs (miRNAs) are involved in the 

genesis of various cancers and may inhibit aerobic 
glycolysis via regulation of glucose uptake and 
glycolytic enzymes (Fig 4) [93]. miR-22, miR-144, and 
miR-1291 directly target glucose transporter GLUT1 
in breast [94], ovarian [95], and renal cancer cells [96], 
respectively, while miR-195-5p targets GLUT3 in 
bladder cancer cells [97]. Thus, downregulation of 
these miRNAs in tumors stimulates aerobic 
glycolysis. HKII, a key mediator of glycolysis, is 
another main target of miRNAs. miR-143 directly 
inhibits the expression of HKII and regulates cancer 
glycolysis [98-102]. The miR-143 level inversely 
correlates with HKII protein expression in several 
cancers, including head and neck squamous cell 
carcinoma (HNSCC) [100], breast cancer [102], glioma 
[99], and lung cancer [98]. The absence 
of miR-143-mediated repression of HKII may 
contribute to the shift toward aerobic glycolysis in 

tumors [101] and enhance stemness of glioblastoma 
stem-like cells [99]. miR-143 can be downregulated by 
mTOR activation [98] or by miR-155 [102], which also 
stimulates HKII transcription via activating the signal 
transducer and activator of transcription 3 (STAT3). In 
addition to miR-143, miR-98 and miR-199a-5p directly 
targets HKII [103, 104], and miR-29b downregulates 
HKII/PKM2 through directly targeting Akt 
[105]. Expression of these miRNAs is downregulated 
in several cancers. miR-378* induces glycolytic shift in 
breast cancer cells via the PGC-1β/ERRγ transcription 
pathway [106]. 

In addition to HKII, other glycolytic enzymes 
and signal molecules are miRNA targets. miR-320a 
regulates PFK1 expression and, consequently, its 
lactate production [107]. miR-26b and miR-206 
downregulate PFK2-driven glycolysis [108, 109]. A set 
of miRNAs targets LDHA and regulates glycolysis in 
colorectal cancer [110]. miR-129-5p blocks glycolysis 
to retard hepatocarcinogenesis via targeting 
mitochondrial pyruvate dehydrogenase kinase 4 
(PDK4) [111]. miR-448 promotes glycolytic 
metabolism in gastric cancer by downregulating 
KDM2B, a reader for methylated CpGs [112]. miR-21 
acts as a molecular switch to regulate aerobic 
glycolysis in bladder cancer cells [113]. 

 

 
Figure 4. Non-coding RNAs target glucose transporters and glycolytic enzymes. The downregulation of several miRNAs in some tumors facilitates aerobic glycolysis 
and promotes the development and progression of the tumors. HIF-1α is a primary target of non-coding RNAs. miRNA absence, or lncRNA-mediated HIF-1α 
stabilization, enhances HIF-1α activity, contributing to the Warburg effect. PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase. 
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Along with targeting glucose transporters and 
glycolytic enzymes, many miRNAs exert their 
functions by targeting HIF-1α, a master regulator of 
glycolysis (Fig 4). It has been reported that miR-18b 
[114], miR-186 [115], miR-199a [116, 117], and miR-592 
[118] inhibit aerobic glycolysis through directly 
targeting HIF-1α in several cancer types. Low 
expression of these miRNAs facilitates aerobic 
glycolysis and promotes the development and 
progression of the tumors. The upregulation of 
HIF-1α under hypoxic conditions, in turn, suppresses 
miRNA expression and promotes glycolysis [103, 
117]. miR-150 targets VHL, a specific E3 ligase for 
HIF-1α, and promotes the Warburg effect in glioma 
[119]. 

Long non-coding RNA (lncRNA) is also an 
important player in the regulation of the Warburg 
effect [120, 121]. lncRNA-p21 is hypoxia-responsive 
and is essential for hypoxia-enhanced glycolysis. It 
binds to HIF-1α and VHL, disrupting VHL-HIF-1α 
interaction and VHL-mediated HIF-1α ubiquitination, 
resulting in HIF-1α accumulation [120]. Long 
intergenic non-coding RNA for kinase activation 
(LINK-A), a cytoplasmic lncRNA, mediates 
BRK-dependent HIF-1α phosphorylation, leading to 
HIF-1α stabilization under normoxic conditions [121]. 
LINK-A-dependent normoxic HIF-1α signaling 
promotes breast cancer glycolysis reprogramming 
and tumorigenesis [121]. 

Sirtuin family proteins and deacetylation 
Sirtuins are a highly conserved family of 

nicotinamide adenine dinucleotide 
(NAD+)-dependent protein deacetylases that regulate 
a large number of cellular processes [122]. Growing 
evidence demonstrates that sirtuins are involved in 
the regulation of cancer metabolism [123, 124]. Of the 
seven mammalian sirtuins (SIRT1-7), SIRT1, SIRT3, 
and SIRT6 have been implicated in the regulation of 
glucose utilization [125, 126].  

The histone deacetylase SIRT6 has been 
identified as a tumor suppressor that regulates 
aerobic glycolysis in cancer cells. Deficiency of SIRT6 
in mice results in severe hypoglycemia [127]. SIRT6 
acts as a histone H3K9 deacetylase to function as a 
co-repressor of HIF-1α and Myc and control the 
expression of multiple glycolytic genes [128, 129]. 
HIF-1α activity and glycolysis are increased in 
SIRT6-deficient cells [128, 129]. Lack of SIRT6 can lead 
to tumor formation even without activation of known 
oncogenes [129]. 

SIRT3 is the major deacetylase within the 
mitochondrial matrix and works as a tumor 
suppressor by inhibiting the Warburg effect [130, 131]. 
SIRT3 regulates the stability of HIF-1α via lowering 

cellular ROS levels [130, 131]. Absence of SIRT3 
increases cellular ROS, leading to stabilization of 
HIF-1α and metabolic reprogramming [131, 132]. In 
contrast, SIRT3 overexpression represses glycolysis 
and proliferation in breast cancer cells [131]. The 
SIRT3-mediated alterations in ROS are attributed to 
deacetylation and activation of isocitrate 
dehydrogenase 2 (IDH2) and superoxide dismutase 2 
(SOD2) [133]. In addition, SIRT3 deacetylates 
glutamate oxaloacetate transaminase 2 (GOT2) to 
inhibit its binding to malate dehydrogenase 2 
(MDH2), consequently preventing the 
malate-aspartate shuttle in the mitochondrial 
intermembrane space [134]. The malate shuttle is able 
to restore cytosolic NAD+, which is essential for a high 
rate of glycolysis. SIRT3 also deacetylates and 
activates pyruvate dehydrogenase A1 (PDHA1) and 
PDH phosphatase 1 (PDP1) of the PDH complex 
(PDC), promoting the conversion of pyruvate to 
acetyl-CoA for OXPHOS [135, 136] 

It has been reported that SIRT1 stimulates the 
expression of glycolysis genes and the tumor cell 
proliferation in pancreatic neoplastic lesions [137]. A 
SIRT1-mTOR/HIF-1α glycolytic pathway is required 
for differentiation of myeloid-derived suppressor cells 
into the M1 phenotype [138].  

Other regulators 
Although the roles of the several mentioned 

master controllers are critical to the Warburg effect, 
other regulators are also involved in the glycolytic 
shift in cancer cells. Wnt signaling-mediated PDK1 
expression promotes glycolysis and tumor growth 
[139]. CUE domain-containing protein 2 (CUEDC2) 
facilitates aerobic glycolysis and tumorigenesis via 
upregulating the GLUT3 and LDHA [140]. 
Pro-inflammatory cytokine interleukin-22 facilitates 
aerobic glycolysis in colon cancer cells via c-Myc and 
STAT3-mediated up-regulation of HKII [141]. 
Carboxyl terminus of Hsc70-interacting protein 
(CHIP), an E3 ligase, inhibits aerobic glycolysis 
progression of ovarian carcinomas through 
CHIP-mediated PKM2 degradation [142]. iNOS/NO 
promotes glycolysis via inducing PKM2 nuclear 
translocation [143]. Mitochondrial calcium uptake 1 
(MICU1) increases aerobic glycolysis and 
chemoresistance in ovarian cancer [144]. Epidermal 
growth factor (EGF) promotes aerobic glycolysis, 
inducing epithelial-mesenchymal transition (EMT) 
and cancer stem-like cell properties in human oral 
carcinoma cells [145]. Toll-like receptor 3 signaling 
[146] and serotonin signaling [147] also trigger 
metabolic reprogramming of cancer cells. Molecular 
chaperone TNF receptor-associated protein 1 (TRAP1) 
[148], focal adhesion kinase (FAK) [149], plasma 
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membrane-associated protein Caveolin 1 [150-152], 
α/β-hydrolase domain-containing 5 (Abhd5) [153], 
Krüppel-like factor 4 (KLF4) [154, 155], Ecdysoneless 
[156], and Jumonji C domain-containing dioxygenase 
(JMJD5) [157] are associated with the glycolytic switch 
in tumors. Some viruses or virus-encoded proteins 
can induce aerobic glycolysis in tumors [158-160]. 

Conclusions 
The triggering of the Warburg effect is a complex 

process with the involvement of multiple regulators 
(Table 1) [161]. HIF-1α is a master activator. In 
tumorigenesis, overproduced or mutated growth 
factors activate transcription factors HIF-1α, NFκB, 
and c-Myc via the RTKs-PI3K-Akt-mTOR pathway, 
leading to the expression of glucose transporters and 
glycolytic enzymes. Oncogene activation and tumor 
suppressor inactivation during carcinogenesis modify 
the key signal molecules of the PI3K-Akt-mTOR 
pathway and downstream HIF-1α activity, promoting 
glycolytic flux and tumor development. Oncoproteins 
may also activate sirtuins, a protein deacetylase 
family, directly suppressing the transcription of 
glycolytic enzymes or inhibiting HIF-1α and c-Myc 
expression. Hypoxia and the ROS accumulation and 
energy depletion resulting from rapid tumor growth 
further stimulate HIF-1α activity or regulate the 
production of glycolytic enzymes and glucose 
transporter through energy sensor AMPK. Absence of 
miRNAs or lncRNA dysfunction during 
carcinogenesis promotes aerobic glycolysis via 
targeting glycolytic enzymes or regulating HIF-1α. A 
crucial question is whether the Warburg effect is the 

cause or the effect of cancer. There is no doubt that 
aerobic glycolysis is a hallmark of tumor metabolism, 
and is essential to tumor survival and growth. An 
important focus of study is the stage in tumorigenesis 
at which reprogramming of glucose metabolism is 
initiated. Research has revealed that the expression of 
glycolytic enzymes is modified in the precancerous 
stage of some tumors [162, 163]. The imaging data also 
indicated that elevated glycolysis may occur at 
early-stages of neoplasia and critically contribute to 
cancer initiation [164, 165]. It has been reported that 
14-3-3ζ-mediated upregulation of LDHA in early 
stage precancerous breast epithelial cells 
promotes glycolysis, contributing to breast cancer 
initiation [166]. We have found enhanced expression 
of several enzymes involved in glycolysis in high 
grade cervical intraepithelial neoplasia, a typical 
precancerous lesion of the cervix (Yu et al., 
unpublished data). This implies that the 
reprogramming of glucose metabolism occurs at an 
early stage of carcinogenesis. Additional studies are 
needed to shed light on this topic. 

Increased glycolysis in tumor cells provides a 
potential target for tumor therapy. Actually, 
disrupting glycolysis does interfere with tumor 
growth [167, 168]. Glucose transporters, 
monocarboxylate transporters, and critical glycolytic 
enzymes such as HK II, LDHA, PFK, and PKM2 have 
been proposed as potential targets. Several small 
molecules including lonidamine, 2-deoxyglucose 
(2-DG), dichloroacetate, and 3-bromopyruvate (3-BP) 
have been clinically tested, but many candidates are 
still under experimental studies [161]. 

 

Table 1. The major players in the glycolytic switch and their main features 

Regulators Downstream molecules Effects References 
Akt GLUT1, HK II, PDK1, PFK2 + [32, 33, 35-37] 
AMPK HIF-1α +, - [86] 
c-Myc Glucokinase, GLUT1, HKII, LDHA, MCTs, PFK, PK, PKM2 + [14, 69-75] 
HIF-1α GLUT1, HK II, PDK, PKM2 + [14-17] 
K-Ras GLUT1 + [48] 
lncRNA HIF-1α, VHL + [120, 121] 
miRNAs  Akt, GLUT1, GLUT3, HIF-1α, HKII, LDHA, PDK4, PFK, PFKFB3, PKM2  +, - [94-105, 107-111] 
mTOR GLUT3, HIF-1α, c-Myc, NFκB, PKM2 + [39-42] 
p53 AMPK, GLUT1, GLUT3, GLUT4, G6PD, miR143, PGM, Pten, RRAD, TIGAR, TSC2  - [55-60, 62-65] 
SIRT1, SIRT3, SIRT6 HIF-1α, Myc, PDHA1, PDP1 -, + [128-132, 135-137] 
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