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Exosomes, nano-sized extracellular vesicles for intercellular communications,

are gaining rapid momentum as a novel strategy for the diagnosis and

therapeutics of a spectrum of diseases including cancers. Secreted by

various cell sources, exosomes pertain numerous functionalities from their

parental cells and have enhanced stability that enable them with many features

favorable for clinical use and commercialization. This paper focuses on the

possible roles of exosomes in cancer therapeutics and reviews current

exosome-based innovations toward enhanced cancer management and

challenges that limit their clinical translation. Importantly, this paper casts

insights on how cold atmospheric plasma, an emerging anticancer strategy,

may aid in innovations on exosome-based onco-therapeutics toward

improved control over cancers.
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1 Introduction

Exosomes, firstly discovered in the early 1980s, represent a class of extracellular

vehicles (EVs) at a size of 30~150 nm in diameter that are secreted by all types of cells (1,

2). Exosomes were initially considered as a means for maturing reticulocytes to get rid of

superfluous proteins and discard garbage (1, 2). Accumulating evidence has suggested

their other roles besides eliminating unwanted molecules from parental cells such as

intercellular communications, cell content exchange, immune system modulation,

antigen presentation, and pathogen propagation (3–5). With our incremental

understanding on exosome, its prominent functionalities under both normal and
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pathophysiological conditions such as lactation (6), immune

homeostasis (7), neuronal signaling (8), and disease

development (9, 10) have been acknowledged and taken

advantages of for the purpose of theranostics.

A rising momentum has been witnessed on exosome

recently, in both academia and industry. Exosome has been

integrated into the field of precision medicine as it provides an

extremely useful source of biomarkers for cancer diagnosis and

an excellent tool for immune-therapeutics and drug delivery (7,

11). The diverse range of biofluids capable of producing

exosomes makes exosome-based diagnostics minimally

invasive, easy to use, and fast in detection (12, 13). By

isolating a patient’s exosomes, modifying them with

appropriate nucleic acids or proteins, and transfusing them

back to the patient (14, 15), exosomes can be administrated in

clinical practice in a similar fashion to adoptive cell therapy

(ACT) that is characteristic of extreme personalization. At the

same time, exosomes offer a cell-free solution. That is, they can

be manufactured ex vivo free of cells and thus be exempted from

the risks and difficulties of administering cells to patients (16).

For these beneficial traits, the era of exosomes has arrived. In

academia, there had been approximately 20,000 publications on

exosomes, among which three quarters have been published

within the past 5 years. Clinically, at least 204 clinical trials

associated with exosomes have been launched, with 114 and 74

trials related to therapeutics and diagnosis, respectively, and two

diagnostic tests (i.e., Bio-Techne’s ExoDx Prostate IntelliScore

Test for prostate cancers [17), Guardant360 CDx test for non-

small cell lung cancers (18)] have been approved by the FDA.

Commercially, at least seven partnership deals, eight large

venture capital events, and two landmark acquisitions have

occurred in the exosome industry during the past 5 years.

Given the surging amounts of scientific publications, the rising

number of clinical trials, and the swelling appetite among

investors for exosome biotechnology, it is imperative to

characterize the features of exosomes (derived from various

sources) that enable their diversified innovative theranostic

applications and, ultimately, our improved power over diseases

including cancers.

Among the varied types of disorders and clinical

applications where exosomes may intervene (19, 20), this

review focuses on cancer therapeutics. We briefly introduce

some basic information on exosomes in Section 2, categorize

the primary characteristics of exosomes enabling their onco-

therapeutic potential (i.e., immune modulation and cargo

delivery) in Section 3, cast our insights on current and

emerging innovations relevant to exosome-associated onco-

therapeutic strategies in Sections 4 and 5, and focus on the

status and challenges in the clinical translation of exosomes as an

onco-therapeutic tool in Sections 6 and 7. Importantly, we

forecast possible synergies cold atmospheric plasma (CAP), an

emerging onco-therapeutic, can create with exosomes toward

enhanced cancer control.
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2 Exosome biogenesis
and composition
The initial form of exosome in eukaryotic cells is early

endosome which is tube-like and distributed in the peripheral

part of the cytoplasm (3). When early endosome develops into

late endosome, it becomes spherical, accumulates around the

nucleus, and forms intraluminal vesicles inside the lumen (3).

Late endosome either fuses with the lysosome toward content

degradation or fuses with the cell membrane to release its

intraluminal vesicles in the form of exosomes (3)

(Supplementary Figure 1). Exosomes can be secreted either

constitutively or in an inducible manner (21, 22). Tumor

suppressors such as p53 can activate exosome production and

secretion in response to external stimuli such as oxidative or

toxic stress (22). It has been demonstrated that irradiation of

human prostate cancer cells can trigger DNA damage and thus

induce a p53-depenent increase in exosome secretion (23). Once

exosomes are taken up by other cells, they can either release their

inner content without affecting the membrane integrity or be

entirely endocytosed and re-legated to clathrin-coated pits (3).

Exosomes contain many diversified cell surface molecules

that allow them to participate in intercellular material exchange.

The content of exosomes is complex which contains thousands

of proteins and nucleic acids, as well as hundreds of lipids (24).

Exosomes are enriched with proteins involved in antigen

presentation such as CD1 and major histocompatibility

molecules I and II (MHCI/II), co-stimulatory molecules such

as CD86, adhesion molecules such as CD11b and CD54, heat

shock proteins such as HSP70 and HSP90, cytoplasmic proteins

such as Annexins and Rab proteins, membrane proteins such as

CD55 and CD59, signal transduction proteins such as G-

proteins, and protein kinases (3). Exosomes do not contain

mitochondrial, nuclear, and endoplasmic proteins (25).

Exosomes derived from immune cells display proteins that

pertain their roles in immune responses in addition to typical

exosome contents; e.g., exosomes secreted by dendritic cells

(DCs) contain CD80 and CD86 for naïve CD4+ T-cell

activation (26). Exosomes also contain numerous nucleic acids

such as let-7, miRNA-1, miRNA-15, and miRNA-16 which play

critical roles in angiogenesis, hematopoiesis, exocytosis, and

tumorigenesis (25). Recent studies have reported the critical

functionalities of exosome-derived long non-coding RNAs

(lncRNAs) in cancer initiation and development. For instance,

PTENP1 in exosomes derived from normal cells confers tumor-

suppressive roles on breast cancer cells both in vitro and in vivo

(27). Compared with the source cells, lipids contained in

exosomes are enriched with cholesterol, sphingomyelin,

glycosphingolipids, hexosylceramide, lactosylceramide, and

phosphatidylserine and contain less phosphatidylcholine,

phopha t i dy l e t hano l am ine , pho spha t i d y l g l y c e r o l ,

phosphatidylinositol, and cholesteryl ester (28). Exosomes
frontiersin.org

https://doi.org/10.3389/fimmu.2022.865245
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2022.865245
have asymmetric membrane bilayers regarding lipid

decomposition (3). While sphigomyelins, sphingolipids, and

most phosphatidylcholines are distributed in the outer leaflet

of exosomes, all other types of lipids are mainly concentrated in

the inner leaflet (28). Exosomal cargos are involved in various

signalings in recipient cells and can modulate diverse biological

processes such as autophagy (29) and inflammation (30).
3 Exosome for onco-therapeutics

3.1 Immunotherapy

3.1.1 Exosomes of immune origin
Innate and adaptive immune responses are two major

immune systems of vertebrates (31). While DCs, natural killer

cells (NKs), and macrophages are essential players in the innate

immunity, B and T cells are major immune cells in the adaptive

immune response (31). In the adaptive immune response that is

specific to vertebrates, B cells recognize foreign antigens by

themselves, and T cells identify antigens with the aid of

antigen-presenting cells (APCs) such as DCs, macrophages,

and B cells (31) (Supplementary Figure 2).
Frontiers in Immunology 03
Exosomes of immune cell origin have strictly defined

molecular profiles that can be used for immune boosting.

Exosomes derived from DCs, NK cells , and type I

macrophages (M1) are known to promote cancer cell death

directly or via presenting tumor antigens to T cells (7). Given

the immune-promotive roles of exosomes derived from these

immune cells, they have been proposed with profound utilities

in immune-therapeutics (Table 1). Specifically, DCs function in

immunotherapy by presenting tumor antigens to naïve T cells,

and exosomes secreted from DCs contain CD80 and CD86 that

are required for naïve CD4+ T-cell activation (26). In addition,

DC-derived exosomes can overcome the limitations of DC cells

in suffering from a short lifespan once activated (32, 33) by

enabling their long-term storage at -80°C (34). Also, exosomes

of DC origin are more efficient in antigen presentation than

DCs as they have 10~100-fold more abundant MHCII

molecules expressed on the surface (35) and can directly kill

cancer cells by expressing peptides capable of activating NK

cells (36). Besides, DC-derived exosomes are more stable than

DCs in therapeutic preparation and have strictly defined

molecular profiles for each patient that can be used to

determine the molecular parameters for quality control (35).

NK cells recognize tumor antigens primarily via surface-
TABLE 1 Advances and limitations of using exosomes originated from different immune cells for cancer control.

Source
cell

Example contents Impact Advantages Disadvantages References

RDC CD80, CD86. Stimulating T-cell
immunity.

Long-term storage; efficient in antigen
presentation; directly kill cancer cells; good
stability; easy for quality control.

NA (26, 32–36)

NK cells FasL, perforin, granzyme. Directly killing cancer
cells.

Effective after short time interval or at low
concentrations; detectable in peripheral
blood, diffusible into tissues.

NA (37–39)

M1
macrophages

IL12, nitric oxide Activating anticancer
immune response.

Tropism toward lymph nodes; stimulating
T-cell cytotoxicity.

(40, 41)

M2
macrophages

IL10, TGFb, arginase,
growth factors,
angiogenic factors.

Promoting tumor growth
and invasion.

NA Circulating invasion-potentiating
miRNAs in the peripheral blood.

(42)

Neutrophils Cytokines, proteases. Tumor-promotive; tumor-
suppressive.

Loading tumor-suppressive contents from
neutrophils.

Loading tumor-promotive contents
from neutrophils.

(43, 44)

Treg cells TGFb, IL10, IL35. Inhibiting anticancer
immune response;
promoting tumor
angiogenesis.

NA Inhibiting T-cell proliferation, IFN
production, and T-cell cytotoxicity.

(45, 46)

Mast cells MMP2/9, VEGF,
proteases, MHCII, CD86,
CD40, CD40L, ICAM-1

Tumor-promotive. NA Shuttling tumor-promotive
molecules inherited from
mast cells.

(47–49)

MDSC S100A8, S100A9. Tumor-promotive. NA Suppressing T cells, polarizing
macrophages toward M2,
accelerating tumor angiogenesis.

(50)

MSC CD9, CD81, CD29,
CD44, CD73.

Tumor-promotive. NA Blocking cytotoxicity of T cells and
NK cells, recruiting macrophages;
suppressing activation of T, B, NK
cells; inducing Treg cells.

(51–54)

T cells MM9, PD-1. Tumor-promotive; tumor-
suppressive.

Restoring immune surveillance. Enhancing tumor invasion. (55, 56)
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activated receptors and secrete cytotoxic molecules such as

perforin and granzyme to lyse malignant cells (37). Similarly,

NK cell-derived exosomes can kill cancer cells by providing

FasL and perforin/granzyme, with the efficacy demonstrated in

various tumors such as breast cancer (38) and neuroblastoma

(39). NK-derived exosomes may take on the cytolytic activity

after a short time interval and/or at low concentrations and are

advantageous in being detectable in peripheral blood, diffusible

into tissues, and thus having a cytolytic effect at the tumor sites

(37). Thus, efforts have been devoted to construct engineered

NK exosomes toward synergistic benefits. For instance, light-

activatable silencing NK-derived exosomes were generated by

engineering NK cells with hydrophilic small interfering RNA

(siRNA) and hydrophobic photosensitizer Ce6, which can boost

DC maturation and M1 polarization besides eliciting effective

NK-cell cytotoxicity against tumor cells and triggering a

photodynamic therapeutic effect (57). Compared with DC and

NK cell-derived exosomes, relatively little has been reported on

M1-derived exosomes. M1 activates the anticancer immune

response by functioning as a type of APCs and producing the

type I interferon IL12 and nitric oxide (58). M1-derived

exosomes were proposed as promising vaccine adjuvant, since

they displayed a tropism toward lymph nodes, induced Th1

cytokine release, and stimulated a strong T-cell cytotoxicity,

wh i ch co l l e c t i v e l y f o s t e r ed a p ro - i nfl ammato r y

microenvironment in the lymph nodes (40). Also, M1-derived

exosomes can synergize with their encapsulated agents toward

enhanced antitumor effects such as the improved efficacy of

cisplatin observed in exosome-treated lung cancer cells (41).

Exosomes derived from immune cells such as type II

macrophages (M2), neutrophils, T regulatory (Treg) cells, mast

cells, myeloid-derived suppressor cells (MDSCs), and

mesenchymal stem cells (MSCs) are tumor promotive

(Table 1). Specifically, M2 can form a tumor-promotive

immunity and are characterized by suppressed expression of

MHCII and IL12 and enhanced expression of IL10, TGFb,
arginase, growth factors, and angiogenic factors (59). M2-

derived exosomes can circulate invasion-potentiating miRNAs

in the peripheral blood and deliver them to cancer cells for

promoted cancer cell growth and invasion, with one example

being the delivery of miRNA-223 to breast cancer cells (42).

Neutrophils play both tumor-promoting and tumoricidal

functions in the innate immune system through the

production of, e.g., cytokines and proteases (60). Neutrophil-

derived exosomes convey tumor-promotive roles by loading

these parental contents (43). It was reported that neutrophil-

originated exosomes promoted the proliferation of lung cancer

cells via releasing elastases, a neutrophil-derived proteinase that

causes complex pathway alterations in malignant cells toward

hyperactivated PI3K and AKT signaling (44). Treg cells are

tumor-promotive via inhibiting the anticancer immune

response and promoting tumor angiogenesis (61). Exosomes of

Treg - c e l l o r i g in can he lp cons t ruc t an immune
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microenvironment favorable for tumor growth. As

demonstrated using a melanoma cell model, Treg-derived

exosomes inhibited T-cell proliferation, IFN production, and

CD8+ T-cell cytotoxicity (45, 46). Mast cells are hematopoietic

cells of the immune system with a detrimental impact on allergic

reactions and accumulate in the tumor site to form the tumor

microenvironment (TME). Factors secreted by mast cells such as

matrix-degrading enzymes (MMP2, MMP9), vascular

endothelial growth factor (VEGF), proteases, MHCII proteins,

co-stimulatory factors (CD86, CD40, CD40L), and adhesion-

related molecules (ICAM-1) are tumor-promotive (47, 48) and

can be shuttled by mast cell-derived exosomes to promote

carcinogenesis. For instance, exosomes of this type promoted

the growth of lung adenocarcinoma cells by transferring KIT (a

member of the tyrosine kinase family of growth receptors) to

cancer cells, where KIT positivity was associated with short-term

lung cancer survival (49). MDSCs represent a population of

immature myeloid cells capable of suppressing cytotoxic T cells,

polarizing macrophages toward the M2 state, and accelerating

tumor ang iogene s i s v ia produc ing some so lub l e

immunosuppressive mediators (50). MDSC-derived exosomes

transferred these mediating molecules, such as S100A8/S100A9

in breast cancers (50), from sender to receiver cells to trigger M2

polarization. MSCs orchestrate the tumor immune

microenvironment together with immune cells and promote

tumor growth via blocking cytotoxic responses of T cells and NK

cells and recruiting macrophages (62). Similarly, exosomes

isolated from human MSCs suppressed the activation and

proliferation of T cells, B cells, NK cells, and induced Tregs

(51–54).

Exosomes derived from T cells play double-edged roles on

cancer (Table 1). It was reported that exosomes of T-cell origin

led to an increased invasion of melanoma and lung cancer cells

via secreting MM9 (a marker characteristic of tumor migration)

(55). However, it was lately demonstrated that T cell-derived

exosomes restored immune surveillance against triple-negative

breast cancer cells by secreting PD-1 that led to PD-L1

internalization and attenuated suppression on T-cell

activity (56).

Besides cancer-associated traits, exosomes may convey other

therapeutic efficacies due to their inherited bioactive molecules

from donor cells. For instance, exosomes originating from M2

macrophages delivered parental anti-inflammatory cytokines

that accelerated wound healing (63); exosomes of MSC origin

stimulated angiogenesis-related factors that modulated

immunity and promoted tissue regeneration (64).
3.1.2 Exosomes of cancer origin
The roles of exosomes derived from cancer cells in immune

response are controversial. For instance, while acute

lymphoblastic leukemia-derived exosomes inhibited the

cytotoxicity of NK cells by enhancing TGFb signaling (65),
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leukemia-derived exosomes activated the anticancer immune

response by downregulating TGFb1 expression (66). Also,

exosomes derived from head and neck squamous cell

carcinoma patients carried inhibitory factors that are immune

suppressive (67). Tumor cell-derived exosomes, once

functionalized, can act as an antitumor immunotherapy. For

instance, hepatocellular carcinoma cell-derived exosomes

painted with the functional domain of HMGN1 boosted the

ability of DCs in activating T cells toward long-lasting anticancer

immunity both in vitro and in vivo (68).

Exosomes derived from cancer-associated fibroblasts (CAFs)

and endothelial cells are mostly tumor-promotive as they

typically transfer “signals” to tumor cells and promote tumor

progression. For instance, CAF-derived exosomes were obligated

to induce metabolic reprogramming toward enhanced tumor

growth and metastasis (69). Exosomes derived from brain

microvascular endothelial cells were found capable of

enhancing the survival of small-cell lung cancer cells

metastasized to the brain by delivering and enhancing the

expression of S100A16 using an in vitro cell coculture

system (70).

3.1.3 Exosomes of food origin
Exosomes derived from food such as milk and edible plants

may inherit some features from their parental sources and thus

per se be preventive against some undesirable immune

responses. For instance, exosomes derived from milk contain

immune-related miRNAs that showed excellent therapeutic

efficacy against inflammatory bowel diseases in vivo (71);

grape-derived exosomes modulated intestinal homeostasis and

were protective against inflammatory bowel diseases (72) such as

dextran sulfate sodium-induced colitis (73); and ginger-

originated exosomes inhibited the activation of the NLRP3

inflammasome, a key innate immune response regulator

typically activated in Alzheimer’s diseases and type II

diabetes (74).
3.2 Drug delivery

Nano-vehicles for drug delivery can be synthesized or

biologically derived at the scale of nanometers that has the

physiochemical properties for targeted delivery of agents against

cancerous cells. Various nanoparticles have been employed for

this purpose including metallic nanoparticles (75), polymeric

nanoparticles (76–78), lipid-based carriers such as liposomes

and micelles (79), and viral nano-vehicles (80). Metallic nano-

carriers suffer from metallic toxicity as a result of particle

accumulation in vital organs and difficulty in entire clearance

(75). Polymeric nanoparticles are primarily limited by their low

yield and biodegradability (78). Lipid-based nano-carriers,

although having little concern on toxicity and yield, have
Frontiers in Immunology 05
biocompatibility issues such as the cause of mucositis (81).

Although viral particles can be produced in a large amount at

a relatively low cost without biocompatibility issues, they raise

safety concerns due to potential spontaneous mutations (82).

Exosomes offer an excellent solution to overcome these

aforementioned shortcomings in drug delivery. Compared

with artificial or conventional nanoparticles, exosomes are

advantageous in easier blood circulation clearance (83), large

capacity for ex vivo expansion (11), and biocompatibility due to

their endogenous origin (84). Also, exosomes have high cellular

uptake due to the existence of membrane proteins such as

integrin (85), tetraspanin (CD9, CD63, CD81) (86), and

fibronectin (87), are flexible in surface modification (88, 89),

and can evade the immune system toward prolonged body

circulation time (90). Importantly, exosomes can overcome

biological barriers such as the blood–brain barrier (BBB) (88)

and lung clearance (91, 92) which make their roles in drug

delivery more promising.

3.2.1 Origins of exosomes for drug delivery
Sources of exosomes that can be used as drug carriers

include cells (93), body fluids such as blood (94), and food

such as milk (95). Exosomes of cell origin can be derived from,

e.g., human embryonic kidney (HEK) cells, stem cells, immune

cells, and cancer cells (Figure 1).

HEK cells, extensively used as an expression tool for

recombinant proteins, can also be employed for exosome

production, and these exosomes are immunologically inert

without safety concerns (96), are highly efficient in

transfection, and have membrane resemblances to various

human tissues that make it possible to deliver drugs to various

target tissues (97, 98). In addition, HEK-derived exosomes can

deliver the natural forms of membrane proteins to target cells

that are fully functional, resulting in improved tumor

penetration and antitumor efficacy. For example, expressing

native PH20 hyaluronidase on exosome surface remarkably

enhanced the anticancer efficacy of exosomes carrying

doxorubicin (Dox) in vivo by degrading hyaluronan in the

tumor extracellular matrix (99). Yet, the yield of HEK-derived

exosomes was lower than that of exosomes originated from body

fluid and food (100).

Exosomes derived from stem cells such as MSCs can be

easily obtained and expanded ex vivo (93). MSC represents an

ideal source for exosome preparation as cells of this kind can be

obtained from a variety of human tissues. Large-scale

production of good manufacturing practice (GMP)-grade

exosomes for clinical use has been made available from bone

marrow-derived MSCs, where the quantities were threefold

those of exosomes obtained from human foreskin fibroblasts

(101). MSC-derived exosomes delivering siRNAs that target

Kras, namely, “MSCs siKras Exo,” effectively resolved tumors

and halted tumor metastasis in vivo (102).
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Exosomes derived from immune cells can enhance the

anticancer efficacy of the entrapped drugs. For instance, the

effectiveness of paclitaxel in killing breast cancer cells was

substantially enhanced once encapsulated in NK-derived

exosomes (103). Another study used macrophage-derived

exosomes to load paclitaxel, where an aminoethylanisamide-

polyethylene glycol (AA-PEG) vector moiety was incorporated

to target the sigma receptor overexpressed in lung cancer cells

(104). Similarly, a macrophage-derived exosome-coated poly

(lactic-co-glycolic acid) nano-vehicle was established for

targeted chemotherapy against triple-negative breast cancers,

where the exosome surface was modified with a peptide against

c-Met toward enhanced targetability (105).

Exosomes derived from cancer cells have tropism toward

their parental cells and thus can be used as Trojan horses to

target these malignant cells (105–107). For example, the anti-

inflammatory activity of curcumin was improved when

encapsulated in breast cancer cell-derived exosomes as a result

of the innocent bystander or off-target effect (108). However, in-

depth investigations on the metastatic roles of these exosomes

are needed before they can be safely used for anticancer

drug delivery.
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Blood-derived exosomes have a relatively low risk of

unexpected in vitro mutations during cell culture due to the

large percentage of red blood cells (enucleated) contained in

their source materials. In addition, exosomes derived from blood

are easily acquirable (i.e., from blood banks or patients) and have

higher transfection efficiency. These advantages have made

exosomes of this kind ideal delivery vehicles for nucleic acid-

based therapeutics (94). Exosomes isolated from other types of

body fluids such as blood plasma, urine, saliva, and amniotic

fluids can be used as parental cell sample carriers for disease

diagnosis (109–112).

Exosomes derived from food are excellent sources for

effective delivery of encapsulated therapeutic molecules as, e.g.,

milk is stable under acidic conditions that can be orally delivered

(113, 114) and massively produced (92). Orally administered

exosomes loaded with paclitaxel have been shown capable of

substantially inhibiting tumor growth in vivo without obvious

side effects (115). In addition, milk exosomes can be

functionalized toward enhanced stability and biocompatibility.

For instance, polyethylene glycol (PEG)-engineered milk

exosomes showed around 3.2-fold increased mucus

permeability than their unmodified peers (116).
FIGURE 1

Sources of exosomes and their therapeutic advantages for drug delivery. Exosomes can be generated from almost all types of cells. Those are
relevant to therapeutics fall into three main categories, i.e., cells, body fluids, and food. There are four major cell sources for exosome
generation, i.e., human embryonic kidney (HEK) cells, mesenchymal stem cells (MSCs), immune cells, and cancer cells. Exosomes of HEK cell
origin are immunologically inert without safety concerns, have high transfection efficiency, and can deliver drugs to various target tissues.
Exosomes derived from MSCs can be easily obtained from a variety of human tissues and expanded ex vivo in large scale. Exosomes originated
from immune cells can enhance the anticancer efficacy of its entrapped drugs by boosting the immunity. Exosomes derived from cancer cells
have the tropism toward their parental cells and thus can be used as Trojan horses to target these malignant cells. Exosomes derived from
blood have a low risk of unexpected mutations, are easily acquirable, and have higher transfection efficiency. Exosomes isolated from other
body fluids such as urine, saliva, and amniotic fluids can be used as parental cell sample carriers for disease diagnosis. Exosomes derived from
food such as milk and edible plants are stable under acidic conditions that can be orally delivered and massively produced.
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3.2.2 Cargos of exosomes for therapeutics
Cargos imbedded in exosomes as cancer therapies can be in

various forms including nucleic acids, proteins, and

anticancer agents.

Nucleic acids such as miRNAs, siRNAs, mRNAs, lncRNAs,

and circular RNAs can all be delivered by exosomes. Desired

RNAs can be loaded into exosomes via overexpressing candidate

RNAs in parental cells. For example, exosomes encapsulating

miRNA-122 can be obtained by transfecting plasmids expressing

miRNA-122 into adipose tissue-derived MSCs (117).

Alternatively, nucleic acids can be transferred into exosomes

through electroporation such as in the case of loading antisense

miRNA-21 into exosomes (118). As endeavors to achieve

therapeutic goals, exosome-delivered miRNA-375-3p mimic

significantly suppressed the EMT process of colon cancer cells

(119), and exosome-mediated delivery of the miRNA-142-3p

inhibitor suppressed breast cancer tumorigenicity both in vitro

and in vivo (120). Breast cancer cell-derived exosomes were used

to deliver S100A4 siRNA that led to significantly reduced

postoperative breast cancer metastasis (121), and exosomes

loaded with SCD-1 siRNA significantly promoted anaplastic

thyroid carcinoma cell apoptosis by enhancing its intracellular

ROS level (122). Exosomes loaded with mRNAs encoding SARS-

CoV-2 spike and nucleocapsid proteins triggered long-lasting

immune response both in vitro and in vivo (123), and exosome-

mediated delivery of IL10 mRNA effectively alleviated

atherosclerosis (124). Exosome-transmitted lncRNA SENP3-

EIF4A1 suppressed the progression of hepatocellular cancer

cells (125), and exosome-delivered lncRNA PTENP1 inhibited

the development of bladder cancer cells (27). Exosome-carried

circular RNA hsa_circ_0051443 suppressed hepatocellular

cancer progression (105).

Similar to nucleic acids, proteins can be encapsulated into

exosomes via either genetic engineering of donor cells or

physical loading such as electroporation and detergent-based

approaches. For instance, surviving-T34A was overexpressed in

exosomes derived from melanoma cells through plasmid

transfection, leading to enhanced gemcitabine sensitivity and

significant apoptosis of pancreatic adenocarcinoma cells (126).

Tyrosinase-related protein-2 (TRP2) was loaded into exosomes

of the serum origin through the use of the detergent saponin or

electroporation, which were internalized into macrophages and

DCs to effectively stimulate the adaptive immune response

(127). Another interesting attempt for exosome protein

encapsulation relying on genetic engineering is to load tumor-

specific antigens or immune stimulants on exosome surface for

vaccination. For instance, by infecting a mouse DC cell line with

lentiviruses encoding the a-fetoprotein (AFP) gene, DC-derived

exosomes expressing AFP induced a robust immune response in

vivo that led to suppressed tumor growth and prolonged animal

survival (128). Using a similar strategy, exosomes expressing

signal-regulatory protein alpha (SIRPa) on the membrane

surface were constructed that can avoid failed immune
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surveillance via blocking the recognition of CD47 (expressed

by tumor cells) by immune cells, leading to enhanced phagocytic

ability of macrophages and inhibited growth of cancer cells in

vivo (9, 10).

Anticancer drugs can be directly loaded into exosomes as

onco-therapeutics. Approaches enabling drug loading primarily

include incubation, sonication, and electroporation, with the

most commonly reported drugs for exosome encapsulation

being Dox and paclitaxel (PTX) (100, 129). Compared with

free Dox or Dox loaded by liposomes, Dox delivered by

exosomes showed a superior anticancer efficacy against colon

cancers in vivo (130); this is attributable to the optimized

endocytosis as determined by the cholesterol and the

phospholipid composition of the exosome membrane surface

(131). MSC exosome-delivered Dox enhanced the cellular

uptake and anticancer effect of Dox against osteosarcoma due

to the tropism of MSC toward tumor tissues (132). Another

advantage of exosome-delivered Dox is its enhanced safety, since

exosome can prevent its encapsulated agents from being

delivered to myocardial endothelial cells that may lead to

cardiotoxicity (133).
4 Exosome innovations for
improved onco-therapeutics

4.1 Exosome mimetics

Although red blood cell-derived exosomes are featured with

high yield, most studies obtain exosomes from MSC or

immortalized cells. Thus, how to effectively enhance exosome

yield still imposes one major obstacle limiting the development

of exosome-based therapeutics.

One innovation to resolve this issue is the development of

nano-sized exosome mimetics (also called “nanovesicles” or

“hybrid exosomes”). Exosome mimetics are artificial delivery

vehicles mimicking exosomes, which are advantageous in high

yield and flexibility in content genetic engineering as compared

with exosomes. These features enable them with higher

pharmaceutical acceptability due to their more effective and

safer delivery manner and well-characterized content (134).

However, incorporating multiple proteins on the membranes

of exosome mimetics is complex and time-consuming, and the

functionalities of the incorporated proteins need to be

validated (134).

Technologies enabling the delivery of nucleic acids through

exosome mimics have been established. One strategy is to

produce size-controllable exosome mimics via serial extrusion

of non-tumorigenic MCF10A cells through filters of various

pore sizes fol lowed by encapsulating siRNA using

electroporation (135). The yield of exosome mimics increased

approximately 150-fold as compared with that of exosomes
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without sacrificing the efficiency and safety (135). The roles of

MSC-derived exosome mimetics as alternative vesicles of

exosomes for drug delivery have been evaluated, where PTX

and breast cancer cells were used as the drug and tumor models,

respectively (136). The results showed that MSC-derived

exosome mimetics could be easily isolated using simple

protocols, and drug-loaded mimetics could effectively kill

breast cancer cells both in vitro and in vivo (136). Besides

successes reported on MSC-derived exosome mimetics,

mimetics of immune cells such as macrophages and NK cells

were proven effective for treating various types of cancers

(137, 138).
4.2 Exosome surface modification

Surface modification of exosomes can impart additional

functionalities to exosomes such as ① sensitizing TME and

stimulating immune response, ② improving tumor targetability

and retention, and ③ in vivo imaging and trafficking (139).

The purposes of the first two categories are meant for

optimized therapeutics and often involve genetic engineering.

For instance, by modifying exosomes with folic acids, Feng et al.

constructed a novel exosome-based drug delivery system,

namely, Exos-PH20-PA, using genetic engineering and self-

assembly techniques, and the modified exosomes effectively

polarized macrophages from the M2 to M1 phenotype toward

an immune-supportive state (140). Activated T cell-derived

exosomes were shown to express PD-1 that attenuated PD-L1-

triggered immune dysfunction in triple-negative breast cancers,

suggestive of the feasibility of attenuating the suppressive TME

by modifying the exosome surface with inhibitory immune

checkpoint receptors (56). Toward improved tumor

targetability, IL12 was displayed on exosome surface via fusion

with the exosome surface protein PTGFRN, and the resultant

exosome (exoIL12) conveyed tumor-restricted pharmacology

that led to prolonged tumor retention and immune

memory (141).

The purposes of the last category are designed for the in vitro

or in vivo investigation of exosome features such as

biodistribution, uptake, and mechanism that typically involve

fluorescence labeling. For example, bone marrow MSC-derived

exosomes were labeled by DiR dye followed by intraperitoneal

administration using pancreatic tumor-bearing C57BL/6 mice to

study in vivo exosome biodistribution, which revealed specific

exosome retention in tumor cells (142). MDA-MB-231 breast

cancer cell-derived exosomes were cultured in the hypoxic

environment induced by deferoxamine (DFO) to generate

hypoxic exosomes and were subjected to DiO (a fluorescent

lipophilic tracer) labeling to study the uptake of hypoxic

exosomes; the results showed ~97% vs. ~73.1% uptake of
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hypoxic vs. normal exosomes by hypoxic cells, suggesting the

affinity of hypoxic cells toward hypoxic exosomes (143).

Exosomes of bovine milk origin were labeled by PKH67 and

incubated with H1299 lung cancer cells together with

endocytosis inhibitor cytochalasin D to study the endocytosis

pathway, and the results showed that cytochalasin D reduced

endocytosis by 21% (144).
4.3 Exosome-based therapeutic synergies

Given that exosomes can function as both immuno-

therapeutics and drug carriers, as well as their flexibilities in

surface modification that allow for various de novo and

improved functionalities, synergies have been sought for

through exploring the varied combinatorial possibilities.

Attempt integrating the roles of exosomes in immunotherapies

and drug delivery on cancer therapeutics represents an interesting

and promising field trend. In other words, exosomes, especially

those derived from immune cells, can be considered as both

immune-modulators and drug vehicles at the same time, and by

modulating exosome content, we can achieve various synergies such

as improved immunotherapeutic efficacy and dual targeting. For

instance, NK-derived exosomes carrying the tumor-suppressive

miRNA-186 exhibited cytotoxicity against MYCN-amplified

neuroblastoma cells, where miRNA-186 inhibited MYCN and

exempted cancer cells from TGFb1-dependent immune

escape (39).

Lots of successes have been reported taking advantage of

exosome surface modification and drug encapsulation. That is,

one can achieve synergies by editing the surface of exosomes

toward enabled functionalities such as improved tumor

targetability and utilizing their drug delivery role. For example,

expressing PH20 hyaluronidase on exosomes derived from

HEK293PT cells enhanced the anticancer efficacy of Dox by

degrading hyaluronan in TME when PH20 and Dox were co-

delivered using exosomes in vivo (99).

Conventional dual-targeting strategies have been actualized

using exosomes as the effective drug encapsulator and delivery

vehicle. This is actually the most straightforward way of creating

synergies where multiple drugs can be harmonically mixed and

encapsulated into exosomes toward improved therapeutics. For

instance, a cocktail therapy was established by combining a

natural polymer hyaluronic acid-based hydrogel, engineered

endothelial cell-derived exosomes (EC-ExosmiR-26a-5p), and

APY29 (an IRE-1a inhibitor), which could simultaneously

regulate osteoblast and M1/M2 macrophage balance (145); a

combinatorial strategy encapsulating TGFbR1 kinase inhibitor

and TLR7/8 agonist in exosomes was shown effective in halting

tumor growth in vivo and proposed as a novel therapeutic

strategy against melanoma and prostate cancer (146).
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5 Aid of CAP in exosome
innovations for improved
onco-therapeutics

Following successive innovations in creating synergies

between exosomes and various drugs and exosome-

modulating approaches, relatively little has been focused on

the potential aid of emerging technologies in exosome

innovations. Here we introduce an emerging anticancer tool,

CAP, and its possible synergies with exosomes toward

improved onco-therapeutics.

CAP, a fourth state of matter that relies on reactive species

toward selective control over malignant cells for death (147–

151), has become an emerging onco-therapeutic tool with great

translational potential (152, 153). It is a cocktail of multiple

reactive oxygen and nitrogen species (RONS) such as short-

lived species singlet oxygen (O), hydroxyl radical (OH·),

superoxide (O2−), and nitric oxide (NO·), and long-lived

species hydrogen peroxide (H2O2), ozone (O3), anionic

(OONO−), and protonated (ONOOH) forms of peroxynitrite.

These species, by themselves or their interactions, interact with

the surface of cancer cells and generate a series of intracellular

signalings that selectively arrest cancer cells at various types of

death states (such as immunogenic cell death (ICD) (154),

apoptosis (150), cell-cycle arrest (147), autophagy (155),

ferroptosis (156)) by perturbating their redox homeostasis.

Such a selectivity not only attributes to the higher basal level

of cells under the malignant state as compared with their

healthy peers but also is associated with the membrane

features of cancer cells. The latter includes, e.g., a high

expression of aquaporins on cell surface that is associated

with increased H2O2 uptake (157) and a high local

concentration of catalysis on the surface that determines the

specific response of tumor cells to self-destruction as a result of

secondary singlet oxygen generation (158).

We identify three possible synergies that CAP may create

with exosomes. That is, CAP may synergize with exosome

toward enhanced immuno-modulation, function as the cargo

of exosomes, and boost exosome production.
5.1 CAP for enhanced sensitivity to
exosome-triggered immunity

Despite the various reports on the sensitizing role of CAP to

chemotherapies (159, 160), little has been examined on the

potential synergies between CAP and immunotherapies. Yet,

as CAP can trigger ICD (161) that transforms non-

immunogenic cells to the immunogenic state via promoting

the release of tumor antigens, it is plausible to believe that CAP
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may enhance the antitumor immunity if applied together with

immunotherapies including those based on exosomes (Figure 2).

Besides, ROS are known to promote the expression of MHCI for

improved macrophage-mediated tumor antigen presentation

toward enhanced T-cell adaptive immune response (162)

(Figure 2), providing additional support for the theoretical

basis of possible synergies between CAP and exosomes that

warrants in-depth explorations.
5.2 CAP as an emerging therapeutic cargo

Besides the selectivity of CAP against various types of cancer

cells demonstrated in vitro and in vivo (147–151, 163, 164),

intensive efforts have also been devoted to translating CAP into

clinics as an onco-therapeutic modality. The first clinical success

was reported in 2018 where the life of a 75-year-old late-stage

pancreatic cancer patient was secured (165). The first clinical

trial using CAP as a cancer therapy was issued on 30 July 2019

and completed on 14 April 2021 in USA (NCT04267575). In this

trial, 20 stage IV solid cancer patients (including breast cancer,

prostate cancer, pancreatic cancer, lung cancer, ovarian cancer,

fallopian tube cancer, colon cancer, liver cancer, renal cell

cancer, rectal cancer, small intestinal cancer, gastric cancer)

were recruited, out of whom 17 patients were still alive by the

completion of this study (166). These studies suggested CAP as a

safe and effective novel modality against malignant cancers.

Despite these successful stories, the clinical translation of CAP

is hindered by several shortcomings of CAP such as limited

penetration in-depth and temporary lifespan of short-lived

reactive species.

Being a nano-sized endogenous traveling vehicle with many

unique benefits such as BBB transverse ability, biocompatibility,

tissue-specific targeting, and cargo stability protection, exosome

is ideal for CAP delivery. Since CAP can be prepared in the form

of liquid, namely, plasma-activated medium (PAM), it can be

made as the cargo of exosomes, alone or mixed with hyaluronic

acid (167) for enhanced stability or mixed with hydrogel (168)

for extended release. Although CAP is mild and selective against

cancer cells without affecting their healthy peers (169), targeted

delivery can help concentrate CAP in the tumor loci toward

enhanced “drug” utility (Figure 2).

The most promising is that by imbedding PAM within

exosomes, it is possible to pass PAM through BBB and treat

brain diseases that currently lack an effective treatment approach

with little side effect. Indeed, by loading superparamagnetic iron

oxide nanoparticles (SPIONs) and curcumin into exosomes and

conjugating the membrane of exosomes with neuropilin-1-

targeted peptide (RGE), glioma-targeting exosomes were

obtained that achieved simultaneous cancer diagnosis and

therapeutics (170). MSC-originated exosomes were shown as a
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promising approach for treating posttraumatic brain injury

since, among others, these exosomes were capable of crossing

over BBB, feasible for long-term storage, non-tumorigenic, non-

immunogenic, and microvascular embolism non-inducive (8).

Also promising is the potential to deliver PAM in the form of

capsules with the aid of exosomes that can tolerate gastric acidity

and enable oral drug intake (Figure 2), which represents an

interesting research topic with strong clinical impact and

translational potential.
5.3 CAP for inducible exosome secretion

Exosomes can be produced either constitutively or in an

inducible fashion on stress (22, 23). It is known that p53, a

critical player for genome stability maintenance and DNA

damage repair, can be activated on oxidative stress and trigger

DNA damage response that ultimately leads to enhanced

exosome secretion (23). CAP, a redox modulator, was reported

capable of modulating p53 in keratinocytes (171) and activating

p53 pathway-related genes in cancer cells (172). These

collectively suggested the possible role of CAP in promoting

exosome generation (Figure 2), making the massive production

and utilization of exosomes of various origins possible

and encouraging.
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6 Clinical efforts using exosomes as
an onco-therapeutic tool

Clinical trials using exosome as an onco-therapeutic

approach can be dated back to almost 20 years ago when two

phase I clinical trials using immature DC-derived exosomes for

treating melanoma and lung cancer were launched (14, 15). In

the first trial, exosomes originated from DCs were pulsed with

melanoma-associated antigen (MAGE) and inoculated to 15

stage III/IV melanoma patients, where approximately 62%

patients exhibited an enhanced NK-cell activity with no major

toxicity reported 2 weeks after immunization (14). In the second

trial, DC-derived exosomes were loaded with HLA-restricted

MAGEs, followed by back infusion into patients carrying HLA

A2+ non-small cell lung cancers (NSCLCs), where one-third of

the patients showed MAGE-specific T-cell responses and,

among the four analyzed patients, half presented an increased

NK-cell activity after a 1-month weekly treatment (15). It has

been proposed that mature DC-derived exosomes can induce

more potent T-cell priming than those derived from immature

DCs (173). A non-randomized phase I/II clinical trial achieved

antigen-specific T-cell responses among seven esophageal cancer

patients using mature DC-derived exosomes pulsed with SART1

(a biomarker of squamous cell esophagus carcinoma) (174).

However, the use of mature DC for exosome generation is not
FIGURE 2

Possible scenarios where CAP creates synergies with exosomes toward conceptual and technological onco-therapeutic innovations. First, CAP
can promote tumor antigen release, stimulate immunogenic cell death (ICD), enhance tumor antigen presentation by APC cells, and thus can
enhance the sensitivity of tumor cells to exosome-based immune onco-therapies. Second, CAP can function as an onco-therapeutic and the
cargo of exosomes to treat brain cancers by breaking the blood–brain barrier (BBB), to enable oral intake as a result of increased tolerance to
gastric acidity, and to achieve enhanced drug utility by being concentrated to the tumor loci. Third, CAP can stimulate the expression of p53
that ultimately leads to enhanced exosome production.
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the sole golden standard for activating an antigen-specific T-cell

response that also relies on many other factors. For instance, a

phase II clinical trial documented the use of exosomes derived

from mature DCs in treating patients carrying NSCLCs in 2016.

In this trial, mature DC exosomes loaded with MHC class I and

II-restricted cancer antigens and IFN-g were administrated to 22

patients. The results showed elevated NK-cell activities without

obvious toxicity; yet, unlike what was expected, no cancer-

specific T-cell immune response was boosted (175). This may

be attributable to the suppressive role of PD-1 on T-cell activity,

the expression of which from exosomes was elevated by IFN-g.
Other studies documented the indispensable role of CD4+ T and

B cells in activating cytotoxic T cells by DC-derived

exosomes (176).

Besides DC-derived exosomes, clinical efforts in cancer

treatment have also been devoted to utilize exosomes

originating from other cell sources. One phase I clinical trial

used ascites-derived exosomes together with granulocyte-

macrophage colony-stimulating factor as a combined

therapeutic for advanced colorectal cancers. After a 4-week

treatment administration, colorectal cancer patients

demonstrated a strong cytotoxic T-cell response against cancer

cells carrying the carcinoembryonic antigen (a biomarker of

colorectal cancers) (177).
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Ongoing efforts have been made to translate exosomes into

clinical use for drug delivery. For example, Codiak BioSciences,

being one of the major biotech start-up companies dedicated for

exosome therapeutic development, constructed an engineered

exosome for pancreatic cancer treatment by delivering siRNAs

targeting the KRAS (G12D) mutation (iExosomes) (142), for

which they have obtained the investigational new drug (IND)

approval for conducting the phase IA/B clinical trial from US

FDA (NCT03608631).
7 Challenges limiting the use of
exosomes as therapeutic tools

The many clinically favorable features superimposed on

exosomes such as the immune-boosting and molecule-carrying

roles have provided us with a unique option to target tumors

using cell-free cancer vaccination (7) capable of synergizing with

various onco-therapeutic cargoes. This has led to an industrial

zest toward its clinical translation that, however, is currently

limited by the following therapeutic hurdles (Figure 3).

Large-scale production is essential for the wide clinical

application of novel techniques including exosomes.
FIGURE 3

Challenges limiting the clinical translation of exosomes as onco-therapeutics. Challenges limiting the clinical translation of exosomes fall into
three categories, i.e., exosome production, clinical usage, and regulation. In “production,” techniques that enable large-scale exosome
manufacturing such as source cell cultivation and exosome isolation, and techniques minimizing exosome heterogeneity such as control over
the heterogeneity of source materials are limiting factors. In “clinical usage,” knowledge on exosome dosage for clinical use and clinical features
of exosomes such as distribution, cell uptake, and half-life are limiting factors. In “regulation,” lack of a set of industrial standards feasible for the
manufacturing and shipping processes of exosomes derived from different sources and lack of quality control guidelines over exosome stability,
safety, potency, and quality are limiting factors.
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Cultivation and isolation are critical steps in exosome

manufacturing. Conventional cel l culture has been

traditionally used for cultivating source cells of exosomes.

The 3D culturing technique (through the use of bioreactors)

has been established to maximize the cell culture surface

area toward enhanced exosome yield (178, 179) which,

however, is not necessarily cost-effective as more media and

more frequent passages are needed for bioreactor-based

cell culturing. Ultracentrifugation represents a dominant

approach for exosome isolation that suffers from quantity

loss due to exosome heterogeneity and from biological

contamination (180).

How to minimize the heterogeneity of exosomes represents

another important problem challenging large-scale exosome

production. Among all possible influential factors, the

heterogeneity of parental cells (even of the same cell type)

imposes the leading effort that may substantially affect the

quality, consistency, and functionality of exosomes produced.

For instance, exosomes released from the muscle cells of aged

mice are prone to induce inflammation and accelerate aging due

to the enrichment of miRNA-34a than those derived from young

mice (20, 181). Thus, a careful assessment on potential

therapeutic indexes of source materials with critical impacts

on the functionalities of derived exosomes such as age should be

considered as an important guideline for large-scale

exosome manufacturing.

Besides issues relevant to exosome mass production, there

also exist unresolved problems on how to translate preclinical

experiences into clinics. First and foremost is how to determine

exosome dosage under different therapeutic scenarios, where

experiences gained using cells or animal models need to be

extrapolated into the clinical level. Other clinical features such as

exosome distribution, uptake, and half-life should be carefully

investigated to avoid off-target tissue accumulation prior to

clinical administration (182).

Also worth mentioning is the limitations of exosomes in

stimulating the immune system. Similar with canonical agents,

exogenous exosomes cannot produce long-term consecutive

stimulation to the immune system and may lose the immune-

stimulatory efficacy if running exhausted. However, it is not

feasible to inject overdosing exosomes to the human body as an

overactivated immune system may lead to undesirable clinical

outcomes such as cytokine storm that, sometimes, can be life-

threatening. Thus, achieving extended exosome release by

synergizing with materials such as hydrogel may represent a

promising solution and a possible future research direction.

Another remaining issue is how to determine the dose and

frequency of repeated exosome administration as well as the

dosage regime that may differ among patients, without which it

may be difficult to achieve an optimal or expected therapeutic

response. Thereby, reinforcing our control over the choice of
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exosome dosage under each treatment scenario represents

another major obstacle awaiting to be resolved.

Lastly, lack of industrial standards limits exosome

commercialization. Exosomes derived from different sources

have different features and thus require di fferent

manufacturing protocols and quality control standards.

Besides, the stability, safety, potency, and quality of exosomes

should all be carefully controlled throughout the manufacturing

process and under the shipping conditions. Thus, a set of

standards systematically covering all these scenarios is urgently

needed for standardized exosome manufacturing that requires

collective advances in technologies and government/

industrial regulations.
8 Conclusion

Being homogeneous EVs secreted by various types of cells

for intercellular communication, exosomes carry information

from host cells that can be utilized for diagnosis and,

importantly, as immuno-therapeutics due to inherited features

from their immune cell origin (for exosomes derived from some

immune cells). On the other hand, exosomes are ideal natural

nano-carriers for drug delivery due to their small sizes that allow

them to penetrate through BBB, flexibilities in surface

modulation that allow tissue-specific targeting, endogenous

origins that enable their biocompatibilities, natural expression

of surface receptors that allow their easy communication with

target cells, and bilayer membrane structures that protect their

imbedded cargos from, e.g., gastric acidity.

CAP, being an emerging onco-therapeutic approach and

redox modulator, can aid in exosome-based onco-therapeutics

by sensitizing exosome-based immunotherapies, being the cargo

of exosomes for effective malignant cell removal with little side

effect, and functioning as a controllable inducer for massive

exosome production.

We forecast the emerging and wide application of exosomes

in onco-therapeutics, and the prominent role of CAP in availing

this process toward, hopefully, eventual malignant tumor

eradication. Our insights not only categorize the unique traits

of exosomes favorable for disease management (especially for

treating brain cancers) but also identify a novel opportunity for

cancer therapeutics through a combined use of exosomes

and CAP.
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SUPPLEMENTARY FIGURE 1

Biogenesis of exosomes. Exosomes are generated from late endosomes,

which are formed by inward budding of the limited multivesicular body
(MVB) membrane. Invagination of the late endosomes forms intraluminal

vesicles (ILVs) within MVBs, where certain molecules of the parental cells
such as proteins and nucleic acids are incorporated into ILVs. While some

ILVs are trafficked to lysosomes for degradation, most fuse with cell
membrane and are re leased into the extracel lu lar space,

forming ‘exosome’.

SUPPLEMENTARY FIGURE 2

Illustrative diagram on human immune system and its key players. Human
immune system is composed of ‘innate immunity’ and ‘adaptive

immunity’, where the latter is divided into ‘cell-mediated immunity’ and
‘humoral immunity’. Dendritic cells (DCs), macrophages and B cells are

professional antigen presentation cells (APCs). During innate immune

response, DCs can directly kill pathogens, infected or malignant cells,
activate NK cells to aid in the killing process, and present foreign antigens

to T cells to stimulate cell-mediated immune response; NK cells, once
activated by DCs, can kill pathogens, infected or malignant cells directly,

and activate macrophages; macrophages can directly kill pathogens,
infected or malignant cells directly, and present foreign antigens to T

cells. Innate immune response also involves other participants such as

mast cells, basophils, eosinophils, neutrophils and complements. During
cell-mediated immune response, T cells, on receival of antigens

presented by DCs, macrophages and B cells, are amplified and kill
infected or malignant cells by producing perforin (protein that forms

pore on targeted cells). During humoral immunity, B cells recognize
pathogens, amplify and secrete antibodies to kill them. On recognition

of pathogens, infected or malignant cells, innate immune response is

activated first (within 12h) followed by adaptive immune response (within
days and can last weeks or even longer). Both innate and adaptive

immune responses are firstly pro-inflammative (highest at 1-3h in innate
immunity and 1-2d in adaptive immunity) and then anti-inflammative

(highest at 6-12h in innate immunity and days in adaptive immunity).
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