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Supervised learning technologies have been used in medical-data classification to improve diagnosis efficiency and reduce human
diagnosis errors. A large amount of manually annotated data are required for the fully supervised learning process. However,
annotating data information will consume a large amount of manpower and resources. Self-supervised learning has great
advantages in solving this problem. Self-supervised learning mainly uses pretext tasks to mine its own supervised information
from large-scale unsupervised data. And this constructed supervised information is used to train the network to learn valuable
representations for downstream tasks. This study designs a general and efficient model for the diagnosis and classification of
medical sensor data based on contrastive predictive coding (CPC) in self-supervised learning, called TCC, which consists of two
steps. The first step is to design a pretext task based on the idea of CPC, which aims to extract effective features between different
categories using its encoder. The second step designs a downstream classification task with lower time and space complexity to
perform a supervised type of training using the features extracted by the encoder of the pretext task. Finally, to demonstrate the
performance of the proposed framework in this paper, we compare the proposed framework with recent state-of-the-art works.
Experiments comparing the proposed framework with supervised learning are also set up under the condition of different

proportions of labeled data.

1. Introduction

Healthcare as an important part of smart cities directly
affects the quality of smart city construction. In recent years,
the rapid growth of urban population density, population
aging, and various chronic diseases have brought challenges
to the development of smart healthcare [1]. This no longer
meets the requirements of sustainable urban development,
prompting a shift from hospital-centered to family-centered
healthcare [2]. The application of various deep learning
algorithms has made it less difficult to automatically classify
diseases and has greatly improved the accuracy of disease
classification [3, 4]. The classification model can be paired
with various IoT devices for real-time diagnosis [5], and
patients can grasp their health status at home without having
to go to the hospital for checkups every time, which will ease

the tension on medical resources and help the construction
of smart medical care to achieve sustainable urban
development.

However, traditional supervised learning training re-
quires a large amount of labeled data to achieve good results.
For medical data with few labels and a high labeling
threshold [6], traditional supervised training is no longer
suitable [7]. Self-supervised learning can well solve the
problem of unlabeled medical data by creating pseudolabels
[8]. Self-supervised learning methods learn more general
features rather than task-specific features, so models using
self-supervised learning can be reused for different tasks in
the same domain and can better perform the task of clas-
sifying medical sensor data [9].

In this paper, we use contrastive predictive coding in
self-supervised learning to accomplish the classification of
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medical sensor data. We build a two-step CPC-based
classification framework (TCC) for medical sensor data and
conduct experiments on two types of medical sensor data:
electroencephalogram (EEG) and electrocardiogram (ECG).
By establishing a model for real-time automatic classifica-
tion, it helps to alleviate the increasing strain on medical
resources and promote the sustainable development of smart
cities.

In summary, the main contributions of this work are as
follows.

We propose a two-step TCC model according to the
architecture and ideas of contrastive predictive coding in
self-supervised learning. First step, designing a contrastive
predictive coding (CPC)-based pretext task for medical
sensor data classification, then redesigning the arrangement
of positive sample pairs and negative sample pairs. The
second step is to design a lightweight and simple down-
stream classification model, which further improves the
classification accuracy, achieving a very good result.

In order to verify that the pretext task is indeed learning
useful features, we designed the classification experiments
using fully supervised learning and the pretext task in the
case of different numbers of sample labels (10%, 30%, 50%,
70%, and 100%). Experiments have proved that the pretext
task is indeed learning useful features. When the number of
sample labels is small, after using the CPC-based pretext
task, the classification accuracy is still maintained at a very
high level.

The rest of this paper is organized as follows: Section 2
introduces the related work, including two aspects; Section 3
presents TCC, which contains CPC-based pretext task (first
step) and a downstream classification task (second step);
Section 4 shows the experiment procedure and experiment
results; and Section 5 concludes this paper and gives some
future research directions.

2. Related Works

Many deep learning technologies have been applied to
medical data classification and have achieved great success
[10]. Automatic recognition of sleep classification through
feature extraction started a long time ago [11]. Automatic
classification of sleep states based on EEG has been a hot
research topic in the field of health informatics.

2.1. Supervised Learning Classification Methods. Akara et al.
[12] proposed a two-step training method to train their
model, which is named DeepSleepNet. In their model, they
utilized convolutional neural networks (CNN) to extract z-
time-variable features and bidirectional-long short-term
memory (Bi-LSTM) to learn transition rules among sleep
stages automatically from EEG epochs. Sajad et al. [13]
proposed a deep learning model called SleepEEGNet, which
is composed of a convolutional neural network to capture
time-variable features and frequency information. The
model also used a sequence-to-sequence model to capture
the complex and long short-term context dependencies
between sleep epochs and scores. Huy et al. [14] proposed a
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hierarchical recurrent neural network named SeqSleepNet
which treated the task as a sequence-to-sequence classifi-
cation problem. Koushik et al. [15] performed end-to-end
training on the EEG dataset using a time-distributed con-
volutional neural network.

2.2.  Unsupervised Learning Classification = Methods.
Emadeldeen et al. [16] proposed a model based on unsu-
pervised learning named TS-TCC and designed contrastive
learning through weak data augmentation and strong data
augmentation. A cross-view prediction task is one of the
highlights of this paper. Hogeon et al. [17] proposed a model
named IITNet which \hl{utilized} residual neural networks
and bidirectional-long short-term memory networks for
sleep classification. Mohsenvand et al. [18] extended the
SimCLR [19] framework to time-series data and realized
different classification tasks. Yang et al. [20] proposed a self-
supervised learning model called ContraWR and conducted
experiments on three EEG datasets. Zhang et al. [21] pro-
posed a generative adversarial network-based data en-
hancement method to improve accuracy and prevent
overfitting.

3. TCC Framework

3.1. Contrastive Predictive Coding. Contrastive predictive
coding was proposed in 2018. The purpose is to predict
future features from past features by training a neural
network, which can be used on pictures or data with time-
series features. The core idea of this method is contrastive
learning. We can learn more global and meaningful struc-
tures instead of small irrelevant details by predicting far into
the future. The core of contrastive learning is to learn a
mapping function f and encode the sample x into its rep-
resentation f(x). The core of contrastive learning is to make
this $f$ satisfy the following formula:

s(f G0, f(x7)) > s(f (0, f(x7)). (1)

Here x" is a sample similar to x, and x™ is a sample that is
not similar to x. s() is a function that measures the degree of
similarity between samples. A typical score function is the
vector inner product. That is to optimize the following
expectations:

of TN
Ex,x*,x’ _log ef(x)Tf(f) N ef(X)Tf(X’) . (2)

Contrastive predictive coding is an approach for un-
supervised learning from high-dimensional data by trans-
lating a generative modeling problem to a classification
problem. The contrastive loss, or InfoNCE loss, in CPC,
inspired by noise contrastive estimation (NCE) [22], uses
cross-entropy loss to measure how well the model can
classify the “future” representation amongst a set of unre-
lated “negative” samples. Such design is partially motivated
by the fact that the unimodal loss like MSE has not had
enough capacity but learning a full generative model could
be too expensive. The (3) represents the mutual information
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between x and ¢ that we want to maximize, where c is the
potential content representation vector and x is the sample.
By doing so, we extract the underlying latent variables that
the inputs have in common.

p(x,¢)
P(x) ° (3)

I(x;¢) = Zp(x, c)log

Xx,¢

For EEG signals, we have made a little innovation here,
which is to predict by establishing positive and negative
sample pairs instead of predicting the future. For positive
sample pairs, they belong to the same category, and the
features extracted by train data should be used for predic-
tion. It is highly similar to the coding features of waiting
train data. For negative sample pairs, because they belong to
different categories, when predicting the features extracted
by train data, the less similar the coding features of the
waiting train data, the better. So, the goal is to maximize the
similarity between positive sample pairs and minimize the
similarity between negative sample pairs.

We establish positive and negative sample pairs, where
the positive sample pair contains 8 different samples be-
longing to the same category, and the four left and four right
of the negative sample pair belong to the same category, but
the left and right are different categories. The label of the
positive sample pair is 1, and the label of the negative sample
pair is 0. The left half of the training sample is called the
training set, and the right half is called the waiting training
set. Figure 1 describes the details. Algorithm 1 describes the
process to establish positive sample pairs and negative
sample pairs.

3.2. Pretext Task. The structure of the pretext task model is
shown in Figure 2. Giving a batch of train set samples x* and
a batch of waiting train set samples x*, an encoder g,,,, maps
the input into ZT (0<j<t), Z;{v (0<j<t), respectively.
Next, a GRU model g, Summarizes all Z]T- (0<j<t) in the
latent space and produces a context latent representation c.
Finally, we use the content vector ¢ for multistep prediction
and calculate the loss value with Z;V (0<j<t). The loss
function uses binary_crossentropy, the formula is as follows:

Z

Ly = =5 271+ 1o8(p () + (1= 3) - log (1= p().
(4)

wherey is the true label (1 for positive sample pairs and 0 for
negative sample pairs) and p(y) is the calculated probability
of being a positive sample.

The encoder part contains four identical blocks, and each
block contains a dense layer, a batch normalization layer, an
activation layer, and finally a dense layer to output the
coding features. It is worth noting that the quality of the
pretext task training directly affects the performance of the
downstream classification model, so the model of the pretext
task needs to be fully trained. Here we have trained 20
epochs. At the same time, since the training samples are
randomly selected, in order to ensure the probability of the

samples being selected, each epoch is trained thousands of
times to ensure that the pretext task can be fully trained.

3.3. Classification Task. The downstream classification task
uses the encoder part of the pretext task. The encoder part
saves the model parameters after the pretext task is trained
and loads the model parameters directly. The classification
model structure is shown in Figure 3. We can see that the
model is very lightweight and concise, and no particularly
complex structure is used. The classification model contains
two Convl layers that are not exactly the same; they have
different filters and kernel size.

In order to maintain the dimensionality of the input data
of the encoder layer, a sample is copied four times before
classification. For example, for a sample x;, the shape of its
input model should be [x; x;, x1, x;]. In order to speed up the
convergence of the model and get good results, monitor the
change of the validation set loss. When the performance is
not improved within two epochs, the learning rate will be
reduced to 1/3 of the original, and the initial learning rate is
set to 0.001. The loss function here uses catego-
rical_crossentropy, which is used as a loss function for
multiclass classification models where there are two or more
output labels. The output label is assigned a one-hot category
encoding value in the form of 0 and 1. Algorithm 2 describes
the overall classification model.

4. Experiments and Results

4.1. Datasets. The American Academy of Sleep Medicine
(AASM) divides sleep data into five stages, namely awake
(W), stages 1-3 (N1, N2, and N3), and rapid eye movement
(REM) [23]. In addition, N1, N2, and N3, respectively,
represent transitional sleep, light sleep, and deep sleep,
respectively. We aim to classify the input EEG signal into
one of five classes and download the sleep-EDF dataset from
the PhysioBank. The sleep-EDF database contains 197
whole-night polysomnographic(PSG) sleep recordings,
containing EEG, EOG, chin EMG, and event markers, where
we used a single EEG channel (Fpz-Cz) with a sampling rate
of 100 Hz [24]. Table 1 shows the total number for each class.
Figure 4 shows the waveform variations for each category.

4.2. Pretext Task Results. Figure 4 shows the trend of the
accuracy of the training set and test set in the pretext task. It
can be seen from Figure 5 that the result of the training set is
more than 99%, and the result of the test set is more than
98%. If the pretext task is not fully trained, the accuracy of
the downstream classification task is about 70%.

4.3. Classification Task Results. Table 2 shows the confusion
matrix after inputting all the datasets into the classifi-
cation model. The last three columns represent the
performance indicators of each category according to the
confusion matrix. It can be seen that the classification
effect for all sleep stages is very good, especially the N1
category, which shows a good classification effect
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FiGure 1: The division method of the positive sample pair, the negative sample pair, and the training set to be trained. Looking from the top
down, the top half and the bottom half are positive and negative sample pairs, respectively. Viewed from left to right, the left half is the

training set, and the right half is the waiting training set.

(ii) Output: train data batch, train label batch
(1)  2003for epochs do

@17) return train data batch, train label batch
(18) end for

(i) Input: nput training set data{X}iain. Xirain i @ sample of {X}rain.

(2) Create an empty train data batch and an empty train label batch, the shape is (32, 8), (32, 1), respectively.
(3) for i< 32 do
(4) for j> 16 do
(5) Random select 16 numbers from the total categories. Each number is repeated 8 times and the shape is (16, 8). This is the
upper part of Figure 1.
(6) Fill train label batch as 1
(7) end for
(8) for k in (16, 32) do
9) Random select 16 numbers from the total categories. Each number is repeated 4 times and the shape is (16, 4). This is the
lower left part of Figure 1.
(10) Select 16 numbers different from the previously selected category. Each number is repeated 4 times and the shape is (16, 4).
This is the lower right part of Figure 1.
@11) Fill train label batch as 0.
12) end for
13) end for
(14) Compose training data
15) Randomly select Xy, according to the selected sample category to fill the train data batch.

(16) Randomly disrupted train data batch and train label batch.

ArGoriTHM 1: Establish sample pairs.

compared to other models [12, 13], which shows that our
pretext task is quite effective. The average value of F1 is
88.09, and the overall accuracy is 88.70. We compare the
performance using two metrics namely the accuracy
(ACC) and the macro-averaged Fl-score (MF1), with
other proposed models. Table 3 shows the details.

4.4. Few Data Results. Inspired by [25], we did this exper-
iment. Figure 6 shows the change trend of the accuracy of the
classification model prediction when the pretext task is used
and the supervised learning is used when samples of dif-
ferent proportions are used. The supervised learning here
refers to the model without using the encoder part
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(1)  Train the CPC-based model.
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Train the classification model.

(i) Input: train data batch, train label batch

Save the parameters of the Encoder part of the trained model.
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ALGorITHM 2: Overall classification model.

TaBLE 1: The sleep-EDF dataset.

Awake
8285

N1
2804

N2
17799

N3
5703

REM  Total
7717 42308

Total number

parameters saved by the pretext task, directly use the encoder
part for training. The results show that when the number of
sample labels is small, the accuracy of the model can still be
maintained at a high level after using the pretext task.

4.5. Experiment: Sustainability of CPC-Based Model. This
experiment validates the sustainability of the model on
another dataset: the MIT-BIH supraventricular ar-
rhythmia database (MIT-BIH-SUP). This dataset includes
78 half-hour ECG recordings chosen to supplement the
examples of supraventricular arrhythmias in the MIT-
BIH arrhythmia database [26]. The Association for Ad-
vancement of Medical Instrumentation (AAMI) classifies
the heartbeats of arrhythmia patients into five classes:
normal beat (N), supraventricular ectopic beat (S),
ventricular ectopic beat (V), fusion beat (F), and un-
classifiable beat (Q) [27]. Since the number of F and Q

data is very small, we use this model to perform three
classification experiments on N, S, and V. We resample
the sampling rate from 128 Hz to 251 Hz and divide the
dataset into a training set and test set according to the
ratio of 9:1 and the results are shown in Table 4. The
accuracy of the deep learning model proposed in [28] is
only 88.2%. In contrast, TCC has a huge improvement.

4.6. An Industry Application of TCC for Improving the De-
velopment of Sustainable Smart Cities. Among all the fa-
cilities provided by smart cities to citizens, smart medical
treatment is the most important and most concerned
about the well-being of the people. Smart medical
combines intelligent technology with medical health and
can use a variety of wearable devices to obtain human
health data. Doctors, researchers, and healthcare pro-
fessionals can analyze these data to obtain better-per-
sonalized diagnoses and solutions. By deploying the
classification model on small mobile devices and coop-
erating with the use of various sensors, patients can
master their health status in real-time, avoiding the
various complicated steps of going to the hospital every



6 Journal of Healthcare Engineering
cpc-based model accuracy
1.00 A
0.95 4
& 0.90 4
<
g
B
0.85
1
1
0.80 !
1
II
0.0 2.5 5.0 75 100 125 150 175
epoch
- - - train
—— val
FIGURE 4: Pretext task training results.
88.38
85.27 85.44
8129 8337
80 +
g
60
3
s
=
£ 40 -
g
=
=
O 20
0
10 30 50 70 100
Percentage of label data (%)
mm Supervised
mm CPC-based
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TaBLE 2: Confusion matrix and various evaluation indicators.
Awake N1 N2 N3 REM PR (%) RE (%) F; (%)
Awake 7270 235 349 79 352 92.55 87.75 90.09
N1 55 2572 75 4 98 78.58 91.73 84.65
N2 278 269 15418 396 1438 93.25 86.62 89.81
N3 69 2 506 5126 0 91.29 89.88 90.58
REM 183 195 186 10 7143 79.09 92.56 85.30
Macro avg 88.09
ACC 88.70%

time, which is conducive to the construction of a sus-
tainable smart city. Figure 6 shows an industry appli-
cation of TCC for sustainable smart cities.

Patients can select appropriate medical monitoring
equipment according to their actual situation. This
equipment will transfer the obtained medical sensor data

to the TCC system, and the system will analyze whether
the medical data is abnormal in real-time. In the event of
an abnormality, a warning will be issued to prompt the
patient to go to the hospital on time, and the abnormal
medical data flow will be recorded to facilitate the doc-
tor’s diagnosis and analysis.
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TaBLE 3: Comparison between our proposed model against others.
ACC (%) MF1 (%)
SSL-ECG [9] 74.58 65.44
SimCLR [9] 78.91 68.60
TS-TCC [9] $3.00 73.57
DeepSleepNet [6] 82.00 76.88
IITNet [10] 84.00 77.70
SleepEEGNet [7] 84.26 79.66
CPC-based (ours) 88.70 88.09
Data
—_— —
6? collect L L collect
. Professional equipments Medical sensor data Ordinary devices
Classification model I
TCC System
Normal / \ Abnormal
Smart healthcare in smart cities
frd{ © 3
As usual Go to the hospital
FIGURE 6: An industry application of TCC for sustainable smart cities.
TaBLE 4: Confusion matrix and various evaluation indicators.
N(% S(% V(%
ACC (%) (%) (%) (%)
PR RE F, PR RE F, PR RE F,
97.30 97.90 99.42 98.65 89.80 77.28 83.07 95.24 87.65 91.29

5. Conclusion

We exploit a self-supervised deep learning framework for
sleep stage classification. Based on the architecture and
ideas of contrastive predictive coding, this paper pro-
poses a CPC-based pretext task that uses positive sample
pairs and negative sample pairs to design contrastive
learning, and the model finally extracts different types of
effective features. Using the encoder part of the pretext
task, a very lightweight classification model is designed,
which achieves very good results on the dataset. The F,-
scores of classifying awake, N1, N2, N3, and, REM sleep
stages are 90.09%, 84.65%, 89.81%, 90.58%, and 85.30%,
respectively. At the same time, we verified that in the case
of a small amount of data labels, the model still achieved
good results, and the performance of the model exceeded
the supervised learning. We extend the experiments in
another dataset, which shows the robustness and

sustainability of the model more efficiently. In the future,
we plan to use more complex or time-based classification
models to further improve the accuracy of model clas-
sification. Although the sample imbalance did not affect
the final experimental results, we still plan to utilize some
machine learning methods, such as the synthetic minority
oversampling technique to solve this problem.

Data Availability

The labeled datasets used to support the findings of this
study are available from the corresponding author upon
request.
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