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Abstract

Genome-wide association studies have mainly relied on common HapMap sequence variations. Recently, sequencing
approaches have allowed analysis of low frequency and rare variants in conjunction with common variants, thereby
improving the search for functional variants and thus the understanding of the underlying biology of human traits and
diseases. Here, we used a large Icelandic whole genome sequence dataset combined with Danish exome sequence data to
gain insight into the genetic architecture of serum levels of vitamin B12 (B12) and folate. Up to 22.9 million sequence variants
were analyzed in combined samples of 45,576 and 37,341 individuals with serum B12 and folate measurements, respectively.
We found six novel loci associating with serum B12 (CD320, TCN2, ABCD4, MMAA, MMACHC) or folate levels (FOLR3) and
confirmed seven loci for these traits (TCN1, FUT6, FUT2, CUBN, CLYBL, MUT, MTHFR). Conditional analyses established that
four loci contain additional independent signals. Interestingly, 13 of the 18 identified variants were coding and 11 of the 13
target genes have known functions related to B12 and folate pathways. Contrary to epidemiological studies we did not find
consistent association of the variants with cardiovascular diseases, cancers or Alzheimer’s disease although some variants
demonstrated pleiotropic effects. Although to some degree impeded by low statistical power for some of these conditions,
these data suggest that sequence variants that contribute to the population diversity in serum B12 or folate levels do not
modify the risk of developing these conditions. Yet, the study demonstrates the value of combining whole genome and
exome sequencing approaches to ascertain the genetic and molecular architectures underlying quantitative trait
associations.
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Introduction

One-carbon metabolism (OCM) is a process whereby folate

transfers one-carbon groups in a range of biological processes

including DNA synthesis, methylation and homocysteine metab-

olism [1,2]. The water-soluble B vitamins, vitamin B12 (B12) and

folate play key roles as enzyme cofactors or substrates in OCM.

Individuals with deficiencies in these vitamins can develop anemia

and, in the case of B12 deficiency, serious neurological problems.

In adults, epidemiological studies have also suggested that

subclinical B12 or folate deficiencies are associated with increased

risk of cardiovascular disease [3,4], different cancers [5,6] and

neurodegenerative disease such as Alzheimer’s disease [7]. Serum

levels of B12 and folate are in addition to nutrition influenced by

several biological processes including absorption, transportation

and cellular uptake, as well as processing of precursors into active

molecules. Heritability, utilizing di- and monozygotic twins, is

estimated to be 59% and 56% for B12 and folate levels,

respectively, indicating that there is a substantial genetic compo-

nent to the population diversity in these physiological variables [8].

Identification of sequence variants that affect circulating levels of

B12 and folate can thus give insights into the interplay of diet,

genetics and human health. Genome-wide association studies

(GWAS) have yielded some sequence variants influencing B12

levels [9–12], but have been less successful in identifying variants

affecting folate levels [10,11]. Thus, genome-wide significant

associations with serum B12 levels have been convincingly reported

for four loci, FUT2, MUT, CUBN and TCN1 in European

populations [9–11] and additional four loci, MS4A3, CLYBL,

FUT6 and 5q32 in a Chinese population [12]. No genome-wide

significant GWAS associations have been reported for serum folate

levels, however, significant association with the MTHFR A222V

variant was demonstrated prior to the GWAS era [13,14] and

suggestive associations have been reported in European popula-

tions for two loci (FIGN and PRICKLE2) [10,11].

The classic GWAS applied commercial chip-based genotyping

and imputation of HapMap variants of which a majority were

common single nucleotide variants (SNVs) with very few rare

variants with minor allele frequency (MAF) ,1% [15,16].

However, the search for the truly associated functional variants

and the targeted gene at each locus has been hindered by the lack

of coverage of the full spectrum of the sequence variation of the

human genome. Recently, focus has turned to the use of next

generation sequencing of whole genomes (WGS) [17], exomes

(WES) [18] or specific targets [19], all contributing to a better

understanding of the spectrum of allelic variations in the human

genome. We expect that attempts to directly cover low frequency

and rare sequence variants through next generation sequencing, in

addition to the common variants, will improve the search for

functional variants and thus the understanding of the underlying

biology of human traits and diseases.

Here we aimed to identify and characterize associations of

SNVs across the allele frequency spectrum with serum levels of B12

and folate by compiling data in up to 45,576 individuals based on

sequencing initiatives in Iceland and Denmark. For the first time

we apply next generation sequence data to identify sequence

variants affecting serum levels of B12 and folate and the present

datasets are the largest utilized to date for the analysis of these

traits.

Results

Heritability of serum B12 and folate levels
We estimated the heritability of B12 and folate serum levels

based on 38,229 and 21,708 Icelandic sibling pairs, respectively.

Our analysis revealed estimates of 27% for B12 and 17% for folate

which are lower than previously reported [8].

Experimental design
To search for sequence variants affecting serum B12 and folate

levels we compiled data from two sequencing initiatives in Iceland

and Denmark. In Iceland, a large population-based resource has

been generated applying WGS and highly accurate imputation of

the sequence information into a large fraction of the population

[20,21]. Utilizing this resource many low frequency and rare

causative sequence variants have recently been discovered that

affect the risk of common diseases [22–26]. In the Danish samples,

WES was used to search for low frequency variation associated

with complex traits [27,28]. The outline of the present study is

depicted in Figure 1. In the Icelandic study sample, 1,176

individuals were whole genome sequenced to an average depth of

.106and 22.9 million SNVs were identified. These variants were

then imputed into 25,960 and 20,717 chip-genotyped Icelanders

with serum B12 and folate measurement, respectively, using highly

accurate long-range phasing based imputation [20]. The Icelandic

genealogical database allowed for further propagation of the

sequence information, applying genealogy based imputation, into

11,323 and 8,196 relatives of the chip-genotyped individuals, for a

total sample size of 37,283 and 28,913, respectively, for the two

phenotypes [25] (Text S1 and Table S1). In the Danish part of the

study whole exomes of 2,000 Danes were sequenced to an average

sequencing depth of 86 [28]. From that effort, 16,192 coding

SNVs with allelic frequency above 1% were selected for Illumina

iSelect genotyping in two Danish population-based cohorts of

8,293 individuals with measurements of serum B12 and 8,428

individuals with measurement of serum folate (Table S2). Of the

16,192 SNVs, 15,994 overlapped with the Icelandic variants.

A generalized form of linear regression was used to test for

association of serum levels of B12 or folate with SNVs, taking into

account relatedness and population stratification within each

sample set, applying the method of genomic control (GC).

Analyses were performed in three steps; sequence variants were

analyzed in the Icelandic and Danish samples separately, then by

combining in a meta-analysis the overlapping sequence variants

identified in both study samples. Loci that associated significantly

with B12 or folate levels from these studies were fine mapped using

the Icelandic WGS data imputed into chip genotyped individuals

and the same data set was used to identify additional signals at

Author Summary

Genome-wide association studies have in recent years
revealed a wealth of common variants associated with
common diseases and phenotypes. We took advantage of
the advances in sequencing technologies to study the
association of low frequency and rare variants in conjunc-
tion with common variants with serum levels of vitamin
B12 (B12) and folate in Icelanders and Danes. We found 18
independent signals in 13 loci associated with serum B12 or
folate levels. Interestingly, 13 of the 18 identified variants
are coding and 11 of the 13 target genes have known
functions related to B12 and folate pathways. These data
indicate that the target genes at all of the loci have been
identified. Epidemiological studies have shown a relation-
ship between serum B12 and folate levels and the risk of
cardiovascular diseases, cancers, and Alzheimer’s disease.
We investigated association between the identified vari-
ants and these diseases but did not find consistent
association.
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each of these loci trough conditional analysis. Finally, the full

Icelandic data of 22.9 million SNVs were used in GWAS to

identify additional loci represented by non-coding variants or rare

coding signals not genotyped in the Danish design. Genome-wide

significance (GWS) level in the study was set at P,2.261029,

based on Bonferroni correction for the 22.9 million SNVs

(Figure 1).

Discovery analyses for serum B12 and folate
In the separate and combined analyses of SNVs with serum B12

and serum folate levels in the Icelandic and Danish data, a total of

13 genetic loci were found to associate at GWS, P,2.261029

(Table 1 and 2, Figure S1 and S2). Of the 11 loci associated with

serum B12, five (CD320, TCN2, ABCD4, MMAA and MMACHC)

were novel and six were previously reported either in populations

of European or East-Asian ancestry [9–12] (Table 1). Association

analyses with serum folate yielded one novel locus (FOLR3) and

confirmed the reported MTHFR locus (Table 2).

Since only coding variants were in the combined analysis we

used the Icelandic WGS-based data to screen for stronger non-

coding signals at the loci identified in meta-analysis of coding

variants. Interestingly, the strongest signal at 10 of the 11 B12-

associated loci in the Icelandic data corresponded to missense

(n = 9) or nonsense (n = 1) mutations with only the FUT6 locus

having a stronger non-coding signal (rs708686) than the missense

P124S mutation (Table S3). As only SNVs had been called from

the WGS data and imputed into the Icelandic samples we

reassessed each of the 13 B12 and folate loci with INDEL data

called using the GATK algorithm (http://www.broadinstitute.

org/gatk/). None of the INDELs detected at the 11 B12 loci

associated more strongly than the lead SNVs. However,

when reassessing each of the two folate-associated loci we

detected a two nucleotide insertion (rs139130389, NM_000804:

exon3:c.318_319insTA) encoding a common (MAF 10.0%)

frameshift mutation in exon 3 of FOLR3, that associated more

strongly with folate levels than the intronic SNV rs652197

identified in the initial scan (rs139130389: P = 2.45610212;

effect = 0.087 SD, Table 2). The insertion and rs652197 are in

linkage disequilibrium (LD) in the Icelandic sequencing data

(r2 = 0.51). Upon further inspection, we found that the ancestral

sequence contained the insertion indicating the occurrence of a

two base deletion in humans. The deletion with an allelic

frequency of 90% in Iceland creates a premature stop codon at

amino acid position 107 compared to the full-length protein

consisting of 245 amino acids. Coding variants are thus lead signal

of both folate loci (FOLR3 and MTHFR).

The lead SNVs included both rare, low frequency and common

variants with MAFs ranging from 0.2% to 48% (Table 1 and 2).

Of the six novel loci, four contained a lead variant with MAF

below 6% with the rare missense rs12272669 variant (MAF

0.22%) in MMACHC that associates with B12 found in the

Icelandic data being at the extreme (Table 1). This variant has

been observed in other populations than the Icelandic, albeit at

much lower frequency (MAF 0.02%) (Exome Variant Server,

http://evs.gs.washington.edu/EVS/). For TCN1 and FUT6 pre-

viously reported to associate with serum B12 levels we confirmed

the association, yet with different SNVs than reported. At the

TCN1 locus the strongest associated SNV in the Icelandic data was

rs34324219 (Table 1) encoding a D301Y missense mutation,

whereas the reported [10,11] and correlated (r2 = 0.28) non-coding

rs526934 was more weakly associated (Table S4). At the FUT6

locus, the P124S missense mutation (rs778805) identified in the

combined analysis of Icelandic and Danish data associated more

strongly (Table 1) than the previously reported promoter

rs3760776 variant (Table S4). For the remaining four reported

B12-associated loci, MUT, FUT2, CUBN and CLYBL, we

Figure 1. Schematic overview of the study.
doi:10.1371/journal.pgen.1003530.g001
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confirmed the association signal [9–11] (Table 1). At the MTHFR

locus the strongest folate association was for the major allele of the

common A222V (rs1801133) for which previous association with

serum folate has been reported [10,13,14] (Table 2).

For the two loci reported to associate with B12 levels in

individuals of East-Asian ancestry (MSRA and 5q32) the variant

was either not present in the Icelandic data or at very low

frequency (Table S4) whereas the reported non-coding folate

signals at FIGN and PRICKLE2 loci did not replicate in the

Icelandic folate data (Table S5).

At a less stringent significance level of P,161026 we found

three additional loci, CPS1, SPACA1 and ZBTB10 with suggestive

associations with serum B12 levels (Table S6) while suggestive

association with folate levels at P,161026 was found for eight

additional loci (Table S7).

Analyses conditional on the identified associated
sequence variants

For the 13 loci associated with serum B12 or folate levels we

performed stepwise conditional analyses to search for secondary

signals applying Icelandic WGS data imputed into the 25,960 and

20,717 chip-genotyped Icelanders with serum B12 and folate

information. We detected additional signals at five loci, CUBN,

TCN1, TCN2, FUT6 and MTHFR (Figure 2). For the serum B12-

associated loci, secondary independent association signals at

P,561028 were detected at three, CUBN, TCN1 and TCN2

(Figure 2, Table 3, Table S8), while the secondary independent

signal at FUT6 (observed for the reported B12-associated

rs3760776 upstream of FUT6 [12]) did not reach the threshold

of significance (P = 4.461026). The secondary signal at the CUBN

locus was shown for a group of correlated markers represented by

rs56077122 (located in an intron of the neighboring TRDMT1)

(Figure 2). In TCN1 two additional independent signals at

P,561028 for serum B12 were found including a missense variant

(R35H) and an intergenic variant whereas one secondary signal in

the TCN2 locus, represented by rs5753231, was located immedi-

ately 59 to TCN2 (Figure 2, Table 3). In the folate-associated loci, a

secondary independent signal was found at the MTHFR locus

represented by rs17421511 located in intron 4 of the MTHFR

gene (Figure 2, Table 3). In contrast to the lead SNVs a large

fraction of the secondary B12 or folate signals were non-coding.

Of the identified variants (lead and secondary) the fraction of

variance in serum B12 or folate levels explained is estimated to be

6.3% for B12 and 1.0% for folate (Text S1).

Mapping effects of associated sequence variants on gene
expression

To determine whether any of the lead or secondary association

signals at the B12 or folate loci affect the expression of the target

gene we analyzed genome-wide expression QTL (eQTL) data

from white blood cells (n = 1,001) and adipose tissue (n = 673) from

Icelanders with information on 22.9 million SNVs [29]. Of the

lead and secondary B12 or folate signals that are coding (Tables 1–

3) two showed strong association with the expression of the target

gene; the R532H missense variant in MUT (P = 9.1610259 in

white blood cells and P = 2.5610216 in adipose tissue) and the

frameshift INDEL in FOLR3 (P = 7.16102110 in white blood cells

and P = 2.5610262 in adipose tissue; Table S9). Of all the cis

variants at the MUT locus the R532H missense mutation had by

far the strongest effect on MUT expression indicating that this

effect is not mediated by a non-coding regulatory variant in LD

with the R532H mutation. The large effect of the frameshift

mutation on FOLR3 expression is likely caused by nonsense-
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mediated decay of transcripts containing the premature termina-

tion mutation [30]. A similar effect was not seen for the nonsense

mutation in the CLYBL gene which can likely be explained by the

closeness of the mutation to the N-terminal of the CLYBL protein

(amino acid 259 of 340) (Table S9). Of the non-coding lead or

secondary B12 or folate signals a statistically significant effect on

Figure 2. Regional plots illustrating conditional analyses of loci with more than one independent association signal for serum B12

(CUBN, TCN1 and TCN2) or serum folate (MTHFR). Genotyped and imputed SNVs passing quality control measures in the Icelandic data are
plotted with their P-values (as 2log10 values) as a function of genomic position (NCBI Build 36). Only SNVs with P,1025 in at least one of the models
are shown. The analyses were performed in 25,960 and 20,717 chip-genotyped Icelanders for B12 and folate, respectively. Data points illustrated by
open circles represent unconditional analyses (M0); blue dots are results of analyses conditional on the most significant SNV in M0 (M1) and orange
dots are results of analyses conditional on most significant SNVs in M0 and M1. Estimated recombination rates (HapMap CEU) are plotted to reflect
the local LD structure. Gene annotations were obtained from RefGene.
doi:10.1371/journal.pgen.1003530.g002

Table 3. Novel secondary association signals at the serum B12 or serum folate loci that associate at P,561028.

SNV # SNV name Chr.
Position
(build 36) Gene Annotation

Alleles
(effect/other) EAF Effect P

LD with
SNV #1
(r2)

LD with
SNV #2
(r2)

CUBN region (B12)

1 rs1801222 10 17,196,157 CUBN F253S G/A 0.593 0.11 2.3610242

2 rs56077122 10 17,247,021 TRDMT1 intronic A/C 0.335 0.087 4.8610221 0.033

TCN1 region (B12)

1 rs34324219 11 59,379,954 TCN1 D301Y C/A 0.889 0.21 9.8610262

2 rs34528912 11 59,388,111 TCN1 R35H T/C 0.0361 0.17 2.1610215 0.0040

3 rs117456053 11 59,373,407 Near TCN1 Intergenic G/A 0.976 0.16 1.961029 0.0035 0.0011

TCN2 region (B12)

1 rs1131603 22 29,348,975 TCN2 L376S C/T 0.055 0.17 1.1610221

2 rs5753231 22 29,333,069 TCN2 59 C/T 0.79 0.064 7.5610210 0.014

MTHFR region (folate)

1 rs1801133 1 11,778,965 MTHFR A222V G/A 0.668 0.10 3.4610227

2 rs17421511 1 11,780,375 MTHFR Intronic G/A 0.827 0.098 1.8610215 0.11

Conditional analyses were performed using imputed sequence data from chip-genotyped Icelanders with information on serum B12 or folate levels. Results for SNV #1
(lead SNVs) at each loci are unconditional on other SNVs. Analysis of SNV #2 is conditional on SNV #1 and SNV #3 is conditional on SNV #1 and #2. The LD between
the SNVs at each locus was estimated from the sequence information of the 1,179 whole genome sequenced Icelanders.
doi:10.1371/journal.pgen.1003530.t003
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expression was only seen for the TCN2 promoter variant, however,

other markers in the region, that had no effect on serum B12 levels

associated more strongly with TCN2 expression. Although lack of

appropriate tissue to evaluate the effect of the B12 and folate

mutations on expression cannot be excluded, these data suggest

that except for the MUT gene the effects of both the coding and

non-coding mutations are unlikely to be through expression.

Association of identified sequence variants with other
traits linked to B12 and folate levels

Rare mutations in some of the B12 genes described here i.e.

MMACHC, MMAA, MUT, CD320, TCN2 and CUBN have been

described in connection with rare conditions of methylmalonic

aciduria and megaloblastic anemia that all relate to defects in B12

metabolism (OMIM database, http://www.ncbi.nlm.nih.gov/

omim/). In addition, epidemiological studies have suggested a

link between reduced B12 and folate levels and the risk of common

conditions such as cardiovascular diseases [3,4], cancers [5,6] and

neurodegenerative disorders [7]. To evaluate the effect of the B12

or folate variants on these conditions we analyzed the association

with coronary artery disease (CAD), stroke, colon cancer, prostate

cancer and Alzheimer’s disease in data obtained from deCODE’s

phenotype database. As outlined in Table S10, variants associated

with serum B12 or folate levels did not consistently affect the risk of

the diseases tested; the B12 or folate increasing allele for some

variants was weakly protective and for others weakly at risk, and

only two loci (CUBN associated with CAD and MTHFR with

stroke) were statistically significant (P,0.0018) but with opposite

effects on these diseases. B12 or folate deficiencies can lead to

increased serum homocysteine [2], yet of all the B12 or folate loci

tested only two associated significantly with homocysteine levels,

with the B12 or folate increasing allele decreasing the homocyteine

levels as expected (Table S10). These loci were the folate-

associated MTHFR variant previously reported to associate with

homocysteine [10,31,32] and the B12-associated variant at the

MUT locus. Neither of these loci associated with cardiovascular

disease or Alzheimer’s disease, despite increased homocysteine has

been suggested to increase the risk of these diseases. Deficiency of

B12 or folate is associated with megaloblastic anemia characterized

by the presence of abnormally large red blood cells, increased

mean corpuscular volume (MCV) and increased mean corpuscular

hemoglobin (MCH). None of the identified variants associated

significantly with MCV and MCH (Table S10). We also tested the

recessive model for the B12 or folate variants in relation to these

conditions, but did not detect any new associations. Inconsistency

in the direction of the effect of each of the variants on these

conditions (increased or decreased risk) (Table S10) indicates that

for a given condition the combined effect of all the variants would

be consistent with lack of association. The absence of observed

directional consistent effects of the B12 and folate variants on the

phenotypes tested suggest that sequence variants that contribute to

the population diversity in serum B12 or folate levels do not modify

the risk of developing these conditions, likely reflecting that B12

and folate levels have weak effects on these conditions. However,

we recognize that for some of the conditions analyzed sample sizes

are too small to detect weak effects, calling for cautious

interpretation.

Evaluation of pleiotropic effects of the identified variants
One of the B12-associated loci, FUT2, has previously been

associated with reduction in liver enzymes including alkaline

phosphatase (ALP) [33] and cholesterol levels [34], increased risk

of Crohn’s disease [35,36], psoriasis [37], retinal vascular caliber

[38] and type 1 diabetes [39] and protection against Norovirus

infection [40]. These associations can be explained by the function

of FUT2 in cell surface glycobiology as determinant of the Lewis

antigen blood group. To evaluate pleiotropic effects of the

identified B12 and folate variants, we screened the deCODE

phenotype database, which contains information on the majority

of common diseases and their associated risk factors (n = 400),

applying both multiplicative and recessive genetic models

(P = 3.561026 after Bonferroni correction). We found that the

FUT2 variant associated strongly with serum levels of ALP

(P = 1.1610273) and also with psoriasis (P = 4.361023) as previ-

ously reported. We also detected a strong association with serum

levels of cancer antigen 19-9 (P = 1.16102146), lipase

(P = 2.2610224) and suggestive association with bone mineral

density (BMD) (P = 1.361025) with the B12-increasing allele

decreasing ALP levels, increasing the serum levels of the cancer

antigen 19-9 and lipase and increasing the risk of developing low

BMD (osteoporosis) (Table S11). An increase in serum lipase is

associated with Crohn’s disease [41], but the causal link is unclear.

The increased risk for low BMD observed for the FUT2 variant

may be secondary to reduced ALP activity that might be a

reflection of reduced bone remodeling. When applying the

recessive model to the B12 and folate variants we found suggestive

associations of the FUT6 variant with abdominal aortic aneurysm

(AAA) and of the folate-associated variant in MTHFR with

thoracic aortic aneurysm (TA). In both cases the effect of the B12-

or folate-increasing allele was protective (Table S11). These

associations could be mediated through the effect of these variants

on B12 and folate levels as reduced levels of B12 and folate have

been linked to the development of aortic aneurysm [42].

Discussion

Here we performed association analyses of up to 22.9 million

SNVs, identified through WGS and WES, in up to 45,576

individuals to identify and characterize genetic variation influenc-

ing population diversity in serum levels of B12 and folate. We

discovered five novel loci that associate with serum B12 levels and

one novel locus for folate levels and replicated the six reported B12

loci and one folate locus. In addition, we identified five novel

secondary independent signals at both the new and previously

reported loci. The fraction of variance in serum B12 or folate levels

explained by the identified variants is estimated to be 6.3% for B12

and 1.0% for folate (Text S1). Of the identified SNVs, both

common and rare, we find that a large fraction (13 of 18) is

represented by coding variants which is an unusually high fraction

of coding variants compared to previous GWAS for other traits.

Furthermore, of the 13 loci that associate with serum B12 and

folate levels the genes at 11 of them can be directly linked to the

current understanding of B12 and folate metabolism such as

absorption, transport or enzymatic processes and one (FUT6) has

potential links with these processes (Figure 3). Only CLYBL has a

function that cannot be directly related to these pathways.

Specifically, eight loci are involved in transporting B12 and folate

between different tissues, four of them TCN1, FUT2, FUT6 and

TCN2 as co-factors or regulators of co-factors necessary for the

transport and the other four, CUBN, CD320, ABCD4 [43] and

FOLR3 as membrane transporters actively facilitating membrane

crossing. MUT and MTHFR catalyze enzymatic reactions in the

OCM where MMACHC and MMAA are involved in co-enzymatic

processes (Figure 3). Moreover, we note that of the 13 genes, two

(TCN2 and CD320) are known and two (MUT and MMAA) are

suggested to interact in vivo [44] (Figure 3). Together with the high

fraction of coding mutations these data indicate that the target

genes at all of the loci have been identified.
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By screening the deCODE database for pleiotropic effects of

the B12 and folate variants we replicated some of the previous

associations of the FUT2 gene and detected novel suggestive

association with increased risk of osteoporosis (low BMD)

potentially mediated through diminished bone remodeling as a

consequence of reduced ALP activity. We also detected suggestive

associations of the FUT6 and the MTHFR variants with AAA and

TA, respectively. However, we did not demonstrate association of

any of the variants with the cardiovascular diseases, CAD and

stroke, colorectal cancer, prostate cancer or Alzheimer’s disease

and only two of the variants associated with homocysteine levels.

Although to some degree impeded by low statistical power for

some of these conditions, these data suggest that sequence

variants that contribute to the population diversity in serum B12

or folate levels do not modify the risk of developing these

conditions.

Figure 3. Genes that associate with serum B12 and folate levels are in pathways affecting their metabolism. Genes previously identified
to harbor variants regulating serum levels of B12 are shown in green. In blue are novel genes identified in the present study. In red, genes containing
variants previously suggested to associate with serum folate and in purple are novel genes for serum folate. B12: vitamin B12; HC: Heptocorrin (TCN1);
IF: Intrinsic factor; R-A-P: Receptor-Associated-Protein; CUBN: cubilin (intrinsic factor-cobalamin receptor); TCII: Transcobalamin II (TCN2); TCII-R:
Transcobalamin II receptor (CD320); MMACHC: methylmalonic aciduria (cobalamin deficiency) cblC type, with homocystinuria; MMAA: methylmalonic
aciduria (cobalamin deficiency) cblA type; ABDC4: ATP-binding cassette, sub-family D (ALD), member 4; LMBD1: LMBR1 domain containing 1; FOLR1–
3: folate receptors 1–3; Ado-B12: Adenosyl-cobalamin; Me-B12: Methyl-cobalamin; Me-mal-CoA: Methyl-malonyl-CoenzymeA; Suc-CoA: Succinyl-
CoenzymeA; MUT: methylmalonyl-CoA mutase; H. pylori: Helicobacter pylori; DHFR: Dihydrofolate reductase; MS: methionin synthase; THF:
Tetrahydrofolate; 5,10-MTHF: 5,10-Methyl-tetrahydrofolate; Hcy: Homocysteine MTHFR: 5-methyl-tetrahydrafolate reductase.
doi:10.1371/journal.pgen.1003530.g003
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Materials and Methods

Ethics statement
All participants gave written informed consent. The studies were

conducted in accordance with the Declaration of Helsinki II and

were approved by the local Ethical Committees (approval

numbers Denmark: H-3-2012-155, KA 98155 and KA-

20060011, DeCode 08-105-V3-S1 (issued 30.08.2011) ref.

VSNb2008060006/03.1).

Study participants in Iceland
For the Icelandic samples, serum B12 and folate levels were

assessed in blood samples from Icelanders at the Landspitali

University Hospital Laboratory or at the Icelandic Medical Center

(Laeknasetrid) Laboratory in Mjodd (RAM), between the years

1990 and 2011. B12 and folate levels were normalized to a

standard normal distribution using quantile normalization and

then adjusted for sex, year of birth and age at measurement. For

individuals for which more than one measurement was available

we used the average of the normalized value.

Study participants in Denmark
The Danish data were generated in two population-based study

samples recruited in Copenhagen. The Inter99 cohort is a

randomized, non-pharmacological intervention study for the

prevention of ischaemic heart disease, conducted on 6,784

randomly ascertained participants aged 30 to 60 years at the

Research Centre for Prevention and Health in Glostrup, Denmark

[45] (ClinicalTrials.gov: NCT00289237). Detailed characteristics

of Inter99 have been published previously [45–47]. The Inter99

cohort included 5,481 and 5,624 individuals with genotypes and

measurement of serum B12 and folate, respectively. Health2006 is

a population-based epidemiological study of general health,

diabetes and cardiovascular disease of 3,471 individuals aged

18–74 years [48]. Health2006 was also conducted at the Research

Centre for Prevention and Health in Glostrup, Denmark. The

Health2006 cohort included 2,812 and 2,804 individuals with

valid genotypes and measurement of serum B12 and folate,

respectively. In Inter99 serum B12 and folate were measured by a

competitive chemiluminescent enzyme immunoassay (Immulite

2000 System; Siemens Medical Solutions Diagnostics, Los

Angeles, CA, USA) as previously reported [14]. In Health2006,

serum B12 and folate were measured by chemiluminescent

immunoassay (Dimension Vista platform, Siemens Healthcare

Diagnostics GmbH, Eschborn, Germany).

Genotype data generation
In the Icelandic part, SNVs were identified through the

Icelandic WGS project. A total of 1,176 Icelanders were selected

for sequencing based on having various neoplasic, cardiovascular

and psychiatric conditions. All of the individuals were sequenced

to a depth of at least 106. The generation of genotypic data in

Iceland is detailed in earlier reports [23] and in Text S1, and

consisted of the following steps: SNV calling and genotyping in

WGS, long range phasing, genotype imputation and in silico

genotyping.

In the Danish part of the study 16,192 SNVs for genotyping

were selected from a WES study of 2,000 individuals [28]. In

brief, exon capture and Illumina sequencing to a depth of 86
were performed in 2,000 Danes by methods previously described

[27]. The exome was captured by a NimbleGen 2.1M HD array

with a target region of 34.1 Mb including 18,954 genes defined

by CCDS (Consensus Coding Sequence database). The average

number of reads sequenced for each individual was 22.3 million

with most reads being 30 to 80 bases long. After alignment to the

human reference genome (assembly hg18, NCBI build 36.3) and

stringent quality assurance, including uniqueness of genomic

mapping and Q-score .20, the median coverage per individual

was 91% of the target region and had an average depth of 86
(96% coverage and 116 depth before filtering). After applying

quality criteria 70,182 SNVs with an estimated MAF above 1%

based on the reads using maximum likelihood were identified

[49]. The details of the WES have been described previously

[28]. 20,005 SNVs were, as part of a published study, selected

from the exome sequencing for genotyping in 16,888 samples by

a custom-designed Illumina iSelect array. First, 18,358 SNVs

annotated to the most likely deleterious categories (179 nonsense,

15,789 nonsynonymous, 219 located in splice sites and 2,171 in

untranslated regions) were prioritized. Second, 1,048 SNVs

nominally associated with type 2 diabetes (P,0.05) in a

sequencing-based association study were selected. Finally, we

selected 599 synonymous variants in 192 loci previously

associated with common metabolic traits at GWS. Genotype

data was obtained for 18,744 SNVs. Quality control of samples

included removing closely related individuals, individuals with an

extreme inbreeding coefficient, individuals with a low call rate,

individuals with a mislabeled sex and individuals with a high

discordance rate to previously genotyped SNVs. 15,989 individ-

uals passed all quality control criteria. The SNVs were filtered

based on their MAF (.0.5%), genotype call rate (.95%), Hardy-

Weinberg equilibrium (P.1027) or cross-hybridization with the

X-chromosome. 16,192 SNVs passed all filters [28]. Genotyping

of FOLR3 rs652197 in Danish samples was done by KASPar SNP

Genotyping System (KBioscience, Hoddesdon, UK).

Statistical analyses
Icelandic analyses and quantitative trait association

testing. A generalized form of linear regression was used to

test for association of serum B12 and folate with SNVs. Let y be the

vector of quantitative measurements, and let g be the vector of

expected allele counts for the SNV being tested. We assume the

quantitative measurements follow a normal distribution with a

mean that depends linearly on the expected allele at the SNV and

a variance covariance matrix proportional to the kinship matrix:

y*N(azbg,2s2W),

where

Wij~
1
2

,i~j

2rkij,i=j

(

is based on the kinship between individuals as estimated from the

Icelandic genealogical database (kij) and estimate of the

heritability of the trait (r). It is not computationally feasible to

use this full model and we therefore split the individuals with in

silico genotypes and serum B12 and folate measurements into

smaller clusters. Here we chose to restrict the cluster size to at most

300 individuals.

The maximum likelihood estimates for the parameters a, b, and

s2 involve inverting the kinship matrix. If there are n individuals in

the cluster, then this inversion requires O(n3) calculations, but

since these calculations only need to be performed once the

computational cost of doing a GWAS will only be O(n2)
calculations; the cost of calculating the maximum likelihood

estimates if the kinship matrix has already been inverted.
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Multivariate regression and conditional analyses. For

the multivariate regression analysis we only used Icelandic

individuals which have been genotyped using the Illumina chip-

genotyping platform. The multivariate linear regression analysis

was performed conditioning for a given marker by adjusting for

the estimated allele count based on imputation of this marker. The

GC correction factor was the same as used for the unadjusted

association analysis. A forward selection multiple logistic regres-

sion model was used to further define the extent of the genetic

association. Briefly, all imputed SNVs located within an interval

around the lead SNVs were tested for possible incorporation into a

multiple regression model. In a stepwise fashion, a SNV was added

to the model if it had the smallest P-value among all SNVs not yet

included in the model and if it had a P,561028. In the last step

none of the SNVs remained significant at this threshold.

Association analyses of serum B12 and folate in Danish

samples. Association analysis of each SNV in the Danish data

was performed using linear regression assuming an additive model.

Principal component analysis was performed using the covariance

matrix and the first principal component and sex were included in

the model as covariates. All quantitative traits were quantile

normalized to a normal distribution prior to analysis. Association

analyses were done using PLINK software (version 1.07, http://

pngu.mgh.harvard.edu/purcell/plink/). All P-values were correct-

ed by GC. Inflation factors (l) were at acceptable levels: B12:

Inter99: 1.027, Health2006: 1.014 and folate: Inter99: 1.024,

Health2006: 1.010.

Meta-analyses. For all SNVs with data from more than one

study sample (Icelandic, Inter99 and/or Health2006) we per-

formed meta-analyses of summary association data where we

estimated the combined effect in a fixed-effects meta-analysis using

the METAL software (http://www.sph.umich.edu/csg/abecasis/

Metal/) [50]. An overall z-statistic relative to each reference allele

was estimated based on P-value and direction of effect adjusted for

the number of individuals in each sample.

Supporting Information

Figure S1 Regional plots of the 11 loci associated with serum

B12. Genotyped and imputed SNVs passing quality control

measures are plotted with their meta-analysis P-values (as

2log10 values) as a function of genomic position (NCBI Build

36). Only SNVs with P,0.01 are plotted. The lead SNV with the

lowest combined P-value is indicated by the rs-number. Estimated

recombination rates (HapMap CEU) are plotted to reflect the local

LD structure. Gene annotations were obtained from RefGene.

(PDF)

Figure S2 Regional plots of the two loci associated with serum

folate. Genotyped and imputed SNVs passing quality control

measures are plotted with their meta-analysis P-values (as 2log10

values) as a function of genomic position (NCBI Build 36). Only

SNVs with P,0.01 are plotted. The lead SNV with the lowest

combined P-value is indicated by the rs-number. Estimated

recombination rates (HapMap CEU) are plotted to reflect the

local LD structure. Gene annotations were obtained from

RefGene.

(PDF)

Table S1 Clinical characteristics of the Icelandic samples. Data

are mean 6 standard deviation or median (interquartile range).

For individuals for which more than one measurement was

available we used the average of the normalized value.

(PDF)

Table S2 Clinical characteristics of the Danish samples. Data

are mean 6 standard deviation or median (interquartile range).

(PDF)

Table S3 Overview of the most significantly associated SNV

for each of the identified B12 or folate loci in the Icelandic data.

For each of the identified B12 or folate loci presented in Tables 1

and 2 the Icelandic association data for the lead SNV is shown.

Moreover, the strongest associations at these loci in the Icelandic

data are shown. The lead SNVs presented in Tables 1 and 2 are

either the strongest signal at each of the loci or highly correlated

with the strongest signal except at the FUT6 locus were rs708686

located 59 of FUT6 gives the strongest signal.

(PDF)

Table S4 Association results in the Icelandic data for SNVs

previously reported to associate with B12 levels in GWAS. *These

markers are only present in East-Asia. References: 1. Lin X, Lu

D, Gao Y, Tao S, Yang X, et al. (2012) Genome-wide association

study identifies novel loci associated with serum level of vitamin

B12 in Chinese men. Hum Mol Genet 21: 2610–2617. 2. Hazra

A, Kraft P, Lazarus R, Chen C, Chanock SJ, et al. (2009)

Genome-wide significant predictors of metabolites in the one-

carbon metabolism pathway. Hum Mol Genet 18: 4677–4687. 3.

Hazra A, Kraft P, Selhub J, Giovannucci EL, Thomas G, et al.

(2008) Common variants of FUT2 are associated with plasma

vitamin B12 levels. Nat Genet 40: 1160–1162.

(PDF)

Table S5 Association results in Icelandic data for SNVs

previously reported with suggestive association with folate levels

in GWAS. * Not previously shown at genome-wide significance.

References: 1. Tanaka T, Scheet P, Giusti B, Bandinelli S, Piras

MG, et al. (2009) Genome-wide association study of vitamin B6,

vitamin B12, folate, and homocysteine blood concentrations. Am J

Hum Genet 84: 477–482. 2. Hazra A, Kraft P, Lazarus R, Chen

C, Chanock SJ, et al. (2009) Genome-wide significant predictors of

metabolites in the one-carbon metabolism pathway. Hum Mol

Genet 18: 4677–4687.

(PDF)

Table S6 Suggestive loci in the Icelandic or the Icelandic and

Danish data associated with serum B12 levels (2.261029.

P,1026).

(PDF)

Table S7 Results in the Icelandic data for loci with suggestive

association with serum folate levels (2.261029.P,1026).

(PDF)

Table S8 Results from stepwise conditional analyses using the

Icelandic data at loci associated with serum B12 or folate levels for

signals with P,561028. Conditional analyses were performed

using imputed sequence data from chip-genotyped Icelanders with

information on serum B12 or folate levels. Results for SNV #1

(lead SNVs) at each loci are unconditional on other SNVs.

Analysis of SNV #2 is conditional on SNV #1 and SNV #3 is

conditional on SNV #1 and #2. The LD between the SNVs at

each locus was estimated from the sequence information of the

1,179 whole genome sequenced Icelanders.

(PDF)

Table S9 Cis-effect of the B12 and folate SNVs on the expression

of the target gene in white blood cells and adipose tissue.

Correlation between SNVs that associate with increased B12 or

folate and mRNA expression in blood and adipose tissue from

1,001 and 673 individuals, respectively. The correlations are tested
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by regression analysis adjusted, for age, sex and differential cell

counts (blood only), and inverse normal transformed relative

expression values on the estimated genotype dosage. aNo other

SNV shows significantly higher correlation with the expression in

adipose or blood of MUT than rs1141321. bThe INDEL

chr11:71527804 is the most significant cis variant for FOLR3.
cFor TCN2 there are cis variants both in blood and adipose tissue

that have stronger correlation than rs5753231 with its expression,

while having little effect on B12 levels.

(PDF)

Table S10 Association results for B12 and folate associated

markers with potential co-morbid conditions in Icelanders. a Effect

size and effect allele frequency from the Icelandic population.

Associations at P,0.001 are shown in bold. EAF, effect allele

frequency; MCV, mean corpuscular volume; MCH, mean

corpuscular hemoglobin.

(PDF)

Table S11 Association results for the B12 and folate variants with

diseases and traits in deCODE database. Shown are the strongest

association results for the folate and B12 variants, genome-wide

significant or suggestive, with diseases and traits in deCODE’s

database. EAF, effect allele frequency; BMD, bone mineral

density; AAA, abdominal aortic aneurysm; TA, thoracic aneu-

rysm; 1The annotation is based on the RefSeq hg18, 2The

reference alleles based on Build 36 hg18 are shown in bold, 3The

low BMD phenotypes are defined as those BMD values that are

below 21 standard deviation (SD) from the mean.

(PDF)

Text S1 Supplementary Text S1 contains additional description

of Methods.

(PDF)
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