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Abstract: Many approaches to time series classification rely on machine learning methods. However,
there is growing interest in going beyond black box prediction models to understand discriminatory
features of the time series and their associations with outcomes. One promising method is time-
series shapelets (TSS), which identifies maximally discriminative subsequences of time series. For
example, in environmental health applications TSS could be used to identify short-term patterns in
exposure time series (shapelets) associated with adverse health outcomes. Identification of candidate
shapelets in TSS is computationally intensive. The original TSS algorithm used exhaustive search.
Subsequent algorithms introduced efficiencies by trimming/aggregating the set of candidates or
training candidates from initialized values, but these approaches have limitations. In this paper, we
introduce Wavelet-TSS (W-TSS) a novel intelligent method for identifying candidate shapelets in TSS
using wavelet transformation discovery. We tested W-TSS on two datasets: (1) a synthetic example
used in previous TSS studies and (2) a panel study relating exposures from residential air pollution
sensors to symptoms in participants with asthma. Compared to previous TSS algorithms, W-TSS
was more computationally efficient, more accurate, and was able to discover more discriminative
shapelets. W-TSS does not require pre-specification of shapelet length.

Keywords: shapelets; wavelets; time series mining; time series classification; pattern discovery

1. Introduction

Time series classification methodology is of growing interest in health research, espe-
cially given recent advances in sensor technology. For example, environmental health re-
searchers may be interested in using daily exposure time series to distinguish between days
a study participant does or does not report respiratory symptoms. Many time series classi-
fication methods distinguish between classes using global summary statistics (e.g., mean,
standard deviation) or global shapes (e.g., dynamic time warping methods) [1,2]. However,
there may be discriminative local shapes (e.g., peaks in exposure indicating proximity to a
source) missed by methods using global summaries. One promising method using local
features is time series shapelets (TSS), first introduced by Ye and Keogh [3]. Shapelets are
defined as maximally discriminative subsequences of a set of labelled time series. TSS
classifies time series based on similarity to local shapes and has the potential to outperform
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other state-of-the-art time series classifiers using global features, especially in applications
with discriminative local shapes and in the presence of general noise and distortion [4].

Shapelets have only recently been applied to studies of human health, with applica-
tions including identification of: temporal patterns (over months) of regional PM2.5 and
PM10 related to US counties with higher or lower lung cancer incidence [5], temporal
patterns (over hours) of heart rate, respiratory rate, and systolic blood pressure predictive
of the severity of future sepsis events in ICU patients [6], and temporal patterns (over
hours) in sequential organ failure assessment score related to mortality in ICU patients [7].
The discriminative local shapes identified by TSS have the potential to be of scientific
interest (e.g., peaks related to exposure to air pollution sources).

TSS algorithms can be summarized by the following basic steps: (1) identify a can-
didate shapelet S defined as a contiguous time series subsequence of length L starting at
position i, which can be written as S = ti, ti+1, . . . , ti+L−1, (2) calculate the Euclidean
or dynamic time warping distance between S and all possible subsequences of the same
length from each time series in the training data, (3) calculate the minimum distance be-
tween S and all subsequences of the same length from a given time series T, (4) repeat
steps 1-3 for many candidate shapelets, (5) use the minimum distances to the large set
of candidate shapelets as features and build a machine learning model (e.g., tree-based
classifier) to discover the most important features (i.e., shapelets) for predicting the class of
each time series.

Identifying shapelets is the most computationally intensive aspect of TSS algorithms
due to the huge number of potential candidate shapelets of a given length L, and the even
larger number when L is tuned. Using exhaustive search to discover shapelets with a
given length L requires examination of (ATL + 1 − L)n candidate shapelets, where ATL
denotes the average total length of all time series and n is the number of time series.
For example, in a dataset with 1000 time series each of length 1440 (number of minutes
in a day), there would be 1.381 million potential candidate shapelets of length 60 and
1.421 million potential candidate shapelets of length 20. Previous efforts to speed up
shapelet discovery can be summarized into three categories: (1) upscaling the time series
by aggregating some continuous timestamps of the time series to reduce the average
total length (e.g., using symbolic aggregate approximation (SAX) to convert the time
series and then using the SAX conversions to calculate the similarities and to find the
shapelets [8]), (2) using a certain threshold to prune or sample from the shapelet candidates
(e.g., [9] proposed a fast shapelet discovery algorithm based on important data points
(IDPs) and only the subsequence containing one or more identified IDPs will be selected as
a candidate shapelet), (3) building neural networks or other learning approaches to learn
the shapelets with learning objectives of minimizing the distances between the time series
and the candidate shapelets [10–13]. In the third method, the final shapelets are no longer
actual subsequences of observed time series in the training data, but rather optimized
sequences based on either actual subsequences or cluster centers of actual subsequences
(e.g., k-means cluster centers).

These fast shapelet discovery algorithms each have limitations. For example, upscal-
ing/aggregating methods may lose temporal details due to the coarser temporal granu-
larities, pruning/sampling methods have larger chance of missing the real underlying
maximally discriminative shapelets, and learning methods can be sensitive to the initial
values of the candidate shapelets. Additionally, all these methods rely on the proper tuning
of the hyperparameter L (shapelet length). To discover the most discriminative subse-
quences of the time series, various lengths of shapelets need to be tested. In this study, we
propose a novel approach (W-TSS) that leverages wavelet transformations to intelligently
and quickly discover shapelets of various lengths. We tested W-TSS in three case studies
with increasingly difficult classification tasks: (1) discriminating four classes of synthetic
time series from the UCR Time Series Archive [14], (2) discriminating indoor vs. outdoor
PM2.5 time series from measurements made at the residences of participants in a pediatric
asthma panel study conducted by our research group, and (3) in the same panel study dis-
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criminating days with vs. without asthma inhaler usage based on residential indoor PM2.5

time series. In Section 2, we describe the proposed automated method combining wavelet
transformations, extraction of candidate shapelets, and machine learning predictions. In
Section 3, we compare W-TSS with learning TSS in Task 1 and examine the performance of
W-TSS in Tasks 2 and 3. In Section 4, we discuss the strengths and limitations of W-TSS.

2. Materials and Methods
2.1. Learning TSS

We will use learning TSS as a comparator to W-TSS, so we briefly summarize the
learning TSS algorithm proposed by Grabocka et al. [13]. Learning TSS focuses on learning
a local discriminative pattern rather than identifying it through search. The algorithm
begins with an initial guess of the shapelets, which could either be arbitrary values or
results from preliminary data exploration (e.g., k-means cluster centers from a sample
of subsequences of the pre-specified length). The number of shapelets to be initialized
and their length are set as hyperparameters. At each step of the algorithm, we calculate
a Soft-Minimum Distance matrix (M) between each of the current shapelets and each of
the observed time series. The distance between a shapelet and a time series is defined as
the minimum distance between the shapelet and all sliding window segments of that size
from that time series. Then M is used to predict the time series classes in a regularized
linear model. A stochastic gradient descent algorithm is used to calibrate (update) the
shapelets as weights, and the algorithm repeats until convergence. Figure 1 demonstrates
the iterative process of learning TSS. The upper left panel shows an observed time series
(from the TRACE data, described later) in blue, and the best matching locations of eight
shapelets (multiple colors), four with fixed length of 25 and four with fixed length of
50. The upper right panel zooms into a subsequence of the original time series, and the
lower panels demonstrate, for three selected shapelets, the step-by-step progression from
initialized values (blue) to final values (red) in the learning TSS algorithm. Note that all
three of these shapelets contain a sharp decreasing shape which matches with the decrease
in the observed time series at time ~217.

Figure 1. Example of applying Grabocka’s learning TSS method to identify 8 shapelets in the TRACE
data. The bottom three subplots demonstrate the step-by-step learning of three selected shapelets,
with blue denoting the initial value and red denoting the final trained value of the shapelets.

2.2. Wavelet-Based Discovery for TSS (W-TSS)

The wavelet transform is a signal processing method developed as a localized alter-
native to the Fourier transform [15]. The Fourier transform identifies global frequencies
using sums of infinite sinusoidal functions and can perform poorly in time series with
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certain characteristics, including discontinuities and sharp spikes. In contrast, the wavelet
transform identifies local frequencies present in a time series and the time at which these
frequencies occurred. The wavelet transform has proven very useful in analyses of time
series with brief characteristic oscillation (e.g., electrocardiography (ECG)) [16]. Wavelets
are functions constructed with specific mathematical properties which begin and end at
zero, with a brief wave-like oscillation in between. For example, the Morlet wavelet as a
member of continuous wavelets mathematically is composed of a complex exponential
function multiplied by a Gaussian window. In comparison, Daubechies wavelet as one
of the most used discrete wavelets is based on the use of recurrence relations to generate
progressively finer discrete samplings from an implicit mother wavelet function. Examples
of some iconic wavelet functions are shown in Figure 2.

Figure 2. Examples of wavelet functions that are discrete (top row) or continuous (bottom row).

A wavelet transformation can be written in the following general form:

Y(a, b) =
1

a1/2

∫ ∞

−∞
X(t)×

(
t− b

a

)
dt (1)

where ¦× is the wavelet function which gets scaled by factor a and translated by factor
b, Y is the transformed time series, and X is the original time series. The scale factor a is
inversely proportional to the frequency of the wavelet function and has a similar meaning
to period, commonly used in other time series analysis. Conversion to pseudo-frequencies
is possible by taking: fa = fc/a, where fa is the pseudo-frequency, and fc is the central
frequency of the wavelet function. Wavelet function families are divided into continuous
(as examples shown in the bottom row of Figure 2) and discrete (as examples shown in
the top row of Figure 2) based on whether the scale can be decimal numbers. For discrete
wavelet transformation, the scale factor a increases by powers of two (e.g., a = 1, 2, 4,...)
and the translation factor b increases by integer values (e.g., b = 1, 2, 3,...). Since all wavelet
functions must be finite in energy, there always exists a “window” of non-zero magnitude
in the wavelet function. The translation factor b is how far we slide the “window” from the
starting of the time series. Different wavelet functions have their own unique suitability to
examine different types of abrupt changes that occur in the signals.

The wavelet transforms outputs both frequency-domain and time-domain information.
This is accomplished by working with a set of different scales (a) from large to small.
A scalogram is a representation of the 2-dimensional time-scale output of the wavelet
transformation of a 1-dimensional signal. Figure 3 shows scalograms for four different
wavelet transformations (top four panels) applied to a single time series from the TRACE
dataset (bottom panel). Note that the time series is generally flat with a single large increase
centered at time ~100, with a total duration of ~20. If we pick a scale and segment the time
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series according to its scalogram power (higher power indicated by red in Figure 3), we
can find subsequences where the time series has high energy of that scale. For example, all
four wavelet functions in Figure 3 identify high power for low scale signals (~32) occurring
near time 100, though the Mexican Hat and Morlet wavelet function identify the low scale
on either side of 100 while Gaussian and Complex Gaussian identify the low scale signal
at ~100. By picking a scale of 32 in Figure 3, we find subsequences corresponding to
where the time series increased at time ~100. For the Morlet and Mexican Hat wavelet
transformations, we would have ~2 subsequences clipped near 100 for candidate shapelets,
whereas for the Gaussian and Complex Gaussian transformations, we would have a single
subsequence. This result highlights the importance of trying different wavelet function.

Figure 3. Scalogram representation of the 2-dimensional time-scale output of four different wavelet
transformations (top four panels) of a single time series (bottom panel) from the TRACE dataset.
The red color shows where the power of the transformed signal is concentrated.
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This intuition motivates our approach for W-TSS. To automate the process of extracting
subsequences with high energy at the identified scales for W-TSS, we convert the scalogram
to a binary image containing only 0′s and 1′s according to the following procedure: (1) for a
given scale, standardize the power values of the transformed time series, (2) set a threshold
hyperparameter (1 as default, but could be modified), and (3) dichotomize the scalogram
with 0 indicating the standardized value < threshold and 1 indicating≥ threshold. Based on
the dichotomized scalogram, we extract the subsequences of 1s, which represent the parts
of the time series having higher energy at the selected scales. To minimize the inclusion of
short subsequences arising from noise, we also set a minimum length threshold to remove
subsequences with insufficient length. This is especially important with small scales which
have the potential to introduce many candidates from random noise. With the extracted
subsequences from the binary scalogram, we created the initial pool of W-TSS candidate
shapelets. Based on the size of the initial pool, we could either directly use all candidate
shapelets or reduce the number of candidate shapelets (Figure 4 shows the workflow chart
of selecting shapelets using W-TSS).

Figure 4. Workflow chart of applying W-TSS to select shapelets.

In the following data analysis sections, we implemented W-TSS using: complex
Gaussian wavelet functions, two selected scales (based on visualization of scalogram),
minimum length of 3 to filter out noises; and reduced the number of resultant candidate
shapelets using two simple methods: a variant of k-means clustering or by filtering out
low variation shapelets. Similar to other TSS-based algorithms, we finally built machine
learning models using input features based on Euclidean distances (future work could
use DTW) between the final TSS and the input time series. For the simple synthetic data
example in Section 3.1 we used a multiclass logistic regression model. For the more complex
real data analyses in Sections 3.2.1 and 3.2.2, we used a gradient boosted trees classifier
(Xgboost) [17]. Key hyperparameters and their tuning ranges are listed in Table A1.

2.3. Datasets

Synthetic TRACE dataset from UCR Time Series Archive. The TRACE dataset contains
four classes of synthetic time series designed to simulate instrumentation failures in a
nuclear power plant [18]. Each class of time series has unique local discriminative patterns,
but with shifts in the exact timing of the local patterns for each time series in a given class
(Figure 4). The length of each time series is 275. There are 100 time series in the training
dataset and 100 time series in the test dataset, roughly balanced by class.

Pediatric Research Using Integrated Sensor Monitoring Systems (PRISMS) dataset
from the Utah Informatics Platform Center. A panel study of 10 participants with asthma
(ages 5-51, four children and six adults) in seven households near Salt Lake City, Utah was
conducted from April 2017 to April 2018. The study was approved by the University of
Utah Institutional Review Board (IRB) with study number IRB_00086107. The original
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approval dated 28 April 2016, and the study maintained ongoing approval with the most
recent approval on 21 March 2020. Data were shared as per the PRISMS Consortium Data
Use Agreement with the University of Southern California and other PRISMS collaborators.
Participants signed informed consent documents that included sharing the data used in
this analysis. Particulate matter air pollution less than 2.5 microns in aerodynamic diameter
(PM2.5) was measured both inside and outside of each household. Both indoor and outdoor
PM2.5 were collected by the deployed sensors (commercial Dylos Corporation particle
counters, modified to include sensors for humidity and temperature, and to include wi-fi
communications). The conversion of particle counts to mass concentrations (in µg/m3)
followed rules suggested previously [19]. We then separated the sensor signals into daily
time series, with each day starting at 8 p.m. (the approximate time of the patients to take
the questionnaires) and ending at 8 p.m. the next day. Participants (or their guardians, for
some child participants) from these households were asked to submit daily questionnaires
about their asthma symptoms and medication usage in the past 24 h, including frequency
of use of rescue medication (“How often did you use an albuterol or Xopenex inhaler or
received a nebulized treatment in the last 24 h?”). There were 823 days with complete data
for indoor and outdoor minute-level PM2.5 exposure time series and asthma medication
use. In Section 3.2.1, we discriminated between indoor vs. outdoor PM2.5 time series (each
day treated as a separate 24 h-long time series). In Section 3.2.2, we discriminated between
days with and without rescue medication use based on the corresponding 24-h residential
indoor PM2.5 time series before the daily submitted questionnaires. For each PRISMS data
application, we randomly selected 33% of days for holdout test data (311 testing data
samples in Section 3.2.1 and 272 testing data samples in Section 3.2.2). We used random
five-fold cross validation to train the model and evaluated performance of the final model
in the test data.

3. Results
3.1. Synthetic TRACE Dataset

Applying W-TSS with scales of 32 and 64 to the TRACE dataset produced candidate
shapelets of various lengths (Figure 5, right panel). There were clearly different groups of
candidate shapelets, and each group appeared to represent an iconic local shape from the
four time series classes.

Figure 5. Time series from the four classes in the synthetic TRACE dataset (left panels) and the initial set of candidate
shapelets identified by W-TSS (right panel). X-axis: time, Y-axis: risk of instrumentation failures.
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While it could be feasible to input all candidate shapelets into a prediction model
which can handle high dimensional data, the clear groupings of the candidate shapelets
suggested that preliminary dimension reduction would be reasonable and would likely
improve interpretation. We reduced the number of candidate shapelets using global
alignment kernel k-means [20], with the number of clusters arbitrarily set to k = 12. Our
final set of candidate shapelets were the center lines of the 12 resultant clusters (Figure 6).

Figure 6. Final set of 12 shapelets for W-TSS in the TRACE dataset, identified as the center lines (red) from global alignment
kernel k-means clustering results on the W-TSS candidate shapelets, with time series members (grey solid line) and
centerlines (red dash line). X-axis: time, Y-axis: risk of instrumentation failures.

The minimum distances of each time series to each of the 12 shapelets were used
as features in a multiclass logistic regression model fit to the training dataset. In the test
dataset, time series from all four classes were perfectly classified (Table 1).

Table 1. Confusion matrix for predicting the four types of TRACE time series, with F1 score.

Test N = 100 True Class 1 True Class 2 True Class 3 True Class 4 Total

Predicted class 1 24 0 0 0 24
Predicted class 2 0 29 0 0 29
Predicted class 3 0 0 28 0 28
Predicted class 4 0 0 0 19 19

Total 24 29 28 19 F1 = 1

The synthetic TRACE data is well-suited to TSS applications, and both W-TSS and
learning TSS were highly accurate. Grabocka et al. have previously applied learning TSS to
the TRACE data and reported a test accuracy of 98% [13]. However, the shapelets identified
by W-TSS better matched the iconic local patterns of the four time series classes than did
the shapelets identified by learning TSS (Figure 7). Each of the W-TSS shapelets closely
matched a subset of classes of time series and poorly matched other classes, indicating
better discriminative ability, whereas the shapelets by learning TSS are more randomly
matched to places of the original timeseries
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Figure 7. Shapelets (in red) discovered in the TRACE dataset by W-TSS (left) and learning TSS (right), displayed at the best
matching location of an example time series (in blue) from each of the four classes.

3.2. PRISMS Dataset from Pediatric Asthma Study

Unlike the synthetic TRACE data, the real-world PRISMS PM2.5 data show much
more variation in both global and local patterns, posing a greater challenge for the classifi-
cation tasks.

3.2.1. PRISMS: Daily Indoor PM2.5 vs. Outdoor PM2.5 Time Series

The set of daily outdoor PM2.5 time series had higher variation and fewer apparent
baselines than the set of indoor PM2.5 time series (Figure 8).

Figure 8. The 823 daily indoor (left) and outdoor (right) PM2.5 time series, each 1440 min long
(24 × 60), with the PM values scaled to min-max to plot on a unit interval.

After applying W-TSS with scales of 256 and 512, we extracted a total of 6179 candidate
shapelets: 2983 from indoor PM2.5 time series and 3196 from outdoor PM2.5 time series
(Figure 9, top panels). Alternatively, a brute force method using two fixed lengths of 256
and 512 would have produced 975,255 candidate shapelets of length 256 for both indoor
and outdoor PM2.5 and 764,567 candidate shapelets of length 512 for both indoor and
outdoor PM2.5. W-TSS rapidly identified <0.2% of those total possible candidate shapelets,
dramatically reducing computational load.
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Figure 9. W-TSS shapelets for the PRISMS indoor and outdoor PM2.5 time series, before filtering
(top row) and after filtering (bottom row).

However, 6,179 candidate shapelets is still a large number of input features, especially
given that the training data has much less (1646) time series. Reducing the number of
candidate shapelets using clustering methods (e.g., global alignment kernel k-means) would
not be appropriate here given the large variation in shapes. However, we noticed that many
of 6,179 candidate shapelets were quite “flat”, with similar levels in both classes. Hence,
we decided to filter by removing low variation candidate shapelets. We arbitrarily chose a
threshold on the candidate shapelet variance which retained 20 candidate shapelets from
the outdoor PM2.5 time series. Applying this same threshold to the indoor data retained 59
candidate shapelets from the indoor PM2.5 time series (Figure 9, bottom panels). Filtering by
variance may have eliminated some truly discriminatory shapelets, but in this application we
were more interested in high-variation shapelets. Future analyses might consider combining
the unsupervised W-TSS candidate shapelet discovery with other supervised TSS discovery
methods. An Xgboost model, using minimum distances to the 79 shapelets (59 indoor, 20
outdoor) as input features, perfectly classified the test data (Table 2).

Table 2. Confusion matrix for predicting indoor PM2.5 vs. outdoor PM2.5, with F1 score.

Total Days = 544 True Indoor PM2.5 True Outdoor PM2.5 Total

Predicted Indoor PM2.5 266 0 266
Predicted Outdoor PM2.5 0 278 278

Total 266 278 F1 = 1

Feature importance of the top-10 shapelets is shown in Figure 10 (Figure A1 in
Appendix A shows feature importance of all the shapelets). Shapelets were assigned
numerical names according to the ranking of the shapelets’ variance from 0 to 78, with a
low number indicating larger variance. The most important shapelets were neither the
most nor the least variable (e.g., variance ranking of the top six shapelets was 11 to 48). The
top six shapelets (Figure 11, top panels) represented transient spikes in PM2.5 (Shapelets 11
and 13), a transient spike followed by a gradual decline (Shapelet 48) and sharp increases
(Shapelets 30, 35, 31). Partial dependence plots (Figure 11, bottom panels) indicated that
PM2.5 time series with close matches to each of these top six shapelets had a higher proba-
bility of being from the indoors (vs the outdoors). We inspected the top six shapelets and
confirmed that they had all been identified from indoor PM2.5 time series. Given these
results (top shapelets coming from indoors time series and perfect classification in test
data), we conclude that in the PRISMS data indoor PM2.5 time series tend to display unique
discriminative local patterns not observed in outdoor PM2.5 time series.
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Figure 10. Feature importance for top-10 W-TSS shapelets in predicting indoor vs. outdoor time
series PM2.5 in PRISMS.

Figure 11. Top 6 shapelets predicting indoor vs. outdoor PM2.5 in PRISMS. Top panels display the
shapelets along with their feature importance and bottom panels display partial dependence plots
with x-axes representing the minimum distance to the shapelet and y-axies representing predicted
probability of indoor (vs. outdoor).

3.2.2. PRISMS: Daily Indoor PM2.5 Time Series with and without Rescue Medication Usage

Rescue medication use was reported on 60 (7.3%) of the 823 days. There were no
obvious differences between residential indoor PM2.5 time series with and without rescue
medication usage (Figure 12).

After applying W-TSS with scales of 256 and 512, we extracted 2815 candidate
shapelets from indoor PM2.5 time series on the 763 days without rescue medicine use,
and 168 candidate shapelets from the 60 days with use (Figure 13, top panels). The im-
balance in the number candidate shapelets was due to the imbalance in rescue medicine
use days. In addition, note that the 2815 plus 168 candidate shapelets are the same as
the 2983 candidates for indoor PM2.5 from Section 3.2.1 since the settings of our unsu-
pervised W-TSS discovery algorithm were the same. To reduce the size of the set of
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candidate shapelets, we again applied a variance filter selecting a threshold to retain at
least 20 candidate shapelets with high variation in the minority class (days with rescue
medicine use). Applying the same filter to days without rescue medicine use retained
38 candidate shapelets (Figure 13, bottom panels). Note that our simple approach to de-
termining a filtering threshold is supervised and could be substituted by more complex
supervised methods.

Figure 12. Daily indoor PM2.5 time series from the 763 days without rescue medicine use (left) and
the 60 days with rescue medicine use (right). Each time series is 1440 min long and the PM values
have been min-max scaled to lie on the unit interval.

Figure 13. W-TSS shapelets from indoor PM2.5 time series before filtering (top row) and after filtering
(bottom row) for days without rescue medicine use (left) and days with use (right).

The Xgboost model using minimum distance to the 58 shapelets as input features
had relatively poor performance in the test dataset, with an F1 score of 0.26 and only four
out of 12 rescue medicine use days correctly classified (Table 3). Figure 14 shows the
feature importance of the top-10 shapelets (Figure A2 shows feature importance of all the
shapelets). The top six shapelets all represented patterns of quick to more gradual increases
in PM2.5 concentrations of at least an hour in duration (Figure 15, top panels). Partial
dependence plots (Figure 15, bottom panels) only showed a clearly increased probability of
a rescue medicine use on days with close matches to Shapelet 42, which was the shapelet
with the highest feature importance. Additionally, the minimum distances of the time series
from the shapelets were small (<0.02) compared to what was observed in Section 3.2.2
(between 0 and 10), suggesting that all the time series have a relatively close match to
the top shapelets. This likely indicates the lack of a single discriminative local pattern for
rescue medication use, and partially explains the poor prediction performance.
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Table 3. Confusion matrix for predicting daily indoor PM2.5 time series with vs. without rescue
medicine use, with F1 score.

Total Days = 272 True Use Days True no Use Days Total

Predicted use days 4 15 19
Predicted no-use days 8 245 253

Total 12 260 F1 = 0.26

Figure 14. Feature importance for top-10 W-TSS shapelets predicting days with and without inhaler
use in PRISMS.

Figure 15. Top 6 shapelets predicting days with vs. without rescue medication in PRISMS based on
residential indoor PM2.5 time series. Y-axis of partial independence plots: predicted probability. Red
label in shapelet plots: feature importance value. Top panels display the shapelets along with their
feature importance and bottom panels display partial dependence plots with x-axes representing the
minimum distance to the shapelet and y-axies representing predicted probability of rescue medication
use (vs. no use).

4. Discussion

In this study, we demonstrated in the synthetic TRACE dataset that W-TSS produced
a reasonably sized set of candidate shapelets (<0.2% of the brute force method) and led to a
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set of final shapelets which more closely matched the discriminative iconic local patterns
and had better (perfect) accuracy than learning TSS. In the PRISMS panel study data,
W-TSS was able to perfectly predict indoor vs. outdoor PM2.5 daily time series. In the
more challenging application of identifying days with rescue medication use using daily
residential indoor PM2.5 time series, W-TSS identified patterns of exposure (even though
not discriminating), which could be investigated in future studies. The association between
asthma rescue medicine use and residential indoor PM2.5 is complex and careful study
of this association requires accounting for potential confounding variables and exposure
misclassification, including time spent away from home. It is not expected that indoor
PM2.5 can perfectly predict asthma medication use, but the patterns of PM2.5 discovered by
the data-driven W-TSS method are suggestive of indoor sources and are of scientific interest.

In many applications with small number of data samples, it may make sense to filter
the initial set of candidate shapelets produced by W-TSS before they are input as features
in machine learning algorithm for predicting the time series classes. We implemented
two such methods: a variant of k-means clustering (global alignment kernel k-means) to
find common representative shapelets and a simple filter to remove shapelets with low
variance. When implementing the k-means clustering, the number k of clusters must be
specified in advance. Thus, there would be risks of the chosen number k not reflecting the
data. Moreover, as a nonparametric algorithm, the outcomes depend on the initial cluster
centers. To over the challenges, a useful heuristic is to use several random initial center
assignments and select the best result according to some criteria, e.g., using the intraclass
inertia or using hierarchical clustering algorithm in conjunction with k-means [21]. Other
reduction methods could also be applied (e.g., removing highly correlated shapelets or all
the initial W-TSS candidate shapelets could be input into a machine learning algorithm
tailored for supervised feature selection). The W-TSS approach for candidate shapelet
discovery could also be combined with features of other TSS methods. For example, W-TSS
candidate shapelets could be pro-vided as initial values in the learning TSS algorithm.

Besides of wavelet transformation, there are other popular time-frequency decomposi-
tion methods for processing time series, e.g., Short-Time Fourier Transform, Hilbert–Huang
Transform, Constrained Least-Squares Spectral Analysis, and Least-Squares Wavelet Anal-
ysis [22]. Future work will focus on evaluating different time-frequency decomposition
methods, providing more accurate and reliable estimates of change or breakpoint detection
especially in non-stationary time series, as well as more intelligent methods to choose scales
based on the time-frequency decomposition (e.g., the scalogram). Future work will also in-
volve extraction of multivariate patterns for the needs of using complex high-dimensional
temporal data to support health care decisions. A promising future investigation will
combine W-TSS with existing multivariate shapelets discovery algorithms based on fast
shapelets discovery algorithms [23] to more efficiently identify multivariate shapelets.

5. Conclusions

This study focused on extraction of univariate interpretable patterns from time se-
ries and developed the novel W-TSS approach for unsupervised discovery of candidate
shapelets for TSS using wavelet transforms with key acronyms listed in Table A2. Dis-
covering the localized temporal patterns could be extremely important in many realms
(i.e., environmental health) that needs to associate timeseries data with sparse outcomes.
Compared to the other methods, the advantages of W-TSS include: (1) no loss of time reso-
lution compared to the other TSS algorithms using aggregation/upscaling, (2) the initial
candidate shapelet discovery is unsupervised leading to greater computational efficiency
since there is no need to run a machine learning model, and (3) no need to pre-specify
the length of the candidate shapelets. Even though the wavelet function and scales do
need to be specified, but these can be informed through examination of the scalogram.
The examination of several wavelet functions and several different randomly selected
scalograms is recommended, but this procedure is still less time consuming than tuning
the fixed lengths of the candidate shapelets. In summary, W-TSS offers a computationally
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efficient unsupervised method for automatic discovery of candidate shapelets of different
lengths in TSS without degrading temporal resolution.
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Appendix A

Table A1 described the hyperparameters that we used in the Xgboost models of Section 3.2
and their tuning ranges. Table A2 summarized and described the acronyms and abbreviations
that we used in this paper. Figures A1 and A2 showed the feature importance of all the W-TSS
shapelets in the prediction models of Section 3.2.

Table A1. Xgboost hyperparameters and tuning ranges for PRISMS data analyses.

Hyperparameter Name Description Tuning Range

n_estimators Number of gradient boosted trees. Equivalent to number of
boosting rounds. Randomly picked from 150 to 500 in each run.

learning_rate Boosting learning rate. Uniformly picked from 0.01 to 0.07 in each run.
subsample Subsample ratio of the training instance. Uniformly picked from 0.3 to 0.7 in each run.
max_depth Maximum tree depth for base learners. 3;4;5;6;7;8;9.

colsample_bytree Subsample ratio of columns when constructing each tree. Uniformly picked from 0.45 to 0.5 in each run.
min_child_weight Minimum sum of instance weights needed in a child. 1;2;3.
scale_pos_weight Balancing of positive and negative weights. 1 for Section 3.2.1; 12.05 for Section 3.2.2.

Table A2. List of abbreviations and acronyms used in this paper.

Abbreviation Description

TSS Time series shapelets

W-TSS Wavelet-based time series shapelets discovery algorithms

PRISMS Pediatric Research Using Integrated Sensor Monitoring Systems

TRACE A Synthetic dataset from University of California Riverside Time Series Archive

Xgboost An implementation of gradient boosted decision trees named eXtreme Gradient Boosting

SAX Symbolic aggregate approximation

IDP Important data points
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Figure A1. Feature importance for W-TSS shapelets in predicting indoor vs. outdoor time series PM2.5 in PRISMS.

Figure A2. Feature importance for W-TSS shapelets predicting days with and without inhaler use in PRISMS.
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