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Introduction

Bone defects resulting from trauma, congenital defects, 
cancer, infection, and arthritis have become a global health-
care problem. The reconstruction of extensive bone defects 
continues to be a great challenge medically and socioeco-
nomically. Currently available approaches for bone defect 
reconstruction, such as the sue of autografts, allografts, 
xenografts, and synthetic grafts, all have specific indica-
tions and limitations.1–3 Thus, extensive research has been 
performed to identify substitutes approaches for the recon-
struction of bone defects. BTE, which aims to regenerate 
new biological bone tissue with structures, mechanical 
properties, and functions similar to those of naturally occur-
ring bone tissue, has become a valid approach for bone 
defect reconstruction.

The classic BTE paradigm frequently relies on several 
key elements: (1) an osteoconductive scaffold that closely 
mimics the natural bone extracellular matrix (ECM) niche;4,5 
(2) osteogenic cells capable of initiating bone formation at 

the graft site or, at least, creating an osteoinductive microen-
vironment to induce resident cells to do so;6 (3) osteoinduc-
tive molecules to trigger implanted or resident cells to form 
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bone tissue;7 and (4) sufficient vascularization to meet the 
needs of the growing tissue for a supply of nutrients and the 
clearance of waste.8,9 In the past three decades, BTE has tra-
ditionally focused on mimicking an intramembranous ossi-
fication (IMO) pathway, by which mesenchymal stem cells 
(MSCs) are induced to undergo osteogenic differentiation 
with subsequent formation of a bone-like matrix. This 
approach has achieved major progress in terms of bioreactor 
design, scaffold engineering, and long-term tissue construct 
maintenance,10,11 but there have also been encountered set-
backs and delays in clinical translation. An emerging para-
digm of developmental BTE, which advocates engineering 
cartilage constructs by replicating certain aspects of ECO 
for bone defect reconstruction, has been gradually adopted 
by researchers to address the limitations of traditional BTE 
strategies. However, the basis of ECO strategies is not 
widely understood. Furthermore, several key design criteria 
regarding the choice of cell sources, biomaterials, and endo-
chondral priming protocols remain to be elucidated. Thus, 
this review introduces the concept of developmental bone 
engineering, explores the routes of endochondral bone engi-
neering, and summarizes the current experimental data on 
large bone defect reconstruction via ECO-based strategies. 
Within this framework, emphasis is placed on the superior-
ity of ECO-based strategies, and future trends in the clinical 
translation of these strategies are discussed.

Engineering endochondral bone: A 
developmental engineering strategy

Embryonic bone development and fracture 
healing

All bone is formed through two mechanisms: IMO and 
ECO. Both mechanisms begin with MSC migration to 
sites of future bone. Here, MSCs form condensations of 
high cellular density that outline the shape and size of the 
future bone. Within these condensations, the MSCs either 
differentiate into osteoblasts to directly form flat bone 
(intramembranous bone formation, Figure 1(a)),12 or dif-
ferentiate into chondrocytes and form a cartilaginous tem-
plate that is responsible for long bone formation (Figure 
1(b)) as well as bone fracture healing (Figure 1(c)) (endo-
chondral bone formation).13

The replacement of cartilage with mineralized bone in 
endochondral bone is a complex process. Osteogenesis 
begins when proliferating chondrocytes within the tem-
plate enter a non-proliferating, hypertrophic state. These 
hypertrophic chondrocytes secrete osteogenic and angio-
genic factors, such as vascular growth factor (VEGF) and 
alkaline phosphatase (ALP). Concurrently, the tissue is 
invaded by vasculature, which delivers MSCs, osteoclasts, 
endothelial cells, and hematopoietic cells to the diaphysis, 
thereby forming a primary ossification center (POC).14 
Traditionally, hypertrophic chondrocytes undergoing 

programmed cell death are believed to be removed by 
osteoclasts from the template.14 MSCs then differentiate 
into osteoblasts to produce bone matrix.15 However, recent 
works have highlighted an alternative fate of hypertrophic 
chondrocytes, consisting of transdifferentiation into osteo-
blasts and osteocytes in the final stages of endochondral 
bone formation.16–18 Additional vasculature near the ends 
of the bone will establish one or more secondary ossifica-
tion centers (SOCs), which contribute to the growth of the 
bony epiphyses and articular cartilage (Figure 1(b)).12,19

Bone fracture healing differs from natural bone develop-
ment. In general, bone fracture healing consists of three 
overlapping phases: the inflammatory, reparative, and 
remodeling phases;20 ECO and IMO occur concurrently 
during the reparative phase.11 When a bone fracture occurs, 
the inflammatory phase begins immediately. The damaged 
vasculature and bone marrow create a hypoxic microenvi-
ronment that recruits MSCs, fibroblasts, and endothelial 
cells to the fracture site.21 The reparative phase consists of 
two subphases: the soft callus and the hard callus phases.20 
In the soft callus phase, the recruited MSCs start differenti-
ating in two different ways according to their microenvi-
ronment.13 IMO primarily occurs along the periosteal 
surface of the bone adjacent to the fracture site as MSCs 
differentiate into osteoblasts that lay down woven bone.22 
However, ECO occurs predominantly at the center of the 
fracture site, where MSCs differentiate into chondrocytes.22 
These chondrocytes then form a cartilaginous soft callus, 
and the synthesized cartilage ECM mineralizes through 
chondrocyte apoptosis. In the hard callus phase, osteoblasts 
migrate to where blood vessels invade the calcified carti-
lage to produce a hard callus.20,23 Finally, after the fracture 
has been filled with new woven bone, osteoclastic activity 
occurs at the outer surface to initiate periosteal callus 
resorption and the remodeling phase (Figure 1(c)).

Endochondral bone engineering: A promising 
solution for large bone defect reconstruction

Inspired by the process of bone development and fracture 
healing, current BTE strategies strive to generate bone 
substitutes by emulating the body’s biochemical and phys-
ical environment. Traditional BTE strategies mimic the 
embryological process of IMO, by which MSCs are 
induced to undergo osteogenic differentiation with the 
subsequent formation of a bone-like matrix in vitro. This 
strategy has clear potential and has made major pro-
gress.10,11 A major drawback such strategies for engineer-
ing constructs is the limited size of the construct. In vitro 
osteogenic induction results in extensive matrix deposition 
on the surface of the construct, which hampers nutrient 
delivery and makes it difficult to scale up the size.24 
Furthermore, extensive bone matrix on the surface hinders 
the invasion of blood vessels upon construct implantation. 
Thus, such traditional BTE approaches often fail due to 
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poor perfusion, leading to avascular necrosis and core deg-
radation.9 Consequently, attention has shifted toward an 
alternative route of “developmental engineering,” which 
strives to stimulate in vivo developmental processes and 
imitates natural factors governing cell differentiation and 
matrix production.25,26

In contrast to IMO-based approaches, approaches based 
on developmental engineering involve engineering carti-
laginous constructs by replicating certain aspects of ECO 

for bone defect reconstruction. Briefly, MSCs are induced to 
differentiate into chondrocytes in vitro to form a hyper-
trophic cartilage construct, which contains essential “bio-
logical instructions” to initiate the ECO process after 
implantation, and the defect is subsequently repaired by 
endochondral bone formation (Figure 2).27–29 This strategy 
offers a solution to overcome problems associated with poor 
vascularization after implantation: (1) chondrocytes that are 
born in an avascular environment can intrinsically resist 

Figure 1. Overview of IMO and ECO during embryonic bone development and fracture healing: (a) IMO follows four steps. Step 
1: MSCs undergo condensation and form ossification centers. MSCs within the areas of condensation lead to the development of 
capillaries and osteoblasts. Step 2: Osteoblasts secrete osteoid, which then entraps the osteoblasts, and the osteoblasts transform 
into osteocytes. Step 3: Osteoid secreted around the capillaries result in trabecular matrix formation, while osteoblasts on 
the surface of the spongy bone become the periosteum. Step 4: The periosteum then creates compact bone superficial to the 
trabecular bone. The trabecular bone crowds blood vessels, which eventually condense into red marrow. (b) ECO follows six 
steps during embryonic bone development. Step 1: MSC condensation. Step 2: MSCs within the areas of condensation differentiate 
into chondrocytes to form the cartilage template of the future long bone, and MSCs in the periphery form the perichondrium. 
Step 3: Chondrocytes in the center of the template undergo hypertrophy, while cells in the periphery undergo direct osteogenic 
differentiation to form a periosteal collar of compact bone around the cartilage template. Step 4: Hypertrophic chondrocytes 
secrete osteogenic and angiogenic factors that initiate cartilage matrix mineralization and blood vessel invasion, resulting in POC 
formation. Step 5: The diaphysis elongates, and a medullary cavity forms as ossification continues. Step 6: After this initial bone 
formation, the same sequence of events occurs in the epiphyseal regions, leading to SOC formation, and (c) The healing of fractures 
follows three consecutive and overlapping phases. Inflammatory phase: Approximately 6–8 h after the fracture, a hematoma is 
formed at the fracture site. Reparative phase: Within approximately 48 h after the fracture, chondrocytes from the periosteum and 
marrow create an internal callus between the two ends of the broken bone and an external callus around the outside of the break. 
MSCs from the periosteum directly differentiate into osteoblasts, thereby stimulating appositional bone growth and enveloping the 
defect. Over the next several weeks, the cartilage in the calli is replaced by woven bone via ECO. Remodeling phase: The woven 
bone remodels into lamellar bone through osteoclast-osteoblast coupling, and the healing process is complete. The histological 
image of the epiphyseal plate of a growing long bone was adapted from Human Anatomy, sixth edition (Copyright © 2011 Pearson 
Education, Inc., Figure 6.12).
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hypoxia,30 while MSCs and osteoblasts are less tolerant to a 
hypoxic environment;31,32 (2) hypertrophic chondrocytes 
can induce neovascularization and ossification through the 
release of VEGF, vesicles containing hydroxyapatite, and 
bone morphogenic proteins (BMPs);33,34 and (3) endochon-
drally primed grafts allow for faster host integration and 
bone formation after implantation in vivo.35,36 Therefore, 
ECO-based strategies have brighter prospects and interest in 
ECO has gradually increased in recent years.

Engineering strategies for the in vitro 
recapitulation of ECO

Developmental engineering strategies for recapitulating 
endochondral bone formation typically involve two steps: 
(1) engineering a cartilaginous intermediate in vitro and 
(2) implanting the cartilaginous template in the defect site 
to induce bone regeneration. As these are tissue engineer-
ing approaches, some fundamental factors related to cell 
sources, bioscaffolds, biochemical factors, and priming 
protocols have been studied extensively to mimic natural 
bone development.

Cell sources

Cell from an ideal cell source for endochondral bone engi-
neering must have the capacity to undergo hypertrophic 
chondrocyte differentiation and synthesize hypertrophic 
cartilage-specific ECM. Cells derived from numerous 
sources, including bone marrow, adipose tissue, embry-
onic tissue, and the nasal septum, have been successfully 
applied in endochondral bone engineering.

Adult MSCs. Bone marrow-derived mesenchymal stem 
cells (BMSCs) are currently the most frequently used cells 
in endochondral bone engineering. These cells are favored 

for their potential to differentiate into chondrocytes and 
subsequently develop a hypertrophic phenotype in vitro.37 
Generally, the chondrogenic differentiation of BMSCs in 
vitro shows similarities to the process of ECO: the cells 
progressively produce collagen type II (COL II) and COL 
X; when a phosphate donor is added to the culture medium, 
mineralization can occur in the engineered constructs;38 
and when the chondrogenically primed constructs are 
implanted in vivo, bone formation, mineralized matrix 
deposition, and blood vessel ingrowth can be observed.39 
Furthermore, BMSCs have shown greater chondrogenic 
potential40,41 and 15-fold greater COL X expression42 than 
adipose-derived stem cells (ASCs) under the same culture 
conditions. In donor-matched comparison studies, BMSCs 
have shown a significantly higher chondrogenic capacity 
than ASCs after 21 days of culture in chondrogenic differ-
entiation medium (CHM).43 Cartilaginous constructs engi-
neered from BMSCs follow a process similar to that of 
ECO, with greater COL X expression and mineralization 
than constructs engineered from joint tissue-derived stem 
cells under the same conditions.37 The use of allogeneic 
MSCs, which have shown the ability to elicit endochon-
dral bone regeneration in critical-sized femoral defects in 
immunocompetent rats,44 represents an interesting alterna-
tive to overcome these limitations. However, further 
research on achieving robust bone formation with alloge-
neic MSCs is needed. Although BMSCs have shown 
excellent performance in endochondral bone engineering, 
limitations of BMSCs, including donor variability, inva-
sive harvesting protocols, and difficulty expanding cells in 
vitro, have also been reported.

ASCs are a heterogeneous population of cells that are 
harvested from subcutaneous adipose tissue and exhibit 
several distinct translational advantages over MSCs from 
other tissues.45 ASCs have multilineage potential compa-
rable to that of BMSCs,46,47 but they are easily accessible 

Figure 2. Schematic illustration of ECO-based strategies for large bone defect reconstruction.
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in abundant quantities by a minimally invasive proce-
dure48,49 and have a higher proliferative capacity.50 ASCs 
have shown the ability to recapitulate ECO in vitro and in 
vivo. ASCs, either cultured as micromass pellets51,52 or 
spheroids53 or seeded onto collagen sponges51,54 in CHM, 
can mature into hypertrophic cartilage tissue. Upon sub-
cutaneous implantation, these hypertrophic cartilage con-
structs are able to undergo an ECO process and develop 
into bone containing bone marrow elements.51,52 However, 
the clinical translation of this approach may still be ham-
pered by the complex ASC processing protocol and 

long-term in vitro expansion procedures, which impair 
their multilineage differentiation potential.55 Therefore, 
our team innovatively fractionated human lipoaspirates 
into small adipose tissue particles and used them as 
numerous ASC niches and native scaffolds for hyper-
trophic cartilage engineering. The resulting constructs 
develop a hypertrophic cartilage phenotype and even 
show higher efficacy in endochondral bone formation 
than ASC-seeded collagen sponges (Figure 3).54,56 These 
studies provide a clinically translatable approach for bone 
defect repair.

Figure 3. Engineering hypertrophic cartilaginous tissue directly from human adipose tissue: (a) Human adipose tissue was 
harvested during liposuction surgery; the human adipose tissue was positive for COL IV but negative for fibronectin, COL II, and 
COL X. After 3 weeks of culture in proliferation medium, the adipose tissue was positive for COL IV and fibronectin but negative 
for COL II and COL X, indicating that proliferative culture results in more stromal cells in the adipose tissue. (b) Then, the cultured 
adipose tissue was subjected to endochondral priming. After 4 weeks of chondrogenic priming, the engineered constructs showed 
a cartilaginous phenotype, which was characterized by positive safranin O staining for GAG, weakly positive staining for COL I 
and COL X, and strongly positive staining for COL II. The chondrogenically primed constructs were cultured in HYM for 2 weeks, 
which resulted in strong positive staining for COL X, (c) The endochondrally primed constructs were subcutaneously implanted 
into nude mice for 12 weeks. MicroCT scanning of the retrieved constructs showed a bony shell around bone trabeculae inside. 
Bone tissue formation and morphological evidence of bone marrow in the retrieved constructs were identified histologically by 
hematoxylin and eosin (H&E) staining and osteocalcin (OCN) staining. Intensive bone resorption by osteoclasts, characterized as 
tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, was observed in the inner margins of the bone marrow-
like cavity surrounded by newly formed bone tissue.
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Another clinically relevant cell type for recapitulating 
ECO is periosteum-derived cells (PDCs), which are found 
in the inner cambium of the periosteum and play a promi-
nent role during fracture healing.57 In the context of BTE, 
PDCs exhibit strong MSC-like multipotency characteris-
tics at the single-cell level58 but greater clonogenicity, dif-
ferentiation potential, and bone regeneration capacity.13 
Furthermore, PDCs acquire the capacity for endochondral 
bone formation in response to injury,58 which has made 
them an attractive cell type for endochondral bone engi-
neering.59 Callus organoids engineered by the chondro-
genic priming of human PDC (hPDC) microspheroids in 
vitro can form bone microorganoids in an ectopic environ-
ment and heal murine critical-sized long bone defects.60 In 
another study, the preconditioning of hPDC microaggre-
gates in vitro resulted in the formation of intermediate car-
tilage tissue, which could ectopically develop into bone 
tissue via ECO and facilitate bone defect healing.61

Embryonic stem cells (ESCs). ESCs possess the potential to 
differentiate into any cell type and have been shown to 
achieve bone formation via ECO. The chondrogenic 
induction of mouse ESCs in vitro results the deposition of 
cartilage matrix on ceramic scaffolds, which in turn dem-
onstrate robust endochondral bone formation upon 
implantation in subcutaneous sites or in critical-sized cra-
nial defects.62 The chondrogenesis of differentiated ESCs 
is typically characterized by five overlapping stages, 
which are similar to the stages of the embryonic develop-
mental processes of ECO: (1) condensation of differenti-
ated ESCs; (2) differentiation and fibril scaffold formation; 
(3) ECM deposition and cartilage formation; (4) hypertro-
phy and degradation of cartilage; and (5) bone replace-
ment with membranous calcified tissues.63

However, concerns regarding ethical objections, 
immune rejection, and teratoma formation continue to 
impede the clinical implementation of ESCs. To produce 
functional bone tissue without these risks, MSCs derived 
from ESCs (ESC-MSCs), which possess the lineage-spe-
cific differentiation potential of MSCs but enhanced pro-
liferative and immunosuppressive capabilities,64 have also 
shown the capacity to recapitulate the ECO process and 
repair bone defects semiautonomously without preimplan-
tation differentiation into osteo- or chondroprogeni-
tors.65–67 Furthermore, embryonic limb-derived progenitor 
cells can also form bone via the ECO pathway in an ectopic 
environment, which has been harnessed to bridge parietal 
bone defects in a mouse model.68

Chondrocytes. Chondrocytes, which constitute mature and 
functional cartilage, are a logical cell type for endochon-
dral bone engineering. As mentioned before, hypertrophic 
chondrocytes within the fracture callus stimulate osteo-
genesis and vasculogenesis during bone fracture healing, 
and hypertrophic chondrocytes isolated from fracture cal-
luses, even from callus tissue directly, have demonstrated 

the capacity to promote bone regeneration.69,70 These 
inherent biological features suggest that the use of hyper-
trophic chondrocytes is a logical therapeutic strategy for 
bone regeneration.

Articular cartilage is normally a permanent tissue that 
resists hypertrophy, vascularization, and ossification.71 
Under physiological conditions, articular chondrocytes 
remain in a resting state and refrain from proliferation or 
terminal differentiation. However, under the conditions of 
osteoarthritis, articular chondrocytes enter ECO-like cas-
cades of proliferation and phenotypical dysregulation, 
becoming hypertrophic and abnormally expressing genes 
such as COL X, matrix metalloproteinase (MMP)-13, and 
ALP.72 Therefore, by leveraging these inherent biological 
characteristics, human osteoarthritic articular chondro-
cytes have been used to engineer endochondral constructs 
that subsequently undergo ECO after implantation either 
subcutaneously or orthotopically.72 Interestingly, ectopic 
bone formation has also been observed in healthy articular 
chondrocyte-engineered constructs, indicating the bone-
forming potential of healthy articular chondrocytes.73 
Indeed, healthy articular cartilage lesions often undergo 
progressive degeneration toward osteoarthritis under path-
ological conditions, and continuous efforts have been 
directed to optimize conditions for redirecting articular 
chondrocytes toward hypertrophy. A recent study has dem-
onstrated that upon transforming growth factor (TGF)-β1 
administration during ex vivo expansion, human articular 
chondrocytes are redirected toward a hypertrophic pheno-
type,74 which is an undesirable effect for cell culture but 
could be useful in endochondral bone engineering. 
Similarly, with the help of BMP-2, primary porcine articu-
lar chondrocytes can produce hypertrophic cartilage matrix 
on poly(ε-caprolactone) (PCL) scaffolds in vitro and even 
result in bone and bone marrow formation upon implanta-
tion.75 Furthermore, ECO with marrow cavity formation 
can be observed in the long term after the ectopic implan-
tation of primary human articular chondrocytes isolated 
from the epiphyseal cartilage of infants in nude mice, even 
without in vitro expansion, induction, and scaffold seed-
ing.76 Although promising results have been reported, the 
clinical translation of articular chondrocyte-engineered 
constructs is still limited by phenotype stability, donor site 
morbidity, and in vitro expansion.

Chondrocytes derived from other tissues have also 
shown potential as a cell source for endochondral bone 
engineering. Nasal septal cartilage derives from the same 
multipotent embryological segment that gives rise to the 
majority of maxillofacial bones and has been considered 
an autologous cell source for cartilage and BTE.77 The 
hypertrophic induction of adult human nasal chondro-
cyte-based micromass pellets in vitro results in the for-
mation of mineralized cartilaginous tissue rich in COL X, 
but the tissue remains avascular and reverts to stable hya-
line cartilage upon subcutaneous implantation in nude 
mice.78 In contrast, chondrogenically primed rat nasal 
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chondrocyte-seeded constructs are not only rich in COL 
X but also show angiogenesis, mineralization, and bone 
formation upon subcutaneous and orthotopic implanta-
tion.79 These results demonstrate the plasticity of nasal 
chondrocytes in engineering endochondral bone. In addi-
tion, chondrocyte-like progenitors possessing a transient 
phenotype in vitro have been effectively induced toward 
endochondral bone formation in vivo.80–82

Biomaterials

Generally, an ideal scaffold for endochondral bone engi-
neering should have mechanical characteristics that resem-
ble those of hypertrophic ECM, possess appropriate cues 
to enhance cellular attachment and subsequent differentia-
tion, and provide an architecture for allowing cellular 
adhesion, matrix production, and vessel ingrowth in vivo. 
Typically, four types of biomaterials, natural polymers, 
synthetic polymers, bioceramics, and decellularized/devi-
talized ECM (dECM), are used in endochondral bone 
engineering.

Natural polymers. Natural polymers, such as hyaluronic 
acid (HyA), collagen, gelatin, and fibrin, are widely used 
in endochondral bone engineering. Collagen and HyA are 
both key components of the native cartilage matrix. Highly 
porous collagen-based scaffolds have been extensively 
used to support the in vitro growth and differentiation of 
MSCs toward both osteogenic and chondrogenic lineages 
due to their biocompatible and biodegradable nature.83–86 
Porous collagen sponges were first used to generate carti-
lage in vitro and have recently also been used to generate 
endochondral bone.29,51,87 HyA is an important physiologi-
cal component of the cartilaginous ECM that provides a 
favorable environment for endochondral bone engineering 
and has achieved promising results.88 HyA-based scaffolds 
have been shown to support cell migration and differentia-
tion. MSCs seeded into HyA hydrogel have shown greater 
COL II and chondroitin sulfate production but less COL I 
deposition than other materials.89 Therefore, composite 
scaffolds developed using collagen and HyA have shown 
greater hypertrophic cartilage formation in vitro and endo-
chondral bone formation in vivo,33,90 but a high HyA con-
centration in such composite scaffolds may result in a low 
proportion of cells with a hypertrophic phenotype in the 
engineered constructs.91

Gelatin is a naturally derived protein obtained by col-
lagen hydrolysis. Due to its biocompatibility, biodegrada-
bility, and ability to form hydrogels, gelatin plays a 
significant role in 3D cell culture models and has been 
used alone and as a basic material for improving endo-
chondral bone regeneration.92 Porous gelatin sponge scaf-
folds have been shown to support chondrogenesis in vitro 
and calvarial healing via ECO.93 Gelatin-methacrylamide 
(GelMA) hydrogels produced by the chemical modifica-
tion of gelatin retain some properties of collagen and 

gelatin, such as cell adhesion domains, thermosensitivity, 
and biodegradability.94,95 Thus, this material can be used as 
an embedding material and in the fabrication of bioprinta-
ble scaffolds for endochondral bone engineering. For 
example, GelMA hydrogels have been loaded with MSCs 
and chondroinductive particles, and the resulting compos-
ite constructs stimulated endochondral bone formation in a 
subcutaneous rat model.96 Additionally, MSC-loaded 
GelMA hydrogels are used to print constructs with an 
interconnected microchannel network which are subse-
quently used for engineering cartilaginous constructs. The 
3D-printed microchannels within the cartilage template 
can promote osteoclast/immune cell invasion, hydrogel 
degradation, and vascularization during endochondral 
bone formation.97

Fibrin is a biopolymer of the monomer fibrinogen that 
plays critical roles in blood clotting, cell-matrix interac-
tions, inflammation, and wound healing.98 Fibrin hydrogels 
facilitate MSC-mediated vascularization, endochondral 
bone formation, and bone marrow development.99 Fibrin 
hydrogels reduce the standard chondrogenic priming dura-
tion from 28 days to 7 days but yield comparable endochon-
dral bone formation.100 Fibrin supports cell attachment, 
condensation, and proliferation but is mechanically weak 
and degrades rapidly. Hyaluronan is mechanically stronger 
and degrades much more slowly than fibrin. Therefore, a 
novel hybrid system composed of 70% hyaluronan and 
30% fibrin has been developed to closely mimic the ECM 
microenvironment. This combination supports cell micro-
aggregation and differentiation and demonstrates the 
healthy development of chondrogenic and hypertrophic 
stages with abundant stage-specific ECM components.101 
Similarly, fibrin glue combined with MSCs and β-tricalcium 
phosphate (β-TCP) particles can enhance heterotopic endo-
chondral bone formation.102

Other naturally derived polymers, such as alginate, chi-
tosan, and agarose, have also been used as biocompatible 
hydrogel materials in endochondral bone engineering. 
Alginate hydrogels have been used to engineer endochon-
dral bone tissue in subcutaneous spaces or bone defects.39,103 
Furthermore, similar to GelMA hydrogels, alginate hydro-
gels are also used as beads for cell encapsulation52 or as 
bioinks for 3D printing104 for endochondral bone engineer-
ing. Chitosan is structurally similar to various glycosami-
noglycans (GAGs) and has been shown to support 
hypertrophic cartilage matrix deposition and endochondral 
bone formation.80,81 However, compared with alginate and 
fibrin hydrogels, chitosan hydrogels are resistant to vascu-
larization and bone remodeling.99 Agarose is a polysaccha-
ride that has been used to encapsulate MSCs, MSC pellets, 
or other materials in endochondral bone engineering.37,52,105 
By leveraging the good mechanical and thermoreversible 
properties of agarose hydrogels, agarose hydrogels con-
taining an array of microchannel structures have also been 
shown to support vascularization and conversion to endo-
chondral bone.106
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Synthetic polymers. Natural polymers are sometimes lim-
ited by their poor mechanical strength and rapid degrada-
tion. Synthetic polymers including polylactic acid (PLA), 
poly(L-lactic acid) (PLLA), polyglycolic acid (PGA), 
poly(lactic-co-glycolic acid) (PLGA), PCL, and their 
copolymers have been extensively utilized for endochon-
dral bone engineering due to their good chondrogenic con-
duction, biocompatibility, slow degradation, and easily 
altered mechanical properties.107

Synthetic polymers have demonstrated good chondro-
genic conduction both in vitro and in vivo. PLGA scaffolds 
loaded with chondrogenically predifferentiated rat BMSCs 
have been shown to heal large bone defects in rats by mim-
icking ECO.108 Similarly, nasal chondrocyte-seeded PGA 
scaffolds can promote endochondral bone formation in rat 
cranial defects.79 The biochemical cues provided by syn-
thetic polymer scaffolds control cellular proliferation and 
differentiation. PLGA/PLLA copolymer scaffolds can 
induce human ESC differentiation via an ECO pathway, 
while hydroxyapatite (HAp)-based PLGA/PLLA compos-
ite scaffolds result in bone formation via an IMO path-
way.66 However, cell adhesion and proliferation are limited 
due to the hydrophobicity of these synthetic polymer 
scaffolds.109,110

Synthetic polymers have better mechanical properties 
and flexibility than natural polymers. Porous PLGA scaf-
folds have been added to hyaluronan-fibrin hydrogels to 
enhance their mechanical strength and fabricate a load-
bearing scaffold system. In this polymer-gel hybrid scaf-
fold, the gel phase provides a microenvironment to guide 
the endochondral process, while the polymer phase is 
expected to provide mechanical strength to the overall 
polymer-gel structure.111 PCL possesses an appropriately 
high bulk stiffness to facilitate MSC differentiation toward 
skeletal lineages and has been selected as a scaffold mate-
rial to support chondrogenesis and hypertrophic minerali-
zation.112 In addition, bioprinted PCL microfiber networks 
have been used to reinforce the mechanical strength of 
engineered cartilaginous templates, which support the 
development of a vascularized bone organ containing tra-
becular-like bone and a supporting hematopoietic marrow 
structure.104

Synthetic polymer scaffolds with nanofibers similar in 
size to natural cartilage matrix fibers facilitate tissue 
regeneration. 3D PLGA/PCL scaffolds fabricated by elec-
trospinning have been demonstrated to support the chon-
drogenic differentiation of rat BMSCs in vitro and 
endochondral bone formation in vivo.113,114 Furthermore, 
the pore size and architecture of nanofibrous polymer scaf-
folds affect the conversion of cartilage to bone tissue. 
Under the same in vitro priming and in vivo implantation 
conditions, nanofibrous PLLA scaffolds with large pores 
(425–600 μm) have been shown to support endochondral 
bone formation by allowing blood vessel ingrowth, 
whereas scaffolds with very small pores (60–125 μm) have 

been shown to allow cartilage formation but inhibit 
ECO.115 In another study, an electrospun PCL 3D nanofi-
brous scaffold with interconnected and hierarchically 
structured pores morphologically similar to natural ECM 
could lead to high cell viability. More importantly, it could 
promote the BMP-2-induced chondrogenic differentiation 
of mouse BMSCs in vitro and act as a favorable synthetic 
ECM for endochondral bone regeneration in vivo.116

Bioceramics. Known for their good biocompatibility, bone 
bioactivity, and osteoconductivity, bioceramics, such as 
HAp, β-TCP, and biphasic calcium phosphate (BCP), have 
been utilized as scaffolds for endochondral bone engineer-
ing. However, due to their high brittleness, bioceramics are 
typically combined with various natural or synthetic poly-
mers to create highly porous biocomposite materials with 
improved mechanical properties.

HAp is one of the main inorganic components of the 
natural bone matrix. HAp-based scaffolds have been used 
extensively to promote bone regeneration because of their 
good biocompatibility and high osteoconductivity.117,118 
Recently, nano-HAp particles, when used to coat titanium 
scaffolds, have been shown to support the chondrogenic 
differentiation of MSCs and enhance endochondral bone 
regeneration in mandibular defects in rats.119 Furthermore, 
when incorporated into biodegradable polymers, such as 
collagen90 and poly(vinyl alcohol),120 HAp particles 
enhance the mechanical properties of scaffolds, resulting 
in mechanical strength very similar to that of bone or car-
tilage. Moreover, the osteoinductivity of HAp can affect 
the chondrogenesis, hypertrophy, and ECO of MSCs. In a 
bioprintable HyA-based hydrogel system, a small number 
of HAp particles has been shown to promote both the 
chondrogenic and the hypertrophic differentiation of 
ASCs, whereas larger numbers of HAp particles promote 
hypertrophic conversion and early osteogenic differentia-
tion of ASCs.121 In another study, CaP-coated HAp min-
eral particles have been shown to promote the gene 
expression of chondrogenic markers and enhance the 
hypertrophic phenotype of ESC aggregates in vitro in a 
dose-dependent manner.67

β-TCP has been shown to promote cartilage regenera-
tion and biomineralization122 and support endochondral 
bone formation123 because of its biodegradability, biocom-
patibility, and bioactivity. β-TCP is often combined with 
other materials to enhance the chondrogenic and endo-
chondral potential of scaffolds. It has been shown that the 
addition of β-TCP particles to a 3D biomimetic hydrogel 
scaffold not only induces abundant expression of the chon-
drogenic markers COL II and aggrecan but also, most 
notably, results in overexpression of the hypertrophic 
marker COL X and the osteogenic marker ALP.124

BCP consists of two CaP phases, namely, a stable HAp 
phase and a soluble β-TCP phase, in distinct proportions. 
These two materials are proportionally combined to obtain 
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a suitable balance between the predictable biodegradabil-
ity offered by β-TCP and the improved resiliency provided 
by HAp. The chemical and structural cues provided by 
porous HAp/TCP scaffolds have been shown to support 
progressive lamellar-like bone formation and mature bone 
marrow development.125 Our previous study showed that 
porous HAp/β-TCP granules support endochondral bone 
formation at ectopic sites by enhancing biomineraliza-
tion.56 Furthermore, porous HAp/TCP scaffolds are more 
suitable for implantation in loadbearing areas than other 
scaffolds, including those made of polyurethane foam, 
electrospun PLGA/PCL fibers, and COL I gel, due to their 
excellent mechanical properties.114

dECM. dECM not only retains the original 3D morpho-
logical architecture of the tissue but also retains a complex 
mixture of proteins and macromolecules that facilitate the 
proliferation and differentiation of endogenous or exoge-
nous cells.126 Importantly, the structural and functional 
proteins of the ECM are highly conserved across species, 
which allows xenogeneic dECM to be implanted in recipi-
ents of different species without an immune reaction.127,128 
dECM derived from natural bone and cartilage tissues has 
been used as scaffolds for endochondral bone engineering. 
Recent works have shown that endochondral constructs 
can be engineered by culturing ASC-seeded decellularized 
bone matrix (dBM) sequentially in CHM and then hyper-
trophic medium (HYM). These engineered constructs have 
been shown to enhance bone deposition, bone remodeling, 
and bone marrow formation in critical-sized femoral 
defects in rats.35 In addition, decellularized cartilage matrix 
(dCM), which consists predominantly of COL II but lacks 
GAGs and cells, is a promising scaffold material for endo-
chondral bone engineering.129 The biological integrity of 
dCM can stimulate endochondral bone regeneration by 
enhancing the chondrogenesis of MSCs, PDCs, or chon-
drocytes in vitro and eliciting a regenerative response upon 
implantation in vivo96,128 but has no significant effect on 
construct mineralization96 and a lower potential for endo-
chondral bone formation.130 Therefore, the use of dCM for 
endochondral bone engineering remains controversial, and 
studies have demonstrated that dCM promotes the chon-
drogenic differentiation but inhibits the hypertrophic dif-
ferentiation of MSCs in vitro and subsequent ECO in 
vivo.131–133 It has long been realized that viable hyper-
trophic cartilage will form bone in vivo; decellularized 
hypertrophic cartilage matrix (dHCM), which is manufac-
tured from native epiphyseal plates or fractured callus tis-
sue, can also trigger the natural ECO process upon 
implantation.134

A major drawback of these types of naturally derived 
dECMs is the limited donor source, which hinders their 
clinical application. Recent works have sought to engineer 
off-the-shelf decellularized/devitalized tissue engineered-
cartilaginous matrix (dTECM) for endochondral bone 
engineering, which is expected to induce regenerative 

processes not only through specific “organomorphic” 
structures but also through the physiological presentation 
of different cocktails of regulatory molecules in a suitable 
environment.135,136 Bourgine et al. engineered a novel 
hypertrophic cartilage construct using immortalized 
human MSCs, in which decellularization was achieved by 
the induction of apoptosis with efficient ECM preserva-
tion. The resulting dHCM could efficiently remodel to 
form endochondral bone tissue of host origin, including a 
mature vasculature and a hematopoietic compart-
ment.137–139 Furthermore, dTECM engineered from vari-
ous cell sources, such as ATDC5 cells,105 adipose-derived 
stromal vascular fraction (SVF) cells,140 and BMSCs,141,142 
has shown the ability to be activated by MSCs to initiate 
ECO and induce new bone formation upon implantation 
without long-term endochondral priming in vitro. These 
promising results offer an alternative solution to overcome 
the drawbacks of naturally derived dECM and the exten-
sive production of dECM using allogenic MSCs.

Optimal endochondral priming medium and 
duration

Chondrogenesis is the first stage of the ECO process, 
involving with differentiation and maturation of chondro-
cytes. Different endochondral priming protocols have been 
used to replicate the initial stages of ECO by driving pro-
genitors toward a hypertrophic phenotype.

Endochondral priming medium. Endochondral priming 
largely relies on the chondrogenic differentiation stage, as 
chondrocytes possess specific metabolic features and 
secrete diverse biochemical cues when they are in different 
developmental stages. Generally, the engineering of a car-
tilage template from MSCs in vitro is necessary to reca-
pitulate the process of ECO because chondrogenically 
differentiated MSCs tend to simultaneously acquire a cer-
tain degree of hypertrophic properties upon persistent 
exposure to CHM.143,144 However, chondrogenic induction 
alone usually results in “early hypertrophic” tissues with 
low and localized COL X expression,51,87 which is specifi-
cally produced by hypertrophic chondrocytes.145 Due to 
the critical roles of hypertrophic chondrocytes during 
ECO, an additional in vitro hypertrophic priming step is 
often applied to the chondrogenically primed constructs to 
elicit the most extensive ECO.146,147 The differentiation of 
MSCs In vitro into mature and hypertrophic chondrocytes 
requires a precise combination of growth and differentia-
tion factors. However, standard medium formulations for 
chondrogenic differentiation and hypertrophic induction 
are lacking. CHM is typically defined as Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 100 U/
mL penicillin/streptomycin, 100 μg/mL sodium pyruvate, 
40 μg/mL L-proline, 50 μg/mL L-ascorbic acid 2-phos-
phate, 4.7 μg/mL linoleic acid, 1.5 mg/mL bovine serum 
albumin (BSA), 1× insulin-transferrin-selenium (ITS) 
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premix, and 100 nM dexamethasone, along with various 
growth factors. Serum is sometimes used, but serum-free 
media are more common because serum-free cultures 
closely mimic the serum-free physiological environment 
in which chondrocytes reside. Growth factors play a domi-
nant role in the differentiation of MSCs toward chondro-
genic phenotypes in vitro; these growth factors include 
TGF-βs and BMPs, which play fundamental roles in early-
stage MSC differentiation and chondrogenic phenotype 
maintenance. Some of these factors are also involved in 
terminal differentiation.

TGF-β superfamily members including TGF-β1, TGF-
β2, and TGF-β3 are the core components of most chondro-
genic differentiation protocols.148,149 In vitro, TGF-βs induce 
chondrogenesis, proliferation, and matrix deposition in 
MSCs, with eventual progression toward hypertrophy. TGF-
β1 and TGF-β2 initiate MSC condensation during the early 
stage of endochondral bone development. TGF-β3 has 
stronger effects than TGF-β1

150 or TGF-β2
151 on the chon-

drogenic differentiation of MSCs. Furthermore, BMPs, 
which are morphogens in the TGF-β superfamily, have been 
shown to regulate chondrogenesis and osteogenesis during 
skeletal development. BMP-2, BMP-4, and BMP-6 are the 
most commonly used BMPs for chondrogenic differentia-
tion. BMP-2 has been reported to induce chondrogenic dif-
ferentiation by upregulating the levels of COL II and 
aggrecan in various types of stem cells in vitro152,153 and to 
promote chondrocyte hypertrophy by increasing COL X 
and ALP expression as well as upregulating of Indian hedge-
hog expression.154,155 BMP-4 plays a fundamental role in 
early-stage MSC chondrogenic differentiation and chondro-
genic phenotype maintenance156 and is also involved in 
regulating the terminal differentiation of chondrocytes.152 
BMP-6 participates in mediating chondrocyte hypertrophy. 
The treatment of chondrocytes with BMP-6 has been widely 
shown to stimulate COL X gene expression.157

Various combinations of TGF-βs and BMPs have 
shown a synergistic ability to enhance chondrogenic dif-
ferentiation and hypertrophy and have been widely used in 
endochondral bone engineering. For example, a combina-
tion of TGF-β1 and BMP-2 has been shown to increase the 
GAG and collagen content and initiate robust endochon-
dral lineage commitment.158–160 The dual delivery of TGF-
β1 and BMP-2 within BMSC aggregates has been shown 
to result in enhanced chondrogenesis and an enhanced 
osteogenic phenotype, as well as a greater degree of min-
eralization and COL X expression.161,162 Additionally, 
compared to TGF-β3 alone, combinations of TGF-β3 and 
BMP-6 can enhance the chondrogenic potential of BMSCs 
and ASCs.163,164 Among numerous growth factor combina-
tions, TGF-β3 in conjunction with BMP-6 appears to be 
the most effective for chondrogenic induction and ECO in 
ASCs51,54,56 because TGF-β3 alone is a potent inducer of 
chondrogenic differentiation, whereas BMP-6 acts syner-
gically with TGF-β3 by inducing the expression of TGF-β 
receptor I, which is usually not expressed by ASCs.165

Additional culture in HYM has been applied to promote 
chondrocyte hypertrophy and ossification in vitro. HYM is 
typically defined as CHM without growth factors, with a 
reduced dexamethasone concentration (1–10 nM), and 
with β-glycerophosphate (β-GP, 10 mM) and thyroxine 
(1–50 nM) or triiodothyronine (T3, 1 nM). The reduced 
dexamethasone concentration can induce Runx2 upregula-
tion, followed by COL I upregulation. β-GP can act as a 
source of phosphate for HAp.166 In addition to these basic 
supplements in HYM, other molecules or growth factors 
have been added to improve the efficiency of hypertrophic 
induction. Thyroid hormone and T3 have been shown to 
induce morphological and hypertrophic marker expression 
without inducing proliferation.167 Furthermore, inflamma-
tory cytokines, such as interleukin-1β, have been used to 
induce inflammation to improve hypertrophic cartilagi-
nous construct remodeling into bone tissue without ham-
pering mineralization.29,168

Endochondral priming duration. Endochondral priming pro-
tocols typically aim to reach a stage with a certain degree of 
hypertrophy before implantation. For chondrogenic prim-
ing, the in vitro induction duration varies from 1 to 5 weeks 
for different cells, media, and culture systems but usually 
lasts for 3 to 4 weeks. For clinical translation, prolonged in 
vitro culture is associated with high treatment costs and a 
large regulatory burden, which are not ideal. Fine coordina-
tion between the progression of chondrogenesis and endo-
chondral transformation needs to be achieved by choosing 
the optimal duration of in vitro chondrogenic and hyper-
trophic priming. Typically, mineralization occurs in con-
structs cultured for 3 weeks in CHM followed by 2 weeks in 
HYM.169 It has been shown that the priming of BMSC pel-
lets in vitro for 3 weeks in CHM followed by 4 weeks in 
HYM optimized GAG production and mineralization, 
resulting in a construct with mineralization throughout the 
core.170 However, a longer chondrogenic priming duration 
resulted in a significant increase in the homogeneous depo-
sition of cartilage matrix, whereas the bone volume was not 
affected by the priming duration. Two weeks of chondro-
genic priming in vitro is sufficient to generate a substantial 
amount of vascularized endochondral bone in vivo.125

Bone defect reconstruction via the 
endochondral route: current state of 
the art

Cartilaginous constructs engineered via endochondral 
priming tend to undergo hypertrophy and generate endo-
chondral bone tissue at ectopic sites, which opens the pos-
sibility of using endochondrally primed constructs for bone 
defect repair. Such an ectopic model is useful for investi-
gating vascular invasion and mineralization but does not 
offer an ideal environment for assessing the efficacy of 
bone defect reconstruction. In an orthotopic environment, 
bone regeneration starts with a low-grade inflammatory 
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phase,76 low oxygen tension,171 and continuous biomechan-
ical stimuli, which are all known to affect bone regenera-
tion. To analyze the current state of bone defect 
reconstruction using ECO-based strategies, we searched 
the PubMed databases for articles published between 
January 1, 2000, and March 1, 2021, using the search terms 
“endochondral ossification,” “bone defect reconstruction,” 
“bone regeneration,” and “bone tissue engineering.” Here, 
we include 25 publications related to bone defect recon-
struction using tissue-engineered endochondral grafts. A 
flow diagram of the initial identification, exclusion, and 
final selection of studies is shown in Figure 4. The included 
publications are categorized according to whether the endo-
chondral grafts were engineered by chondrogenic priming 
alone (Table 1) or a combination of chondrogenic and 
hypertrophic priming (Table 2) to analyze the efficacy of 
two different endochondral bone engineering strategies.

Chondrogenically primed cartilaginous grafts 
act as logical templates for bone repair at 
orthotopic sites

As shown in Table 1, a wide range of distinct approaches 
have been adopted to engineer cartilaginous grafts by 
chondrogenic priming. In 2006, a cartilaginous construct 
engineered via the chondrogenic priming of autologous 
BMSC-seeded biodegradable scaffolds for 3 weeks effec-
tively prevented carpal collapse in a New Zealand white 

rabbit model.175 This is the first report demonstrating that 
tissue-engineered cartilaginous grafts could recapitulate 
the ECO process and support bone formation at orthotopic 
sites. Inspired by this study, attempts have been made to 
engineer cartilaginous grafts in vitro for critical-sized bone 
defect reconstruction and have yielded promising results. 
Tissue-engineered cartilaginous grafts have been observed 
to mature and form bone tissue in critical-sized calvarial 
defect models, although they are not the most logical 
model for endochondral bone formation because craniofa-
cial bones form through IMO.182 For example, compared 
with sham implants, cartilaginous constructs engineered 
via the chondrogenic priming of mouse ESC-seeded 
ceramic scaffolds could transform into bone tissue in the 
inner circle of the constructs in 8-mm rat cranial defects.62 
Moreover, cartilaginous grafts engineered via the chondro-
genic priming of other cell sources, such as nasal chondro-
cytes79 and PDCs,60 have shown promising results in 
critical-sized bone defect reconstruction. To further trans-
late the use of chondrogenically primed cartilaginous con-
structs for therapeutic applications, cartilaginous grafts 
engineered by the chondrogenic priming of BMSCs-
seeded PLGA scaffolds have been used to heal both criti-
cal-sized (5-mm) and massive (15-mm) full-thickness 
femoral defects in rats. After 8 weeks, the mean biome-
chanical strength of femora with 15-mm implants reached 
75% of that of the normal rat femur, while there was no 
significant difference in the strength of femora with 5-mm 
implants.108 Collectively, this evidence suggests that engi-
neering of cartilaginous grafts via chondrogenic priming 
alone is a viable, underexplored strategy for critical-sized 
bone defect reconstruction.

Additional hypertrophic priming promotes the 
efficiency of endochondral bone formation

Although chondrogenically primed constructs have shown 
a certain degree of hypertrophy and can recapitulate ECO 
upon implantation in vivo, insufficient construct ossifica-
tion and vascularization have also been observed in sev-
eral studies.51,87 Additional hypertrophic priming of 
chondrogenically primed constructs not only maintains 
the chondrogenic features but also promotes the abundant 
expression of hypertrophic markers and ultimately results 
in abundant vascularization and mature bone matrix for-
mation.87 Similar results have also been observed in adi-
pose tissue-derived SVF-based cartilaginous constructs.51 
These results from ectopic bone formation models sug-
gest that the hypertrophic priming of cartilaginous grafts 
provides a valuable solution for enhancing endochondral 
bone regeneration and accelerating vascularization. 
Unfortunately, to date, no studies have compared the effi-
ciency of bone formation between cartilage constructs 
engineered via chondrogenic priming alone and those 
engineered via a combination of chondrogenic and hyper-
trophic priming in orthotopic bone formation models.

Figure 4. Flow diagram for study selection.
The inclusion criteria were as follows: (1) the constructs were 
engineered via chondrogenic and/or hypertrophic priming in vitro; (2) 
bone defect reconstruction in animal model. The included studies must 
meet all the above criteria at the same time. The excluded criteria 
were: (1) not an original article; (2) full text was not available; (3) not 
English language; (4) duplicate publications. Reports meet any of the 
above criteria were excluded.
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However, several studies have revealed the superiority 
of hypertrophically primed constructs over traditional 
IMO-based constructs in bone defect reconstruction. 
Thompson et al. compared the orthotopic bone formation 
efficiency of constructs engineered via chondrogenic and 
hypertrophic priming with that of constructs engineered 
by osteogenic priming. Because hypertrophic chondro-
cytes can secrete osteogenic and angiogenic signals, the 
endochondral constructs showed better results than the 
osteogenic constructs in terms of bone regeneration, vas-
cularization, and remodeling.90 Similar results have been 
observed in a rat model of critical-sized femoral defects 
repaired by hASC-based grafts. The hypertrophic grafts 
engineered by 3 weeks of chondrogenic priming followed 
by 2 weeks of hypertrophic priming substantially enhanced 
bone regeneration associated with extensive bone remod-
eling and hematopoietic marrow formation. Furthermore, 
the hypertrophic cartilaginous grafts resulted in signifi-
cantly greater bone volume in the defect space than the 
osteoblast grafts and acellular scaffolds.35 However, the 
additional in vitro hypertrophic priming step prolongs  
the endochondral bone engineering period. A delicate bal-
ance between chondrogenic differentiation and hyper-
trophic induction should be further investigated to improve 
the efficiency of ECO-based strategies in the future.

Future perspectives

To date, numerous studies have shown promising results in 
bone defect reconstruction using endochondrally primed 
constructs in animal models. However, the translation of 
these ECO-based strategies from the bench to the bedside 
is still ongoing and will face many challenges.

Integration of “top-down” tissue engineering 
and developmental engineering approaches 
provides a new solution for repairing large bone 
defects

Generally, tissue-engineered grafts for bone defect recon-
struction should ensure osteogenesis, angiogenesis, and 
survivability after implantation. To date, successes in large 
bone defect reconstruction using ECO-based strategies 
have been achieved in small animal models, but no studies 
have verified the practicability of such a strategies in a 
large animal model, which is closer to the actual clinical 
situation. For repairing large bone defects in large animal 
models or under clinical conditions, scaled-up endochon-
dral constructs are needed to fit the defects, which poses a 
new challenge.

Classic approaches for recapitulating ECO adopt a 
“top-down” strategy that relies on seeding progenitor cells 
onto scaffolds and then guiding the ECO process with 
growth factors. Such strategies are limited in the fabrica-
tion of large tissue constructs in vitro. Conversely, an 
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emerging “bottom-up” strategy for engineering large 
endochondral constructs is the scaffold-free culture tech-
nique, which aims to precondition cells to form modular 
tissue units represented by spheroid culture techniques, 
including cell pellets, cell sheets, and cell aggregates.183,184 
These high-density cell cultures provide a more homoge-
neous 3D culture format than other cultures to allow cell-
cell interactions that are similar to the precartilage 
condensation process during embryonic bone develop-
ment. Importantly, stem cell condensation has been shown 
to enhance chondrogenic differentiation.185 By integrating 
the principles of “bottom-up” tissue engineering and 
“developmental engineering” approaches, endochondrally 
primed spheroids derived from MSCs or ESCs can sponta-
neously fuse with each other and recapitulate ECO events, 
making them ideal building blocks for engineering large-
scale bone grafts.49 This integrated approach has several 
advantages that may support its clinical translation: (1) the 
possibility of scaling up tissue-engineered bone grafts to a 
clinically relevant size; (2) the ability to create endochon-
dral bone tissues with high cellular densities without scaf-
folds; and (3) the potential to model an endochondral bone 
graft with a complex geometric shape. The engineering of 
endochondral constructs via cell aggregates60,61 and pel-
lets72,173 has been reported in the studies regarding critical-
sized bone defect reconstruction and large bone graft 
prefabrication.186

dTECM: An off-the-shelf material capable of 
recapitulating ECO

A major obstacle to the clinical translation of ECO-based 
strategies is the long-term in vitro endochondral priming 
period. Furthermore, other issues, such as cost-effective-
ness, engineering process complexity, the need for two 
surgical procedures, and tissue engineering-associated 
regulatory hurdles, also need to be overcome. These limi-
tations have driven the development of dTECM as an off-
the-shelf and immune-compatible alternative to living 
grafts with the capability of recapitulating the ECO pro-
cess for bone defect reconstruction. The dTECMs could be 
used to directly attract endogenous MSCs toward the scaf-
fold by leveraging bioactive cues embedded within the 
dTECM137,138 or activated by living cells prior to implanta-
tion, with the assumption that the dTECM is capable of 
directing these cells to differentiate into hypertrophic 
chondrocytes.105,135,178 To date, various chemical, enzy-
matic, and physical procedures have been developed to 
eliminate the cellular components of tissue-engineered 
cartilaginous tissue while minimally disrupting the 
ECM.187,188 Cunniffe et al. created porous scaffolds by 
freeze-drying hypertrophic cartilage constructs engineered 
from allogeneic BMSCs. The resulting scaffolds retained 
their proangiogenic ability and capacity to direct host-
mediated orthotopic bone regeneration in critical-sized 

femoral defects.142 Bourgine et al. developed a decellulari-
zation methodology that induces the apoptosis of cells 
within tissue-engineered hypertrophic cartilage. Compared 
to standard production and freeze/thaw treatment, the 
resulting dHCM showed superior ECM preservation, lead-
ing to enhanced bone formation upon implantation.137–139 
Therefore, developing a reproducible and cost-effective 
technique to manufacture a large amount of human tissue-
derived dTECM may have good potential for clinical 
translation. Overall, the “off-the-shelf” availability and 
immune-compatible properties of dTECM may determine 
the extent of its clinical use.

Conclusion

Comprehensively, these initial results demonstrated that 
ECO-based strategies can be considered highly promising 
approaches for large bone defect reconstruction. Although 
limited success has been observed in clinical cases, these 
strategies have shown tremendously promising results in 
critical-sized bone defect reconstruction in animal models 
and have provided new insights into the fabrication of 
large, vascularized bone grafts. Nevertheless, research in 
this field is ongoing, and extensive research is undoubt-
edly needed to further improve bone output, scale up con-
structs, and enhance graft vascularization in the future.
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