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Abstract: Land-use change is the main driver of biodiversity loss in the Mediterranean basin. New
socio-economic conditions produced a rewilding process so that cultural landscapes are being invaded
by more natural habitats. We analyze the effects of landscape change on the demography and the
spatial distribution of Crocidura russula in six protected areas of the western Mediterranean basin.
The study was conducted in the period 2008–2020 on 19 live trapping plots representing the three
main natural habitats of the area (scrubland, pinewood, and holm oak woodland). We used a
multiscale approach to ensure that the scale of response matched landscape structure (from plot to
landscape) using either vegetation profiles (LiDAR) and land use data obtained from years 2007 and
2017. Statistical models (multiple-season single-species occupancy models) showed that C. russula
populations were strongly associated to habitat features at the plot level. These models were used
to predict occupancy at sampling units for the whole study area (850 km2), showing contrasting
trends that shifted at relatively small spatial scales (expansions and retractions of species ranges).
Parks showing extreme scrubland encroachment (−8% of area) and afforestation (+6%) significantly
reduced habitat suitability for shrews and reductions in occupancy (−5%). Results would indicate
faster changes in the spatial distribution of the target species than previously expected on the basis of
climate change, driven by fast landscape changes.

Keywords: C. russula; landscape change; occupancy models; spatial distribution; scrubland encroach-
ment; afforestation; small mammals; shrews

1. Introduction

Land-use change (and associated pressures) is the main driver of biodiversity loss
worldwide [1]. Land use and land cover change is a cause of the current biodiversity crisis,
but its relationship with biodiversity conservation remains largely unknown, especially at
the regional scale due to the lack of consistent biodiversity data [2]. Site- and habitat- based
analyses of available long-term datasets for common species would greatly contribute to
uncover this gap of knowledge [3].

In the Mediterranean basin, complex interactions between ecosystems and humans
resulted in the regression of natural habitats (forest) through shifting land use practices ex-
tended over millennia [4]. Despite that habitat conversion for human uses (e.g., agriculture
and urban areas) is characteristic of the Anthropocene [5], more recently, abandonment
of traditional uses has been followed by a partial regrowth of natural vegetation and re-
covery of wildlife diversity and abundance [6,7]. Effects of landscape dynamics (land use
intensification or abandonment) on biodiversity is key for realistic and effective planning
of landscape management actions aimed at achieving specific conservation goals (e.g., [8]).

Alteration of the landscape caused by land use practices or climate change can affect
habitat suitability for many species, producing impacts in demography affecting coloniza-
tion and extinction probabilities. At the population level, those changes manifest as shifts
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in the occurrence and abundance of species across the landscape [9]. Populations can be
affected by the habitat loss within a region and by changes in the suitability of fragmented
remains of habitat regarding the isolation or connectedness of patches lasting after habitat
loss [10]. Understanding how these dynamic processes are affected by changes of habitat
or climatic conditions may be important for the successful management of ecological sys-
tems. For example, in metapopulation studies, local extinction probabilities are frequently
assumed to be decreasing functions of patch area (e.g., [11]). In this regard, it is important
to effectively define the scales at which responses of the target species are expected to occur,
and multiscale approaches are recommended [5].

Here, we analyse the effects of landscape change on the demography and spatial
distribution of a small endotherm, the greater, white-toothed shrew Crocidura russula, in
protected areas of the western Mediterranean basin. This is a thermophilic species with
a Mediterranean distribution, showing clear-cut open-land habitat preferences, and can
be considered as a suitable target species for demographic studies owing to the short life
span, high dispersal ability, small ranges, and high detectability [12,13]. Previous work
showed that, contrary to expectations, the abundance and demographic parameters of
these shrew populations were not (yet) affected by ongoing climate change, although
they strongly differed among contrasting habitat types (open woodland, [14]). We expand
the scale of analyses by including effects of landscape change at regional scales after
accounting for local-scale effects of vegetation structure [5]. Models including land uses
at landscape scales, that are typically measured using GIS-based assessments updated by
public administrations [15], may allow, if significant, to create maps of the likelihood of
species’ occurrence at places that will not be surveyed, thus enlarging the spatial scope of
results at the regional scales relevant for land-use policy evaluations [16].

2. Materials and Methods
2.1. Study Area

Field work was conducted within six natural parks of the Barcelona province (Cat-
alonia, NE Spain, Figure 1). The study area is very heterogeneous regarding landscape
composition, with large areas occupied by open habitats in the south (Garraf and Olèrdola)
and mostly forest-covered areas in the north (Montnegre i el Corredor). This area—as well
as the entire region—is under a general process of shrub encroachment and afforestation
during the last five decades [17,18]. Woodlands are dominant (57%), followed by open
natural habitats (shrublands and grasslands, 27%), mostly originated by wildfires at the
end of the last century and the start of the present one. Non-natural habitats, such as urban
areas (11%) and croplands (4%), showed a reduced area and were mostly situated in the
periphery of the natural parks [2,19].Life 2022, 12, 1230 3 of 16 

 

 

 
Figure 1. Situation of the 19 SEMICE sampling plots (13 forests and 6 scrublands) on the six natural 
parks of the Barcelona province (Catalonia, NE Spain). 
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(www.semice.org, accessed on 15 February 2022). It is a mixed monitoring scheme with 
stations operated by both professionals and volunteers, whose main goal is monitoring 
common small mammal species with high detectability [20]. 

The study plots were selected according to the available SEMICE stations that repre-
sents a non-random sample of natural Mediterranean habitats representative of the study 
area. The sampling period included 13 years, from spring 2008 to fall 2020, and 19 live 
trapping plots of 0.56 ha (minimum area) were monitored twice a year (spring and au-
tumn) to cover the phases of the life cycle of the species [21,22]. Open habitats included 
post-fire vegetation communities dominated by scrublands of Quercus coccifera, Pistacia 
lentiscus, and Cistus spp., and woodlands included a variety of evergreen (Quercus ilex 
with Pinus pinea and P. halepensis) and deciduous (Quercus pubescens, Alnus glutinosa, and 
Salix spp.) forests. Our investigation was centered on the lowlands (95–750 m a.s.l.) to 
prevent the influence of climate variability on species diversity and abundance [23]. Sam-
pling plots consisted of grids of 36 traps spaced 15 m (6 × 6 and 9 × 6 scheme design), and 
to avoid size-specific biases in small mammal community assessments [24], we used two 
types of live traps: Longworth (Longworth Scientific Instrument Co., Oxford, UK) and 
Sherman traps (Sherman folding small animal trap; 23 × 7.5 × 9 cm; Sherman Co., Talla-
hassee, FL, USA), that were alternated in position [25,26]. Traps were baited with a piece 
of apple and a mixed dough of tuna and flour and provided with hydrophobic cotton for 
bedding [27]. Traps were operated during three consecutive nights and revised during the 
early morning of the first, second, and third day. Shrews were identified, weighed, 
marked with fur clips to detect short-term recaptures, and released at the point of capture 
[28]. Research on live animals followed ethical guidelines [29], and captures were per-
formed under special permission of the Catalan Government (Generalitat de Catalunya). 
  

Figure 1. Situation of the 19 SEMICE sampling plots (13 forests and 6 scrublands) on the six natural
parks of the Barcelona province (Catalonia, NE Spain).
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2.2. Small Mammal Sampling

We used the database of the SEMICE small mammal monitoring program (www.
semice.org, accessed on 15 February 2022). It is a mixed monitoring scheme with stations
operated by both professionals and volunteers, whose main goal is monitoring common
small mammal species with high detectability [20].

The study plots were selected according to the available SEMICE stations that repre-
sents a non-random sample of natural Mediterranean habitats representative of the study
area. The sampling period included 13 years, from spring 2008 to fall 2020, and 19 live
trapping plots of 0.56 ha (minimum area) were monitored twice a year (spring and au-
tumn) to cover the phases of the life cycle of the species [21,22]. Open habitats included
post-fire vegetation communities dominated by scrublands of Quercus coccifera, Pistacia
lentiscus, and Cistus spp., and woodlands included a variety of evergreen (Quercus ilex with
Pinus pinea and P. halepensis) and deciduous (Quercus pubescens, Alnus glutinosa, and Salix
spp.) forests. Our investigation was centered on the lowlands (95–750 m a.s.l.) to prevent
the influence of climate variability on species diversity and abundance [23]. Sampling plots
consisted of grids of 36 traps spaced 15 m (6 × 6 and 9 × 6 scheme design), and to avoid
size-specific biases in small mammal community assessments [24], we used two types of
live traps: Longworth (Longworth Scientific Instrument Co., Oxford, UK) and Sherman
traps (Sherman folding small animal trap; 23 × 7.5 × 9 cm; Sherman Co., Tallahassee, FL,
USA), that were alternated in position [25,26]. Traps were baited with a piece of apple and
a mixed dough of tuna and flour and provided with hydrophobic cotton for bedding [27].
Traps were operated during three consecutive nights and revised during the early morning
of the first, second, and third day. Shrews were identified, weighed, marked with fur clips
to detect short-term recaptures, and released at the point of capture [28]. Research on
live animals followed ethical guidelines [29], and captures were performed under special
permission of the Catalan Government (Generalitat de Catalunya).

2.3. Vegetation Structure and Land-Use

Vegetation structure of sampling plots was assessed by ALS LiDAR [30,31] (Figure 2)
obtained from the Institut Cartogràfic i Geològic de Catalunya (flights 2016–2017). This
method is adequate for analysing small mammal-vegetation relationships [32,33]. Height
of vegetation is relevant for small mammals’ microhabitat selection [34,35], and 12 vari-
ables describing vertical vegetation structure and height were derived at the plot level
(Table S1). Redundant variables describing horizontal profiles of vegetation (e.g., cover)
were disregarded, owing to the positive relationship between height and cover [36].
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Figure 2. Example of vegetation profiles of four SEMICE sampling stations (two scrublands and two
forests) calculated by LiDAR within a 50 mradius centered in the plots. Pixels (X = 1–4.3 per m2) are
colored according to the height of vegetation (from dark blue to red) (a) Horizontal and (b) vertical
views of the four plots.
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To study the effects of vegetation structure and land use on C. russula populations,
we used a multiscale approach to ensure that the scale of response matched landscape
structure [5] (Figure 3): (1) Analyses of the effects of vegetation structure at the plot level,
since microhabitat features were expected to be relevant drivers for initial occupancy.
(2) In the context of meta-population dynamics [11], some population parameters (i.e.,
local colonization and extinction) are expected to be determined by the landscape matrix
surrounding the plots; hence, we analyzed the relationships between landscape structure
and changes in occupancy and derived parameters, considering two circular buffers of
100 (plot) and 500m radius (landscape) centered on the plots. Owing to the spatial patterns
of land use and cover change at the landscape scale in the study area [2], we expected
consistent patterns of landscape change at different spatial scales (plot and landscape, [5]
Figure 3). (3) Spatial distribution models were projected using a geographic information
system (GIS) to a 1 km2 land-use database of 2007 and 2017 available for the entire area
(850 km2) [15]. The area projected does not conform exactly to the boundaries of the natural
parks, since we considered all the 1 × 1 km units which were crossed by or included within
the limits of the protected areas.
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Figure 3. Scheme of the three-step process used to model the spatial distribution of C. russula in
the study area. Red small figures indicate the plot level (square = SEMICE plot; circle = LiDAR
calculations on 50 m radius), the orange circle was used for calculations of land-uses at the landscape
scale (500 m buffer), and the yellow square indicates the land-use units used for the projection of
models to the entire region. The rationale of this approach relies on the interdependence of habitats
at the different spatial scales; that is, a plot placed in a forest showed similar vegetation profiles than
the surrounding landscape, owed that forest patches are large enough and no fragmentation exists.

Since small mammals are likely to respond to complex combinations of habitat compo-
nents [37], we obtained gradients of either vegetation structure (LiDAR, at the plot level)
and land-use (at landscape level). Principal component analyses (PCAs) were performed,
including the 12 LiDAR variables (step 1), on the four main land uses (scrublands, forests,
crops, and urban) around sampling stations (500 m buffer, step 2), and the other two on the
same land-use variables at the start (2007) and the end (2017) of the study (step 3). Compo-
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nents were rotated using the Varimax method, and only those having eigenvalues > 1 were
retained (Kaiser criterion). These new variables can be interpreted as gradients with ecolog-
ical meaning and were used as predictors in further analyses [38]. Land use change at the
plot level was analyzed calculating the rate of change of the main natural (scrubland and
forest) and anthropic habitats (crops and urban areas) between the two periods (2007–2017)
at two spatial scales: 100 mbuffer (plot) and 500 mbuffer (landscape). To ascertain whether
changes were consistent between the two periods, Wilcoxon matched-pairs tests were
used. Land use change at the widest scale (entire region, natural parks) was analyzed with
generalized linear models (GLMs), using the rate of change of the four mainland uses as
response variables and the natural parks as predictors.

2.4. Occupancy Analysis

Multiple-season single-species occupancy models [11] were used to analyze the range
dynamics of C. russula. This approach allows modelling two separate processes follow-
ing a hierarchical structure [39]: the “state process” analyzing the species distribution
and its drivers, and a process associated to the data collection (“observation process”).
The timeframe database considers two temporal scales: a short one, consisting in the
detection/non-detection of the species during the three consecutive trapping sessions con-
ducted during a survey (secondary occasions) to account for species detectability; a long
one, consisting in the detection/non-detection of the species during consecutive seasonal
surveys (primary occasions) to account for changes in occupancy and the rest of parame-
ters. This approach can be used when the assumption of closure—no local immigration
or emigration—between primary occasions is potentially violated, but where closure can
be assumed within each primary occasion [40]. These kinds of models allow first-order
Markovian changes in occupancy, that is, when occupancy at a site in the present season
depends on the state of occupancy at that site in the last season [11]. Models calculate pa-
rameters such as local colonization and local extinction probabilities to account for changes
in occupancy between seasons, being that occupancy (ψ) is the proportion of sites that is
occupied by the target species; colonization (γ) is the probability that an unoccupied site
in season t is occupied in season t + 1; extinction (ε) is the probability that a site occupied
in season t is unoccupied in season t + 1; persistence (Ø) is the probability of a site being
occupied in successive seasons (1 − ε); and detectability (p) is the probability of detecting
the species when actually present. The SEMICE monitoring program is especially suitable
for applying such a kind of statistical models, since it consists in three surveys repeated in
three consecutive days for every sampling site, and surveys are repeated in two annual
seasons along the years. Furthermore, C. russula showed high detection probabilities under
the SEMICE programme [14,20], well above the p = 0.3 threshold indicating high likelihoods
for false negatives [41], and cumulative detectability was also high (p > 0.85) for all the
surveyed sites [39] and references therein.

We fitted competing occupancy models (software PRESENCE, [16]) to determine the
parameters (occupancy, colonization, and extinction probabilities) affecting the population
dynamics of the species at different spatial scales, once controlling for imperfect detectabil-
ity. We started with a null model, considering that occupancy rate did not change in space
and time and setting constant the parameters colonization, extinction, and detection prob-
abilities [ψ(·)γ(·)ε(·)p(·)]. Regarding the lack of automatic selection of best models in the
software used, a limited set of covariates was included in models by using sound scientific
judgment around the target species [11]. Hence, the models were improved adding vegeta-
tion structure and land use profiles of plots (site-dependent covariates) and seasonal effects
and considering them altogether in the models but without interactions [42]. Owing to the
well-known habitat preferences of the species in the area [14,43], we expected that initial
probability of occupancy at the plot level to be mainly determined by vegetation structure
profiles of sampling plots (LiDAR profiles). However, we expected that other parameters
(colonization, extinction, and persistence) to be also constrained by temporal changes in
suitability of habitats occurring around sampling stations; thus, we included land use
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change (i.e., the rate of change of open and forest land cover between 2007 and 2017) as
site-dependent covariates at the two spatial scales (100 and 500 m buffers). Detectability
strongly depends on habitat features [42] and was expected to change according to vegeta-
tion profiles (LiDAR) of plots, but also on a seasonal basis, owing to marked seasonality of
species abundance [15,36]. Finally, we projected the probability of occupancy at the scale of
the natural parks network in both periods, considering the modelled occupancy calculated
in 2007 and 2017: [ψpc2007, γ(pc2007), ε(pc2007), p(t + pc2007)], and the same for 2017.

3. Results

We trapped 3975 small mammals of seven species along the study period (2008–2020).
Apodemus sylvaticus was dominant (61%), followed by C. russula with 986 individuals (25%)
and Mus spretus (11.4%). The other four species reached less than 2% of captures each.
A total of 61% of shrews were captured during the autumn surveys. Shrew abundance
was higher in scrubland plots (7.49 ± 5.39 ind./plot; mean ± SD) than in forests plots
(1.42 ± 2.25 ind./plot).

3.1. Patterns of Land Use Change

Afforestation and loss of scrubland involved 67% of the study area, with 3480 ha
affected by scrub encroachment and 2650 ha by afforestation. The opposite land use change
affected the remaining 23% of the area, where scrubland increased by 1380 ha and open
deforested lands by 1750 ha. Overall, the region showed a reduction of scrubland (−2.66%)
and an expansion of forests (+1.32%), crops (+0.67%), and urban (+0.66%) areas (Table 1).
The pattern differed among the natural parks sampled. Serralada Litoral experienced the
strongest landscape change affecting 91% of the area, with a loss of 678 ha of scrubland
(−8.6%) and an increase of 481 ha of afforestation (+5.9%). Collserola was the only park
where no scrubland loss occurred, but an increase in the crop cover occurred (0.26%, 45 ha).
A similar pattern was observed in Sant Llorenç del Munt i l’Obac, with a small reduction
of scrubland (−0.2%, 60 ha) and an expansion of land devoted to crops (+0.62%, 113 ha).
Both parks showed a net increase of the surface of open habitats due to recuperation of
crops and a reduction of the loss of scrubland. Both parks also showed a reduction of the
forest cover.

Table 1. Land use changes (rate of change, %) in six natural parks of the Barcelona province in the
period 2007–2017 and statistical significance after GLMs using rate of change of the main four land
uses at each spatial unit (1 km2) as response variables and Natural parks as predictors. Sant Llorenç
del Munt was set as the reference value.

NATURAL PARK SCRUBLAND WOODLAND CROPS URBAN

Garraf −3.40 *** 2.37 *** 0.51 0.52 **
Collserola 0.00 −1.02 0.26 0.76 ***
Serralada de Marina −2.18 0.96 −0.11 1.32 ***
Serralada Litoral −8.58 *** 5.90 *** 1.58 * 1.10 ***
Montnegre i el Corredor −3.58 *** 2.25 *** 0.80 0.53 *
Sant Llorenç del Munt i l’Obac −0.20 −0.73 0.62 0.31

TOTAL AREA −2.66 *** 1.33 *** 0.67 * 0.66 ***

* p < 0.05; ** p < 0.01; *** p < 0.001.

A generalized linear model with the rate of change of land use by natural park
yielded significant results for scrubland (Wald Chi2 = 71.1, df = 5, p < 0.0001), forest
(Wald Chi2 = 53.2, df = 5, p < 0.0001), crops (Wald Chi2 = 12.6, df = 5, p < 0.03), and urban
(Wald Chi2 = 112.0, df = 5, p < 0.0001). The only land use increasing in all the parks was
urban cover, but crop cover only increased in S. Litoral. Forest cover increased in three
parks (Montnegre, S. Litoral, and Garraf), and scrubland cover decreased in the same parks.
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3.2. Vegetation Structure and Land Use of the Sampling Stations

The PCA performed with the 12 LiDAR variables resulted in four significant factors
(with eigenvalues > 1). The first two PCs accounted for 76.13% of variance (54.35% for PC1
and 21.78% for PC2, Table S1) and were considered for further analyses. PC1 was correlated
with nine variables, and segregated the scrublands from the woodlands, being interpreted
as a gradient of increasing complexity of vertical vegetation structure. PC2 correlated with
four variables and was mostly associated to vegetation cover and height of short and tall
shrubs. Scrublands showed high vegetation cover of short shrubs (0.15–1.50 m tall), low
vegetation cover of tall vegetation (>2.50 m), and a lack of canopy cover. At the other
extreme, broad-leaved woodlands showed low vegetation cover of short shrubs and high
vegetation cover of the tall vegetation.

Factor coordinates of LiDAR-PC1 were significantly correlated with land uses at the
plot (100 m buffer) and the landscape scales (500 m buffer) in both periods and for the
two main habitats: LiDAR-Openland 2007: r = −0.96 and −0.79; LiDAR-Openland 2017:
r = −0.95 and −0.79 and LiDAR-Woodland 2007: r = 0.96 and 0.78; LiDAR-Woodland
2007: r = 0.95 and 0.78. Therefore, vegetation structure profiles summarized by LiDAR-PC1
offered equivalent information than land use composition at the plot and landscape scales.

At the start of the study (2007) and considering the landscape scale (500 m buffer),
land use around sampling plots was dominated by forest (62.2% ± 35.1 SD) followed by
open land (33.6% ± 34.6 SD), but at the end of the study (2017), forest cover had increased
(65.2% ± 34.1 SD) and open lands had decreased in extent (29.8% ± 33.2 SD). In fact, open
natural habitats (grassland and scrubland) decreased 4.5% on average (z = 3.00, p = 0.002,
n = 19) and forest increased 3.1% (z = 2.77, p = 0.005, n = 19), whereas crops and urban
areas mostly remained unchanged (<1% change). These patterns were almost identical
in all sampling plots, suggesting that landscape change was consistent irrespective of the
composition of habitats surrounding the plots. Indeed, 14 out of 19 plots (74%) showed
scrubland regression and afforestation, 4 plots showed no change, and only 1 plot showed a
reversed pattern (increase of scrubland and decrease of forest, Figure 4). Furthermore, land
use rate of change at the plot level showed negative correlation between both main natural
habitats (scrubland-woodland, r = −0.93, p < 0.001, n = 19), suggesting that scrubland
regression was mostly associated to afforestation around the studied plots. However, land
use changes in the same period were non-significant at the plot scale (100 m buffer): forest
(z = 0.56, p = 0.57, n = 19) and open land (z = 0.91, p = 0.36, n = 19), due to high heterogenous
and inconsistent land use patterns of change within plots (Figure 4). In fact, nine plots
showed no change (47%), four showed forest regression and scrubland expansion, three
showed scrubland regression and afforestation, two showed only afforestation, and one
showed afforestation and scrubland expansion.

3.3. Occupancy and Spatial Distribution Models

At the plot scale, the most parsimonious occupancy model (AIC weight 100%) included
LiDAR structure for initial occupancy, colonization, extinction, and detectability (Figure 5)
and landscape change (scrubland and forest rate of change in the period 2007–2017) for
colonization and extinction:

ψ(LiDAR), γ(LiDAR + Scrub100 + Forest100), ε(LiDAR + Scrub100 + Forest100), p(season + LiDAR).

At the landscape, the most parsimonious occupancy model (AIC weight 76%) included
LiDAR structure for initial occupancy, colonization, extinction, and detectability and land-
scape change (scrubland and forest rate of change in the period 2007–2017) for colonization
and extinction:

ψ(LiDAR), γ(LiDAR + Scrub500 + Forest500), ε(LiDAR + Scrub500 + Forest500), p(season + LiDAR).
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Figure 4. Landscape change (%), at two spatial scales (a) 500 and (b) 100 m buffers centred in the
19 SEMICE sampling plots in the period 2007–2017 for the two main structural habitats (scrubland-
open land and forest-woodland) relevant for C. russula dynamics and demography in Mediterranean
landscapes. Plots were ordered along the x-axis according to the factor scores of LiDAR-PC1, rep-
resenting a gradient of vertical structural complexity of vegetation from scrubland to woodland
(bottom figure).
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Figure 5. Graphical representation of the occupancy model selected using PRESENCE software
indicating the changes in the modelled probability of four demographic parameters (occupancy-blue,
colonization-orange, extinction-red, and persistence-yellow) along vegetation structural gradients
represented by LiDAR-PC1 at the plot level. Bottom figure shows the changes in structural complexity
of vegetation from scrublands to dense forests.
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Despite that occupancy was constant along the study period, a predicted decline
of occupancy was obtained for the two pinewood plots, due to decreasing colonization
probabilities associated to landscape change around the plots (high rates of scrubland
reduction and forest expansion). During the first period (spring 2008–spring 2013), the
average probability of occupancy was 0.67 ± 0.18 SE, and during the second period (autumn
2013–autumn 2020), the occupancy declined (0.48 ± 0.20 SE).

Initial occupancy for models calculated at the two different spatial scales showed
strong correlation (r = 0.87, n = 19, p < 0.01), suggesting that occupancy was similar from
plot to landscape scales. Indeed, the spatial configuration of landscapes showed strong
autocorrelation patterns at different spatial scales. This means that plots were normally
embedded in a matrix of habitats of the same composition than the surrounding landscape
(e.g., a plot placed in a forest showed similar vegetation profiles than the surrounding
landscape; Figure 3). We calculated the occupancy for the 19 plots at the start and at the end
of the study period (2007 and 2017) by fitting occupancy models to land use composition at
the scale of 1 km × 1 km squares centred on the plots. In that case, we considered the first PC
extracted considering the four main land uses (scrubland, forest, crops, and urban) showing
a negative correlation with scrubland (r = −0.98, p < 0.0001, n = 850), positive correlation
with forest (r = 0.86, p < 0.0001, n = 850), and no correlation with the two other land uses
(PCAs with land uses in 2007 and 2017 were almost identical). These models considered
that the landscape composition affected initial occupancy, colonization, extinction, and
detectability. These probabilities of occupancy also showed strong correlation with the
ones calculated at smaller spatial scales (500 m−1 km2: r = 0.90). Then, we fitted the
initial probability of occupancy to the first PCA extracted with land uses calculated in 2007
and 2017 by using the best fitting regression model (third order polynomial regression:
r2 = 0.998, df = 3, 15, p < 0.0001; r2 = 0.997, df = 3, 15, p < 0.0001, respectively, for years
2007 and 2017). Since the 19 plots were evenly distributed along the landscape gradient
represented by the first PCAs (Figure 6a), and owing to the high model fits obtained, the
predicted values were calculated for the entire study area, that is, the 850 1 km2 spatial
units (Figure 6b). Predicted values were then projected to generate maps of occupancy for
the years 2007 and 2017.
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Figure 6. Modelled initial probability of occupancy of C. russula in 19 plots along a gradient of
landscape composition represented by (a) observed values on the PC1-2007 (scrubland to woodland
gradient) and (b) predicted values on PC1-2007 for the entire study area (850 km2). The same was
calculated for 2017 (not shown).

C. russula displayed significant differences in spatial and temporal patterns of proba-
bility of occupancy in the study area (Figure 7). The species showed higher occupancies in
areas well covered by open land and lower occupancies in dense forested areas. Changes
in occupancy between both periods were related to changes in habitat suitability along that
period. In fact, some natural parks showed overall temporal decreasing habitat suitability
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(Montnegre, S. Litoral, and Garraf), with stronger scrubland encroachment (−8%) and
afforestation (+6%). Other parks showed stability in habitat suitability (Sant Llorenç del
Munt, Collserola, and S. Marina) due to moderate or not measurable landscape change.
Occupancy change (e.g., the difference between predicted occupancy in both periods)
depicted potential retractions of the spatial distribution of the species in the NE parks
(−5% on average) but also in the SW (−0.5%), and potential expansions in the N (+4–6% in
Sant Llorenç del Munt and Collserola). Differences in occupancy were mostly related to
differences in habitat suitability associated to landscape change, which decreased in natural
parks showing extreme afforestation processes (S. Litoral, Figure 8) and increased in parks
showing moderate or no landscape change.
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4. Discussion

This study highlighted the relevance of landscape change on the spatial and temporal
distribution of C. russula. Heterogeneous responses of occupancy at the landscape scale
were related to heterogeneous changes of land cover in different areas, producing significant
changes in habitat suitability for the target species. Our results supported the key role of
landscape change on the spatial distribution of this shrew, whose population dynamics
were found to be little or not affected yet by ongoing climate change [14].

At the landscape scale (500 m-buffers), our study yielded consistent patterns of habitat
change, with 14 out of 19 plots showing loss of open land cover and increase in forest cover,
producing a significant decline of suitability for the target and other small mammal species
dependent on open habitats (e.g., scrublands, [33]). Land cover change from abandoned
open land to forests are representative of ongoing land use changes in protected areas of the
study region [18] and were further confirmed in this study. Previous studies have associated
recent landscape changes to shifts in the composition of small mammal communities over
longer time periods (30 years, [44]), with a decrease of open land species and an increase
of forest species, as was yet confirmed for other vertebrate taxa in the Mediterranean
(birds, [45]). Results presented here would indicate faster changes in the spatial distribution
of the target species than previously expected on the basis of climate change, driven by fast
landscape changes.

Occupancy models predicted overall stability of the population during the studied
period (except in pinewoods), which roughly coincided with the population size stability
showed under a typical climate change scenario (e.g., increasing temperature and decreas-
ing rainfall, [14]). These results suggested some resilience to climate change that was in
contradiction to expectations for a small endothermic species with African origin [46]: if
white-toothed shrews were constrained by cold temperatures, it would be expected of
climate warming to produce positive effects on their populations. However, positive effects
of climate change were neutralized by the more relevant and negative effects of landscape
change. Indeed, shrews were constrained by two opposing driving forces: raising tempera-
tures producing an increase in suitable potential areas (e.g., range expansions to the north
and mountain areas [14]) and habitat loss (e.g., by afforestation) producing a decrease in
suitable potential areas.

Predicted projections of the occupancy probability of C. russula in the whole area
showed heterogeneous responses—with expansions and retractions of the species occupancy—
exclusively based on main land cover changes. Expectations based on climate change using
bioclimatic envelopes predicted moderate species retractions of the potential distribution
in this region [47], highlighting that the use of appropriate spatial scales (smaller and
adequate to the target species), altogether with the incorporation of biotic predictors in the
models [48], will be necessary to have more real portraits of species ranges under global
change scenarios. Indeed, the application of occupancy models allowed to predict changes
on the spatial distribution of the species in such a large and heterogeneous area, owing
to the predicted changes in habitat suitability during a relatively short period (10 years).
The models showed that the greater white-toothed shrew displayed contrasting trends that
shifted at relatively small spatial scales. Some actions aimed at the conservation of open
land increased the favorability for shrews and many other related species [49]. Indeed,
expanding ranges in the north could be associated to the successful application of policies
related to the recovery of crops and management of forests affected by wildfires [19]. These
actions produced that natural afforestation and scrubland encroachment processes were
stopped or reversed, at least in some areas. On the other hand, natural parks from the
NE were mostly unsuitable for shrews due to high forest cover and strong processes of
afforestation and scrubland encroachment. Interestingly, in the SW, an area especially
suitable for shrews owing to the high surface of scrubland available, we realized a pre-
dicted small loss of occupancy due to an overall decline in habitat suitability. Still, this
area continues having one of the most abundant and persistent populations of shrews.
Despite the predicted patterns of occupancy change were consistent with what can be
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expected owed to the habitat preferences of the shrew, we are aware about the relatively
spatially reduced sample (n = 19 plots) used to make inferences on the occupancy for the
whole study area. Moreover, we were concerned about the possibility of biased landscape
changes at the periphery of the natural parks when changes occurred outside the protected
areas. This can be important in small natural parks showing extensive boundaries with
human-altered landscapes (e.g., urban areas and crops).

Theoretical models predicted direct relationships between abundance and habitat
suitability [48], and our results confirmed that scrublands were high-quality habitats for
shrews, holding higher mean abundance and occupancy, which in turn sustained popula-
tions with lower extinction rates and higher colonization rates [14,43]. On the other hand,
broad-leaved forest showed the opposite, and in general, some population parameters
declined along gradients of vegetation structural complexity from open to forest habitats.
Nonetheless, habitat quality can be further affected by other landscape factors such as the
isolation or connectedness of the habitat patches [10] that will surely affect dispersal and
other population parameters under the source-sink dynamics typical of a metapopulation
systems [48]. Indeed, our results indicated the particular case of pinewoods of P. halepensis,
a habitat showing intermediate favorability between scrubland and broad-leaved forests
regarding vegetation structure but suffering larger landscape change and fragmentation
than the other plots. Being aware of the low sample size, the models predicted a decline of
species occupancy due to low colonization rates caused by strong landscape change around
pinewood plots. These pinewoods represent a special case of forest fragmentation caused
by the opposite processes of land abandonment and wildfires [33,50,51], further influenced
by strong edge effects and anthropogenic disturbances [52]. Small and isolated patches of
pinewoods are almost the only representative forest habitat in the SW of the study area,
probably producing a concentration of forest predators and competitors at higher rates
than in continuous non-fragmented woodland of the NE.

Afforestation is a natural process resulting from the loss of traditional land uses and
land abandonment in natural areas [53] and can be considered as one of the main conser-
vation problems for biodiversity conservation in the Mediterranean basin. Nonetheless,
afforestation and scrubland encroachment can counteract the effects of climate change by
favoring more mesic microclimatic conditions under vegetation cover [54], and the rewild-
ing process (e.g., restoring natural ecosystems processes through ecological succession, [55])
will have several additional benefits, such as the increase of bird populations associated
to northern climates [45] and the increase of predators (birds of prey and carnivores, [55]).
Negative effects on open-land species such as those documented here, and likely indirect
effects linked to increased likelihood of large wildfires impossible to extinguish [8], can
however counteract these positive effects. Fighting against this process is challenging
and can be considered a wicked problem without a clear solution [56]. The management
of protected areas is becoming more challenging with advancing climate change (and
landscape change) and management techniques need to be adapted to particular current
conditions [57]. However, reversing landscape change effects could be far beyond the
power of the managers of Mediterranean protected areas, even considering the increasing
impact of wildfires in the present context of climate change [18].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life12081230/s1, Table S1: Pearson correlations of 12 LiDAR variables (measured on 19 sam-
pling plots) with the four first principal components (PCs) extracted from the PCA. The first PC (PC1)
had significant correlations with nine out of 12 LiDAR variables, and the second (PC2) had four
significant correlations.
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