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Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic; xtrost@mendelu.cz (D.T.);
adam.polcar@mendelu.cz (A.P.)

2 Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1,
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Abstract: Liquid egg products are one of the basic raw materials for the food industry. Knowledge
of their rheological and flow behaviour in real technical elements is absolutely necessary for the
selection of suitable technological equipment for their processing. In this article, the rheological
properties of liquid egg products were determined. Eggs from six different species of poultry are
used: domestic hen (Gallus gallus domesticus) hybrid Hisex Brown; Japanese quail (Coturnix japonica);
German carrier goose (Anser anser f. domestica); domestic ducks (Anas platyrhynchos f. domestica);
domestic guinea fowl (Numida meleagris f. domestica); and domestic turkeys (Meleagris gallopavo f.
domestica). Liquid egg products showed pseudoplastic behaviour in range of shear strain rates from
0.2 up to 200 s−1 and at the temperature of 18 ◦C. Thus, the flow curves were constructed using
the Ostwald-de Waele rheological model, with respect to the pseudoplastic behaviour of liquid egg
products. According to the values of the coefficients of determination (R2), the sum of squared
estimate of errors (SSE) and the root mean square error (RMSE), this model was appropriately chosen.
Using the consistency coefficient K, the flow index n and the adjusted equations for the flow rate of
technical and biological fluids in standard pipelines, the 3D velocity profiles of liquid egg products
were successfully modelled. The values of the Reynolds number of the individual liquid egg products
were calculated, and the type of flow was also determined. A turbulent flow has been detected for
some liquid egg products.

Keywords: rheology; flow; velocity; egg; poultry species

1. Introduction

Eggs have been classified as nature’s original functional food [1]. Recently, there has
been a significant increase in efforts to process liquid egg products as a ready-to-eat food
product, especially in large quantities [2]. The term processing of liquid egg products
is to be understood primarily as their expulsion from shells, filtration, homogenisation,
pasteurisation, drying, cooling or freezing. During and after processing, liquid egg products
are transported, packaged and stored. It is for these reasons that rheological research on
liquid egg products is absolutely justified and necessary.

According to the results of several publications [3,4], the egg albumen and the liq-
uid whole egg are among the non-Newtonian liquids, and the yolk with its rheological
behaviour is close to a Newtonian liquid [5,6]. For this reason, the individual description
of the flow behaviour of all three liquid egg products (yolk, albumen and liquid whole
egg) is important, as in the design of machinery for transport, homogenisation, drying,
pasteurisation, etc., no distinction is usually made between the flow properties of the liquid
egg products. To describe the rheological behaviour of liquids, flow curves are used, which
are often modelled in liquid egg products using power models (Ostwald-de Waele and
Herschel-Bulkley model), which contain the consistency coefficient K, the flow index n
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and the yield stress τ0 (Herschel-Bulkley model) [7]. These coefficients also enter into the
calculation of external and internal fluid friction, pressure drop, mean and maximum flow
velocity, volume and mass flow and the Reynolds number. Furthermore, the type of flow
and the shape of the velocity profile can be determined. The determination of viscoelastic
properties of egg liquids is also very important for determining their qualities [8]. These
are determined using an oscillatory shear test, and the loss modulus and storage modulus
are calculated [9].

Almost all of the above works examined only liquid egg products obtained from
hen eggs. This work presents a comprehensive overview of the flow behaviour of liquid
egg products obtained from hen, quail, goose, duck, guinea fowl and turkey eggs. Goose
eggs are very popular in the UK and Asia [10], and duck and guinea fowl eggs are also
popular in the Asia region. However, due to the increased health risks associated with
their consumption, they are processed into liquid egg products less [11]. In West Africa,
guinea fowl is a second source of poultry meat and eggs after hens [12]. From the point of
view of food usage of eggs, quails, geese, ducks, guinea fowls and turkeys can be classified
as minor species of poultry.

The aim of this work is to determine whether (and what) effect the shear strain rate
has on the flow behaviour of liquid egg products (yolk, albumen, liquid whole egg) from
eggs of different poultry species, as well as to model flow behaviour of egg liquids using
a suitable rheological model. Finally, using the obtained coefficients and appropriate
mathematical equations to simulate a non-Newtonian flow in real technical elements, i.e.,
pipelines. For this research, it was hypothesised that the yolk, albumen and liquid whole
egg from the eggs of six species of poultry show different flow behaviours.

2. Materials and Methods
2.1. Liquid Egg Products

The hen egg samples (40 eggs) came from laying hens of the domestic hen (Gallus gallus
domesticus) of the Hisex Brown hybrid, which were laying at the time of the egg sampling in
the 29th week. The laying hens were reared in cage technology and fed a complete feed
mixture. The quail egg samples (60 eggs) came from laying hens of the Japanese quail
(Coturnix japonica), which were laying at the time of egg sampling in the 13th week. The
laying hens were reared in cage technology and fed a complete feed mixture. The goose
egg samples (30 eggs) came from laying hens of the German carrier goose (Anser anser f.
domestica), which were laying at the time of egg sampling in the 11th week. The laying
hens were kept in the open and fed with a complete feed mixture. The duck egg samples
(30 eggs) came from laying hens of the domestic duck (Anas platyrhynchos f. domestica),
which were laying at the time of egg sampling in the 6th week. The laying hens were kept
in the open and fed with a complete feed mixture. The guinea fowl egg samples (30 eggs)
came from laying hens of the speckled guinea fowl (Numida meleagris f. domestica), which
were laying at the time of egg sampling in the 12th week. The laying hens were kept in the
open and fed with a complete feed mixture. The turkey egg samples (30 eggs) came from
laying hens of the domestic turkey (Meleagris gallopavo f. domestica), which were laying in
the 3rd week of egg sampling.

In this research, eggs from laying hens of six species of poultry were used-domestic
hens, Japanese quail, German laying geese, domestic ducks, spotted guinea fowl and
domestic turkeys. An essential part of the experiment was the preparation of the samples
themselves. As this is a biological material, it was first necessary to subject all the eggs
obtained to a precise inspection, and to only select quality eggs. Eggs that had an atypical
shape, a deformed or broken shell or a biological defect were discarded. The individual
eggs were beaten by hand. For the preparation of the yolks and albumen, the individual
components were carefully separated. The entire egg content was used to prepare the
liquid whole egg. The individual liquid egg products were further filtered to remove
unwanted components (chalazas, membranes, shell fragments, etc.). These residues need
to be removed so that they do not cause problems in the subsequent measurement and do
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not affect the result, so the operation and filtration is included in this processing. Filtration
was performed manually using a conical-shaped colander with a mesh size of 0.7 × 0.7 mm,
with constant stirring with a glass rod. By passing through the filter, the egg liquid is not
only filtered, but also homogenized. For example, the albumen is formed by four layers,
namely the inner dense albumen, the inner thin albumen, the outer dense albumen and
the outer thin albumen, the yolk being surrounded by a yolk (vital) membrane [13]. The
prepared mixed samples of yolk, albumen and liquid whole egg containing 50 mL were
cooled to a temperature of 18 ◦C, and immediately afterwards subjected to the experiments.

2.2. Density Measurement

The density (specific gravity) of the mixed samples of the liquid egg products was
measured at the temperature 18 ◦C using a Densito 30 PX portable digital densitometer
(Mettler Toledo, Columbus, OH, USA). The chosen temperature is the legislative upper
limit for the storage, transport and sale of eggs. Used densitometer makes it possible
to determine the density of the sample in a very short time. The instrument uses the
oscillating tube method in combination with an accurate temperature measurement. The
device has automatic temperature compensation.

2.3. Viscosity and Shear Stress Measurement

A DV–3P rotary viscometer (Anton Paar, Graz, Austria) was used to measure the flow
properties of the mixed samples of the liquid egg products, which was equipped with a
coaxial cylinder system with a standardised TR8 spindle (according to Anton Paar) and
an MX 650 thermostat (AMATEK Brookfield, Middleboro, MA, USA). The used rotary
viscometer works on the principle of measuring the moment of force necessary to overcome
the resistance of a rotating spindle immersed in the measured material. The rotating spindle
is connected via a spring to the motor shaft, which rotates at a defined speed. The angle of
rotation of the shaft is measured electronically, and provides accurate information about
the position of the shaft, i.e., the spindle. Based on internal calculations, the value of
dynamic viscosity or shear stress is directly displayed from the measured values. The
shear strain rate was gradually increased from 0.2 to 200 s−1. The shear strain rate range
was chosen according the literature [4,14]. This range makes it possible to accurately
determine and model the flow behaviour and then correctly classify the type (Newtonian,
non-Newtonian–with or without yield stress, shear thinning or thickening) of egg liquids.
The stable temperature of all liquid egg products in this experiment was also 18 ◦C.

The egg liquids flow and viscosity curves were modelled using both the Ostwald-
de Waele model and the Herschel-Bulkley model. After a thorough analysis, when
the yield stress values were 0 Pa (or close) for all samples and in according to publi-
cations [15–17], the Ostwald-de Waele model was chosen as the most suitable for modelling
liquid egg products:

τ = K
.
γ

n (1)

The following applies to the apparent viscosity

ηapp = K
.
γ

n−1, (2)

where K [Pa·sn] is the consistency coefficient and n is the dimensionless flow index. These
two coefficients are also of considerable physical importance [18]. This is especially true
for the flow index n, for which the following applies:

0 < n < 1 . . . the fluid behaves non-Newtonian–pseudoplastically (shear thinning),
n = 0 . . . the fluid behaves Newtonian,
n > 1 . . . the fluid behaves non-Newtonian–dilatantly (shear thickening).

2.4. Real Technical Elements

To model the flow behaviour of liquid egg products, a real pipeline was selected,
which is a typically part of, for example, transport, homogenisation or pasteurisation
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equipment for the continuous pasteurisation of liquid egg products. In this pipe, there
may be changes in pressure, and thus in the flow rate, which may change the type of
flow from laminar to turbulent and vice versa. Individual manufacturers use two pipe
diameters as a standard-50 mm and 80 mm. The pipe was made of stainless-steel type AISI
304 (1.4301) with a surface roughness up to Ra 0.8, which is suitable for the food industry.
Stainless steels have a roughness Ra of 0.2–0.5 µm after cold rolling to thicknesses up to
4 mm, so they generally do not require polishing unless areas with a roughness higher
than Ra 0.8 µm are formed during subsequent production operations [19].

Special procedures in Matlab and the equation are used to model the flow velocity of
egg liquids in a real technical element (pipeline) [7]

v(r) =
(

R∆p
2LK

) 1
n
(

nR
1 + n

)(
1 −

( r
R

)1+ 1
n

)
=

(
∆p

2LK

) 1
n
(

n
n + 1

)(
R

n+1
n − r

n+1
n

)
, (3)

where v is the flow velocity at a distance r from the longitudinal axis of the pipe and R is
the inner radius of the pipe having length L. Coefficient K is the consistency coefficient, n is
the flow index and ∆p is pressure drop.

2.5. Statistical Analysis

The measured viscosity and shear stress values depending on the shear strain rate
were evaluated and processed using the MATLAB 2018b software (MathWorks, Natick,
MA, USA) with the Curve Fitting toolbox. To determine statistical significance between
species, an ANOVA test was performed with multiple comparisons using the Tukey’s test
in the software Statistica 12 (StatSoft, Tulsa, OK, USA). Statistical testing was performed at
a significance level of 95% (p < 0.05).

Three statistical indicators were used for the statistical evaluation of the models-the
coefficient of determination (R2), the squared estimate of errors (SSE) and the root mean
square error (RMSE). The Fischer-Snedecor test was used to determine the significance of
the model, which confirmed that the model was statistically significant (at a significance
level of 95%). The statistical significance of the regression parameters of the respective
model was verified by means of t-tests, which also confirmed the significance of the
calculated parameters for the given model (p < 0.05).

3. Results and Discussion
3.1. Density Measurement

Fluid density is an important parameter in modelling fluid flow properties, especially
in calculations of the mass flow and energy of a flowing fluid. The density of the liquid
egg products was monitored. The individual density values are given in Table 1.

Table 1. Values of the density of the liquid egg products of the individual species of poultry (the
number of repetitions N = 5, the results are given in the form mean ± standard deviation).

Poultry Species
Density ρ, kg·m−3

Yolk Albumen LWE

Hen 1027.7 c,d ± 0.70 1038.1 j ± 0.96 1033.2 f,g ± 0.81
Quail 1021.0 b ± 0.57 1038.4 j ± 0.75 1031.7 e,f ± 0.90
Goose 1031.9 e,f ± 0.42 1035.5 h,i ± 0.62 1033.8 g,h ± 0.60
Duck 1009.3 a ± 0.54 1038.2 j ± 0.55 1029.1 d ± 0.73

Guinea fowl 1027.4 c,d ± 0.71 1042.6 k ± 0.67 1035.7 i ± 0.63
Turkey 1026.4 c ± 0.67 1037.7 j ± 0.50 1031.4 e ± 0.79

The same letters in the compared groups indicate that no statistically significant difference was found between
these groups. Abbreviation: LWE—Liquid Whole Egg.

The highest density values were reached by the albumen, followed by liquid whole
egg, and the lowest density was reached by the yolk. The density values are given by the
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composition of the individual egg components [20]. The differences between the density
values for the individual poultry species are not statistically significant. Only duck yolk
showed about a 2% lower density, which is due to the higher fat content [21].

3.2. Viscosity and Shear Stress Measurement and Modelling

To obtain the dependence of the shear stress τ, resp. apparent viscosity ηapp, on the
shear strain rate

.
γ of the liquid egg products, it is necessary to model (interpolate) the

measured data by a suitable function or model, see Equations (1) and (2). Table 2 shows
the calculated coefficients of the Ostwald-de Waele model of the liquid egg products from
the fresh eggs of six species of poultry at a temperature 18 ◦C.

Table 2. Ostwald-de Waele model coefficients.

Poultry Species Egg Liquid
Ostwald-de Waele Model

K, Pa·s n n, - R2 SSE RMSE

Hen
Yolk 1.3594 0.8632 0.9996 1.1240 0.2737

Albumen 0.6824 0.1740 0.8311 0.3516 0.1438
LWE 0.6696 0.1631 0.8789 0.3932 0.1521

Quail
Yolk 0.3769 0.9065 0.9965 7.0460 0.6438

Albumen 0.9670 0.1561 0.8124 1.2170 0.2675
LWE 1.0201 0.2501 0.7583 3.5930 0.4597

Goose
Yolk 2.6780 0.8982 0.9990 3.2030 0.4964

Albumen 0.4831 0.4570 0.9415 1.7940 0.3249
LWE 0.1674 0.5877 0.9381 0.8657 0.2257

Duck
Yolk 9.6730 0.7861 0.9960 10.550 1.0270

Albumen 0.6389 0.1802 0.8801 0.7986 0.2167
LWE 0.5832 0.3410 0.8647 1.7160 0.3177

Guinea fowl
Yolk 0.8542 0.8745 0.9976 6.0971 0.6173

Albumen 0.7387 0.1610 0.8930 0.4580 0.1641
LWE 1.0720 0.1758 0.8526 1.4450 0.2915

Turkey
Yolk 3.9770 0.7310 0.9985 3.3050 0.5042

Albumen 0.5139 0.3109 0.8712 1.7240 0.3184
LWE 0.4557 0.6214 0.9880 1.8801 0.3325

Coefficient is statistically significant for confidence level p < 0.05. Abbreviations: LWE—Liquid Whole Egg;
R2—coefficient of determination; SSE—sum of squared estimate of errors; RMSE—root mean square error.

Table 2 shows that the rheological Ostwald-de Waele model was very appropriately
chosen in accordance with the literature [22,23], as the coefficient of determination R2

reached values of 0.9165 on average, and the SSE values were 2.6429 on average, which are
very good values [24].

For comparison, the flow curves of the fresh yolks are shown in Figure 1, the egg
albumen are shown in Figure 2, and the liquid whole egg at 18 ◦C is shown in Figure 3 for
all the monitored poultry species.
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Figure 3. Flow curves of the liquid whole egg of the six species of poultry.

The highest values of the shear stress were reached by the duck yolk, goose albumen
and turkey liquid whole egg. The world’s most used liquid egg products (hens) were in
the lower half of the value of shear stress (130 Pa for yolk, 1.7 Pa for albumen, and 1.8 Pa
for LWE at 200 s−1), in comparison with the liquid egg products from the eggs of the
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other five species of poultry (615 Pa for duck yolk, 5.4 Pa for goose albumen and 12 Pa for
turkey LWE at 200 s−1). The study emphasises the effects of species, which are reflected in
changes in rheology. The type of eggs also differs in the representation of individual egg
components, when quail and duck eggs have a higher yolk ratio than albumen, compared
to hen eggs [7,25]. The proportions of yolk, lipids and water in the eggs of altricial and
precocial birds vary considerably. The eggs of altricial birds have the lowest average yolk
content (24%), while the eggs of precocial birds have the highest average yolk content
(65%). Based on the weight of the egg white, one hen’s egg corresponds to 0.81 duck egg or
5.9 quail eggs, and these weight differences are reflected in the representation of individual
egg albumen components, where the types of thin and hard egg white alternate, where
each species forms a different representation with partial differences in composition, which
also lead to changes in the rheological determination [26]. The nutritional composition,
quality and rheology of egg liquids can be influenced also by the composition of the feed
mixture [27].

From above, it can be concluded that in the intended processing of the liquid egg
products (e.g., goose, duck or turkey) pasteurisation and freezing equipment will have
to be dimensioned much more precisely to avoid turbulence and technology failures [28]
using modelling of the flow behaviour of the liquid egg products [29,30].

3.3. Pipe Flow Velocity Modelling

As a further comparison of the flow behaviour of liquid egg products, it is possible
to use three-dimensional modelling of the velocity profiles of the yolks, albumen and
liquid whole egg from the eggs of all the monitored poultry species. Figure 4 compares the
three-dimensional velocity profiles of the yolks, Figure 5 compares the three-dimensional
velocity profiles of the albumen and Figure 6 compares the three-dimensional velocity
profiles of the liquid whole egg of all the monitored poultry species using Equation (3)
and specific modelling procedures in Matlab. For a comparative example, a pipe with
length L = 3 m and internal diameter D = 80 mm (R = D/2 = 40 mm) and pressure drop
∆p = 300 Pa was used.
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As can be seen from Figures 4–6, the velocity profiles in the yolks are quite similar–
parabolic, suggesting a laminar flow of the liquid egg products [31]. For the albumen
and liquid whole egg, flattened shapes appear in velocity profiles, suggesting a turbulent
flow [32].

3.4. Determination of Flow Type

For an exact decision whether it is a laminar or turbulent flow (or a transition region),
it is necessary to calculate the Reynolds number Re for the individual cases [7]. Table 3
shows the values of the Reynolds number calculated from Equations (4) and (5) when
flowing through the pipe (length L = 3 m, pressure drop ∆p = 300 Pa, inner diameter
D = 50 mm and 80 mm) for the raw liquid egg products from eggs of all the monitored
poultry species at a temperature of 18 ◦C.

Re =
Dnvs

(2−n)ρ

8n−1K

(
4n

1 + 3n

)n
, (4)

where vs is the mean flow velocity calculated by the relationship

vs =
QV
S

=

πnR3

3n+1

(
R∆p
2LK

) 1
n

πR2 =
nR

3n + 1

(
R∆p
2LK

) 1
n

, (5)
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where QV is the volume flow and S is the cross-sectional area of the pipe.

Table 3. Values of the Reynolds number of the flowing liquid egg products.

Poultry Species Pipe Diameter
Reynolds Number Re

Yolk Albumen LWE

Hen
80 mm 0.93 2.03 × 104 5.36 × 104

50 mm 0.20 57.12 104.80

Quail
80 mm 15.42 830.48 29.39
50 mm 3.42 1.26 0.43

Goose
80 mm 0.20 123.45 1387.41
50 mm 0.04 9.86 175.16

Duck
80 mm 0.01 2.88 × 104 257.77
50 mm 0.001 97.61 10.23

Guinea fowl
80 mm 2.68 1.86 × 104 105.86
50 mm 0.57 33.83 0.32

Turkey 80 mm 0.05 1075.40 36.29
50 mm 0.01 32.69 5.00

Abbreviations: LWE—Liquid Whole Egg.

The numerical limit of the laminar flow of liquid egg products is based on Equation (6)
and the numerical limit of the turbulent flow of liquid egg products is based on Equation (7).
The transition area between laminar and turbulent flow of non-Newtonian power fluids
must be determined for each fluid separately [33]. For example, if a power-law fluid has a
flow index of n = 0.5, the transition region of the flow falls within the range of values of the
Reynolds number Re from 2675 to 3575 [34]:

Re ≤ 3250 − 1150n, (6)

Re ≥ 4150 − 1150n. (7)

Table 4 lists the flow types, which are determined according to the intervals obtained
from Equations (6) and (7).

Table 4. Types of flow of the liquid egg products of all the poultry species.

Poultry Species Pipe Diameter Yolk Albumen LWE

Hen
80 mm L T T
50 mm L L L

Quail
80 mm L L L
50 mm L L L

Goose
80 mm L L L
50 mm L L L

Duck
80 mm L T L
50 mm L L L

Guinea fowl
80 mm L T L
50 mm L L L

Turkey 80 mm L L L
50 mm L L L

Abbreviations: LWE—Liquid Whole Egg; L—Laminar flow; T—Turbulent flow.

It can now be stated that turbulent flow was achieved under the given conditions
(L = 3 m, pressure drop ∆p = 300 Pa, inner diameter D = 50 mm and 80 mm, T = 18 ◦C) for
the fresh hen albumen and liquid whole egg only, the fresh duck albumen and the fresh
guinea fowl albumen. In the other cases, the fresh liquid egg products had a laminar flow.
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Turbulent flow in real pipes is problematic, and can lead to wear [35], vibrations [36], and
gradually to the failure of the technology or system. Turbulence must be prevented by
choosing a suitable pipe geometry, by changing the temperature (it affects viscosity [37])
or by regulating the pressure drop (it affects volume flow [24]). Therefore, it is very
appropriate to use process modelling and simulation in food technologies to prevent
production and energy losses [38].

4. Conclusions

The highest differences in density of egg liquids were measured in the yolks. In
particular, the duck yolk showed the lowest density value. The other liquid egg product
values were almost similar to the density of the liquid egg products of hens and quails,
although statistically significant differences were found (p < 0.05). The highest values of
the shear stress of individual groups of egg liquids were reached by the duck yolk, goose
albumen and turkey liquid whole egg.

The velocity profiles in the yolks are quite similar–parabolic (laminar flow). For the
albumen and liquid whole egg, flattened shapes appear in the velocity profiles (indicate
turbulent flow). According to the Reynolds number, turbulent flow was achieved for the
hen albumen and liquid whole egg, the duck albumen and the fresh guinea fowl albumen.
In the other cases, the fresh liquid egg products had a laminar flow.

From the above results, it can be stated that the tested hypothesis was confirmed, as
differences were found in the rheology and flow behaviour of the individual liquid egg
products from the six different species of poultry. The obtained coefficient of rheological
models can be applied in conventional technical practice in the design of food technological
equipment and in the current trends in the food industry–processing eggs of minor species
of poultry in a place far from their laying (reduction of carbon footprint).
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