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Recherche Médicale (INSERM),

France

Reviewed by:
Herve Le Stunff,
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Diabetic kidney disease (DKD) is a prevalent and progressive comorbidity of diabetes
mellitus that increases one’s risk of developing renal failure. Progress toward development
of better DKD therapeutics is limited by an incomplete understanding of forces driving and
connecting the various features of DKD, which include renal steatosis, fibrosis, and
microvascular dysfunction. Herein we review the literature supporting roles for bioactive
ceramides as inducers of local and systemic DKD pathology. In rodent models of DKD,
renal ceramides are elevated, and genetic and pharmacological ceramide-lowering
interventions improve kidney function and ameliorate DKD histopathology. In humans,
circulating sphingolipid profiles distinguish human DKD patients from diabetic controls.
These studies highlight the potential for ceramide to serve as a central and therapeutically
tractable lipid mediator of DKD.
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INTRODUCTION

Diabetes is the global leading cause of chronic kidney disease (CKD) and end-stage renal disease
(ESRD) (1, 2). An estimated 30–40% of patients with type 1 and type 2 diabetes develop CKD
throughout the course of their disease (3, 4). Improvements over the last decades in the treatment of
diabetes to improve blood glucose control (i.e. continuous blood glucose monitoring) have led to a
general decrease in diabetes-related complications. However, kidney disease and failure have
persisted as primary drivers of excess morbidity and mortality in diabetic patients (5, 6).
Importantly, increases in diabetes and obesity prevalence are responsible for the projected
increase in all-cause ESRD incidence in the United States (7).

Diabetic kidney disease (DKD) is thought to result from a progression of systemic and local
insults, clinically represented by impaired renal function with or without elevated urinary albumin
excretion (8, 9). Current DKD prevention and treatment strategies primarily target glycemic and
hypertensive control; however, these therapeutic options are only capable of modest delays in
disease progression toward renal failure (4). A deeper understanding of kidney-specific DKD disease
mechanisms and development of more targeted therapeutics to meaningfully slow or halt disease
progression are urgently needed. Investigations in human and animal studies have characterized
glomerular and tubulointerstitial hypertrophy, inflammation, and sclerosis as key disease processes
of DKD. Exciting evidence has qualified sphingolipids as potential drivers of renal pathology, with
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implicated roles in multiple features of DKD including
altered lipid metabolism, insulin resistance, mitochondrial
dysfunction, fibrosis, apoptosis, and vascular damage. The
purpose of this review is to present relevant findings
supporting the role of sphingolipids, with a focus on ceramide,
in kidney-specific pathologies.
SPHINGOLIPID METABOLISM

Sphingolipids make up a non-abundant, yet highly diverse, lipid
class. The central metabolites of sphingolipid metabolism,
ceramides, are produced via a de novo synthesis pathway in
the endoplasmic reticulum (ER). Ceramides are subjected to
further processing in the Golgi apparatus to produce complex
sphingolipid molecules such as glycosphingolipids and
sphingomyelins (SM). Importantly, dynamic breakdown and
salvaging of select sphingolipids can also contribute to the re-
synthesis of ceramides. As a whole, the sphingolipid pool
influences cell membrane dynamics as well as cell growth,
function, and programmed death (10). Studies manipulating
enzymes involved in sphingolipid synthesis and metabolism
continue to provide valuable information regarding the roles of
sphingolipid flux and signaling in metabolism and disease.

De novo synthesis of ceramide begins in the endoplasmic
reticulum with the condensation of an amino acid (i.e. L-serine)
with an acyl-CoA (i.e. palmitoyl-CoA) to form a sphingoid
backbone, a reaction that is catalyzed by serine palmitoyl
transferase (SPT) (11). A family of six enzymes termed
(dihydro)ceramide synthase (CERS1-6) adds a second, variable
acyl group to sphinganine to form the dihydroceramides. The
CERS enzymes are distinguishable by their substrate specificity
and tissue distribution. CERS5 and 6 are upregulated by stress
stimuli and promote the incorporation of long-chain (e.g. C16)
acyl groups, which produce the deleterious C16-ceramides often
implicated in metabolic dysfunction (12–19). Alternatively,
CERS2 is more ubiquitously expressed, with particularly high
expression in the kidney and liver. This enzyme produces very-
long-chain (i.e. C20–26) ceramide species, which are considered
benign or protective (20, 21). The fact that mammals and other
species contain numerous, highly conserved CERS enzymes is
noteworthy, and highlights the importance of the acyl chain
length in ceramide signaling. As such, the CERS enzymes
contribute significantly to the structural and functional
diversity of sphingolipids (22). Regulatory activity of ceramides
is also mediated by the addition of a double bond to the delta-4
carbon of the dihydroceramides by dihydroceramide desaturase
(DES1 and 2). Animal studies reveal that genetic or
pharmacological inhibition of DES1 reduces ceramides,
induces accumulation of dihydroceramides, and attenuates
metabolic dysfunction (23–25). This de novo ceramide
synthesis pathway is upregulated in conditions of nutrient
excess (i.e. oversupply of palmitate and serine) and in response
to inflammatory agonists and glucocorticoids (26).

Ceramides can be further metabolized in the Golgi apparatus
by a series of additional enzymes, which produce the
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complex species that make up the majority of the cellular
sphingolipidome. For example, sphingomyelin synthases add a
phosphocholine headgroup to ceramides, producing the most
abundant sphingolipid class (i.e. the sphingomyelins) (27).
Alternatively, glucosylceramide synthase adds a glucose moiety,
producing the glucosylceramides (27). Glucosylceramides can
receive additional carbohydrates through a series of enzymes that
produce the complex ganglioside family. Ceramides can also be
deacylated by a family of ceramidases, which produce
sphingosine. Curiously, the beneficial adipokine adiponectin
activates a ceramidase activity within adiponectin receptors
(AdipoRs), improving metabolic homeostasis and blocking
apoptosis by degrading ceramides (28). Both sphingosine and
ceramide can be phosphorylated by specific kinases, which
produce sphingosine-1-phosphate and ceramide-1-phosphate
(29–31). These phosphorylated species have additional
signaling functions, often opposing the actions of ceramides.
SPHINGOLIPIDS IN DKD

DKD shares similar risk factors and disease mechanisms
to diabetes, cardiovascular disease (CVD), obesity, and
steatohepatitis, conditions associated with deregulation and
accumulation of bioactive sphingolipids (14, 27). As such,
considerable attention has turned to the role of sphingolipids
in DKD.

Numerous studies have demonstrated that circulating
sphingolipid profiles differ in humans with DKD versus
diabetic controls. In subjects with type 1 diabetes recruited as
part of the Diabetes Control and Complications Trial (DCCT)
and long-term follow-up (EDIC) cohort, lower baseline levels of
very-long-chain ceramides (C20–26:1) were associated with
worsening albuminuria over 14–20 years (32). A second report
by the same group noted distinct associations between
specific glycosphingolipid species and development of
macroalbuminuria and chronic kidney disease (33). A
metabolomic screen in type 2 diabetes patients with early and
overt DKD reported positive associations between C16 ceramide,
C16 SM, C18 glucosylceramide, and sphingosine with urinary
albumin-creatinine ratio (34). Notably, several reports have
documented associations of SM and kidney disease in type 1
diabetes, wherein SM correlates positively with albuminuria (35),
rapid estimated glomerular filtration rate (eGFR) decline, and
progression toward ESRD (36). Conversely, Tofte and colleagues
reported inverse associations of several SM species and
longitudinal kidney disease endpoints including renal
impairment, ESRD, and all-cause mortality (37).

Whether differences in serum sphingolipids are reflective of
altered kidney sphingolipid metabolism or are attributable to
changes in non-renal tissues remains unanswered by human
studies. The one piece of supportive data from patients is by
Eckes et al., who found that CERS5 and CERS6 were upregulated
in kidney cortices of humans (and mice) with non-diabetic
kidney fibrosis (38). Nonetheless, numerous studies have
reported that kidney-specific changes in sphingolipids and/or
January 2021 | Volume 11 | Article 622692
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sphingolipid-metabolizing enzymes occur in animal and cell
models of DKD. For example, investigators have shown that
enzymes controlling ceramide production are upregulated in
kidneys from mouse models of DKD (e.g. the SPTLC2 subunit
of the SPT complex in db/db mice) (39). Exposing cultured
glomerular cells to elevated glucose, free fatty acids, and
angiotensin II, which recapitulate the environment in diabetes,
elevates ceramides (40) and hexosylceramides (41). Additionally,
several studies have demonstrated sphingolipid accumulation in
kidney cortices of C57BLKS db/db diabetic mice (41, 42) or rats
with streptozotocin (STZ)-induced diabetes (43, 44). In db/db
eNOS deficient mice, MALDI imaging mass spectrometry
was utilized to visualize GM3 and sulfoglycosphingolipid
accumulation in kidney glomeruli and tubules, respectively
(45). Notably, Sas et al. reported ceramide depletion in kidney
cortices of mice with more advanced DKD (39). This
corresponds to recent work tracking increases in urine
ceramides in human patients with early DKD (i.e. CKD stages
1–3), but not CKD stage 4, compared to diabetic and healthy
controls (46). Lastly, the Huang group has built a body of work to
demonstrate modulation of sphingosine kinase activity in
regulating mesangial cell proliferation and extracellular matrix
(ECM) deposition under conditions of elevated glucose or
advanced glycation end products (AGEs) (47–49).
LOCAL AND SYSTEMIC INSULTS THAT
DRIVE DKD

DKD is clinically diagnosed by a persistent reduction in eGFR
less than 60 ml/min per 1.73 m2 and/or the presence of a
chronically high urinary albumin-to-creatinine ratio above 30
mg/g (4). However, analysis of DKD presentation between the
time periods of 1988 to 1994 and 2009 to 2014 suggests that
fewer DKD patients present with albuminuria; more manifest
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declining eGFR, and some develop histologically distinguishable
DKD before presentation of clinical markers (50, 51). Both type 1
and type 2 diabetes are characterized by chronic hyperglycemia,
which is a risk factor of DKD and often accompanied by other
systemic perturbations, such as hypertension and obesity.
Additionally, DKD is associated with marked hyperlipidemia
with elevated levels of circulating LDL, oxidized-LDL, VLDL,
triglyceride, and free-fatty acids (FFA) and low HDL in both type
1 and type 2 diabetes (8, 52).

The kidney is a highly metabolic tissue and houses a
multitude of terminally differentiated cell types. As such,
developing a comprehensive understanding of DKD onset and
progression in different cell types is a monumental challenge.
Nevertheless, distinguishable metabolic and histopathological
alterations of DKD have been documented, and some are well-
described (Figure 1). Structurally, DKD is distinguishable by the
early thickening of the glomerular basement membrane (GBM)
(4, 8, 52, 53). Additionally, mesangial cells within the glomerulus
undergo marked hypertrophy and fibrosis. Podocytes, cells
essential for maintaining the size-restriction barrier of the
glomerulus, experience foot process effacement, hypertrophy,
and apoptosis. Diabetic kidneys are also defined by atrophy of
the brush border within renal tubules, tubular epithelial cell
(TEC) loss, and TEC dedifferentiation. Tubular and glomerular
cells are susceptible to lipid accumulation, and lipid-rich lesions
were noted in initial reports of DKD (54). The renal interstitium,
defined as the ECM, fluid, and cells surrounding nephrons and
capillaries, is also subject to pathological changes. Activation and
migration of peripheral or local immune cells, as well as
mesenchymal-TECs accumulate in DKD kidneys and induce
inflammation and ECM deposition. Progression of DKD drives
interstitial and tubular fibrosis, as well as glomerulosclerosis (4,
8, 52, 53).

Recently, attention has been paid to renal steatosis as a
marker of lipotoxicity in the diabetic kidney. Healthy renal
FIGURE 1 | Histopathology of diabetic kidney disease. DKD elicits structural and functional changes to the glomerulus, tubules, and microvasculature of the kidney.
ECM, extracellular matrix. Created with BioRender.com.
January 2021 | Volume 11 | Article 622692

https://BioRender.com
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Nicholson et al. Ceramides and DKD
cells—particularly proximal TECs, which are responsible for the
majority of active reabsorption of sodium, glucose, and other
metabolites from blood filtrate—rely primarily on fatty acid
oxidation for ATP production (55, 56). Furthermore,
terminally differentiated podocytes and TECs have limited
metabolic flexibility and are highly susceptible to ATP
depletion (55). Lipid accumulation in renal cells stems from
both increased lipid uptake and impaired fatty acid oxidation
(57). Exposure of kidney cells to free fatty acids could increase
with the onset of proteinuria, in which albumin-bound FFAs are
present in kidney filtrate (58). Additionally, podocytes and TECs
contain swollen mitochondria with poorly defined cristae which
undergo rapid fission and fusion, yet are not recycled via
mitophagy (56, 59). The kidney also exhibits exceptional rates
of protein turnover and fractional synthesis (53, 60). As such,
renal cells are vulnerable to greater endoplasmic reticulum (ER)
stress in addition to onslaughts from mitochondrial reactive
oxygen species (ROS) production, systemic pro-inflammatory
cytokines, and aggregation of advanced glycation end products
(53, 57).

Lastly, the diabetic kidney undergoes multiple hemodynamic
shifts. Hypertension is both a potential precursor and product of
kidney injury. In the diabetic kidney, increased delivery of
glucose and reabsorption in the proximal tubule by the SGLT2
sodium-glucose co-transporter decreases sodium concentrations
reaching the macula densa (8). The resulting chronic activation
of the systemic and local renin-angiotensin-aldosterone system
(RAAS) stimulates blood vessel vasoconstriction and sodium
resorption to increase blood pressure and induce glomerular
hyperfiltration (61, 62). Additionally, decreased production of
nitric oxide production by eNOS, elevated VEGF-B signaling,
and increased endothelin-1 (ET-1) production results in
hemodynamic imbalance, exacerbating pro-inflammatory and
pro-fibrotic signaling (61, 63, 64).
GENETIC AND PHARMACOLOGIC
INHIBITION OF CERAMIDE
ACCUMULATION IMPROVES DKD
ENDPOINTS

The question of whether ceramide plays a causative
role in DKD pathology has been partially addressed in
preclinical investigations. Notably, whole-body ceramide-
lowering interventions improve kidney outcomes (40, 42).
Diabetic rats and high fat diet (HFD)-fed mice subjected to 4
weeks of treatment with myriocin, an SPT inhibitor, had lower
body weight, fasting blood glucose, plasma insulin, and
circulating free fatty acid levels compared to diabetic and obese
controls (40). Myriocin lowered kidney cortex ceramide and
attenuated diabetes- or HFD-induced proteinuria, mesangial
matrix and GBM thickening, and podocytopathy. Oral
administration of AdipoRon, an adiponectin mimetic,
effectively lowered ceramide in kidney cortices of db/db mice
and improved glomerular mesangial thickening, steatosis,
sclerosis, and immune cell infiltration (42). Importantly,
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AdipoRon treatment reversed kidney histopathology without
changing body weight or whole-body glucose metabolism.
Similarly, prevention of ceramide accumulation by intraperitoneal
administration of an acid sphingomyelinase (ASM) inhibitor in
db/db mice prevented proteinuria and glomerular injury (65).
Use of rapamycin, an mTOR inhibitor, to treat rats with STZ-
induced diabetes ameliorated mesangial matrix thickening and
glomerular cell death (43). Interestingly, rapamycin treatment
decreased SPT expression and cortical ceramide and SM levels in
diabetic animals. This observation supports the idea that mTOR
influences sphingolipid synthesis by regulating SPT and
ceramide synthases (66).

Few studies have reported kidney-specific sphingolipid-
lowering interventions in the setting of DKD. In vitro models
have demonstrated that myriocin and AdipoRon have protective
actions, lowering ceramide and preventing mitochondrial ROS
production and cell apoptosis (40, 42). Additionally, promoting
the production of anti-apoptotic sphingosine-1-phosphate (S1P)
in HEK-293 cells significantly decreased rates of ceramide- or
TNFa-induced apoptosis (67). At the time of this review,
Guangbi and colleagues are the first and only group to
produce a kidney-targeted in vivo model to study manipulation
of renal ceramide metabolism (68). Specifically, knockout of acid
ceramidase in podocytes (Asah1fl/fl/PodoCre) of healthy mice led
to glomerular ceramide accumulation and a concomitant
increase in albuminuria, podocyte foot process effacement, and
glomerular permeability. Furthermore, depleting glomerular
ceramides with the additional knockout of ASM (Smpd1−/−

Asahfl/fl/PodoCre) normalized proteinuria and podocytopenia.
PROPOSED MECHANISMS BY WHICH
CERAMIDES DRIVE DKD

The role of ceramide as a lipotoxic mediator of metabolic
dysfunction in CVD, diabetes, and fatty liver disease has been
well-characterized (69). These conditions share common risk
factors and disease processes with DKD. As such, we propose a
comparable mechanism for ceramide-mediated pathology in
kidney disease processes (Figure 2). Below, we detail various
elements of a mechanism for ceramides in DKD:

Lipid Accumulation
Transcriptomic analyses of kidney biopsies from human patients
have revealed elevated expression of SREBF and CD36 in the
setting of DKD, which facilitate transcriptional upregulation of
genes involved in de novo lipogenesis, triglyceride synthesis, and
lipid uptake (13, 23, 70). Studies in other tissues (e.g. the liver)
show that ceramide accumulation or depletion is sufficient to
regulate Srebf1 gene expression, as well as sterol response
element (SRE)-mediated transcriptional targets (13, 21, 23, 71,
72). The SREBP-1 protein is also post-translationally activated by
long-chain ceramides, which decrease INSIG-1 expression in an
ER stress-dependent manner to promote SREBP-1 cleavage and
maturation (21). Secondly, expression of fatty acid transporters
(i.e. CD36, FABP, FATP2) and translocation of CD36 are
January 2021 | Volume 11 | Article 622692
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regulated by ceramide (23, 73). CD36 translocation is thought to
be mediated through ceramide activation of PKCz (72). Lastly,
direct regulation of genes involved in lipid metabolism by
ceramide synthase enzymes has been reported. Notably,
schlank, the drosophila CERS isoform, and mammalian CERS2
are capable of responding to intracellular fatty acid levels with
direct binding and upregulation of Srebf expression and,
conversely, downregulated expression of intracellular lipases
(74, 75). Most of these actions have not been confirmed in the
kidney; nonetheless, each could contribute to the lipotoxic effects
of lipid accumulation observed with DKD in podocytes, TECs,
and other kidney cell types (76–79).
Insulin Resistance
Dysregulation of podocyte insulin signaling contributes to
podocytopathy in DKD (80). Mice with podocyte-specific
knockout of the insulin receptor or Akt2 develop characteristic
DKD features including albuminuria, glomerular sclerosis,
fibrosis, apoptosis, and mesangial matrix thickening (81, 82).
These can occur in the absence of systemic hyperglycemia (81).
Indeed, podocytes from db/db diabetic mice have decreased
insulin-stimulated phosphorylation of Akt and are prone to
apoptosis (83). The action of ceramide to inhibit Akt activation
downstream of insulin signaling is well characterized (84, 85).
Ceramides trigger an inhibitory phosphorylation of Akt by PKCz,
which prevents Akt/PKB translocation to the cell membrane (86–
88). In addition, ceramide promotes dephosphorylation of
Frontiers in Endocrinology | www.frontiersin.org 5
Akt/PKB by PP2A to inhibit its activation (89–91). Aside from
podocytes, insulin is a potent mediator of cellular function and
survival in various kidney cell types and modulates important
processes such as sodium reabsorption and gluconeogenesis in
the proximal tubule (92). Systemically, ceramide-mediated
insulin resistance within peripheral tissues (i.e. pancreas, liver,
adipose, and muscle) can exacerbate chronic elevations in
circulating glucose, inflammatory cytokines, and free fatty
acids, all of which could add additional insult to the diabetic
kidney (8, 93, 94). As such, ceramide’s antagonism of
insulin signaling could induce a multitude of potential
renal consequences.
Mitochondrial Dysfunction and Impaired
Fatty Acid Oxidation
DKD is characterized by impaired fatty acid oxidation and
mitochondrial dynamics (56, 59). Patients with DKD have
lower renal expression of fatty acid oxidation (FAO) genes (i.e.
CPT1a, CPT2, ACOX1, ACOX2), as well as their transcriptional
regulators PPARa and PGC1a (95). This phenomenon is also
apparent in mouse models of DKD. Rescue of FAO in TECs via
overexpression of PGC1a or treatment with the PPARa agonist
fenofibrate prevents histopathological progression of
nephropathy in mouse models of kidney fibrosis (95).

Several studies indicate that ceramides impair mitochondrial
function in a wide range of experimental systems, including the
kidney. Genetic and pharmacological ceramide-lowering
A B

FIGURE 2 | Proposed mechanisms of local ceramides in DKD pathology. (A) Schematic of sphingolipid metabolism. (B) Ceramides promote lipid accumulation via
i) upregulation of CD36 and Srebf1 expression, ii) stimulation of CD36 translocation and SREBP-1 cleavage, and iii) inhibition of intracellular lipase expression.
Ceramide and its targets PP2A and PKCz inhibit Akt activation, impeding downstream cell survival (most cell types) or eNOS-dependent NO production (in
endothelial cells). Ceramide antagonizes mitochondrial function by inhibiting ETC complex activity and permeabilizing mitochondrial membranes, leading to
programmed cell death. Lastly, ceramide contributes to TGF-b signaling and tissue fibrosis, which may be partially mediated by SREBP-1. C1P, ceramide-1-
phosphate; S1P, sphingosine-1-phosphate; FA, fatty acid; NO, nitric oxide; ETC, electron transport chain; MOMP, mitochondrial outer membrane permeabilization.
Created with BioRender.com.
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interventions are sufficient to recover kidney PPARa expression
(13, 42), although the mechanism is poorly understood. Several
other studies have demonstrated that ceramides impair
mitochondrial electron transport chain (ETC) activity. Hepatic
mitochondrial complex inhibition was driven in Cers2
haploinsufficient (96) and null (97) mice via accumulation of C16
ceramide. Accordingly, CERS6 overexpression in primary
hepatocytes elicited the same effect (96), whereas CERS6
knockout prevented HFD-induced disruption of mitochondrial
dynamics and function (98). Mechanistically, the CERS6-derived
ceramides induce mitochondrial fragmentation by interacting with
mitochondrial fission factor, which contributes to the dysfunction of
the organelle in mouse models of metabolic disease (98).

Apoptosis and Fibrosis
Kidney cell death and tissue fibrosis are common endpoints of
the varying forms of CKD. Although DKD-specific studies are
limited, the influence of ceramide in apoptosis is well defined (10,
99, 100). Indeed, ceramides elicit mitochondrial Bax-dependent
apoptosis in cultured kidney cells in response to C(2)-ceramide
or TNFa (67, 101, 102). Inhibition of oxidative stress in carbon
tetrachloride-induced kidney fibrosis depleted kidney ceramide
and prevented cell injury and death (103). Ceramides are also
suspected to interact with and regulate TGF-b, a key regulator in
fibrosis development (104–106). Recently, Dorotea et al. detailed
a proposed mechanism for a positive feedback loop between
SREBP1 and TGF-b, in which SREBP1 increases TGF-b
expression and prevents exosomal degradation of the TGF-b
receptor (70). This was demonstrated in transgenic mice
overexpressing transcriptionally active SREBP-1a, which was
sufficient to upregulate renal TGF-b expression and induce
glomerulosclerosis and collagen deposition (79). As such,
ceramides may indirectly activate TGF-b signaling and kidney
fibrosis via their regulation of SREBP.

Vascular Dysfunction
DKD is strongly associated with CVD, in part due to the
prevalence of macro- and microvascular insults (107).
Bioactivity of ceramide is thought to contribute to vascular
dysfunction, both by inducing blood vessel vasoconstriction and
increasing vascular permeability (108). Early studies demonstrated
impairment of vasodilation in small blood vessels treated with C
(2)-ceramide (109, 110), ceramide (109, 110), or palmitate (111),
which corresponded with increased ROS production, decreased
eNOS phosphorylation, and decreased NO. The Symons group
confirmed that endothelial ceramide accumulation induces PP2A-
eNOS co-localization, which prevents eNOS activation by Akt
(111, 112). Additionally, accumulation of ceramide in human
arterioles favors pathogenic H2O2-mediated flow-induced
dilation (FID), rather than NO-mediated FID observed in
healthy vessels (113). Inhibition of eNOS by ceramide, along
with stimulation of mitochondrial ROS production (114),
effectively decreases NO bioavailability and increases vascular
susceptibility to sheer stress and damage (108). Ceramide also
mediates disruptions to vascular integrity induced by
inflammatory stimuli by disturbing endothelial tight junctions
Frontiers in Endocrinology | www.frontiersin.org 6
and inducing apoptosis (108, 115). Both systemic and local
vascular impairments in vasodilation could exacerbate
interglomerular pressure and injury (8, 108). Furthermore, in
the DKD milieu of circulating glucose and inflammatory
cytokines, increased permeability of the kidney endothelial
barrier potentiates further damage.

Alternative Mechanisms for Bioactive
Ceramide Metabolites in DKD
Though our review has focused on ceramides, which have
established roles in cellular stress, alternative bioactive
sphingolipids could contribute to DKD. Within glomerular
mesangial cells, elevated glucose or advanced glycation end
products (AGEs) upregulate glycosphingolipid production (41)
and/or sphingosine kinase activity (48) to promote mesangial
proliferation and glomerular fibrosis. Beyond the general
perceptions that S1P antagonizes ceramide as an anti-
apoptotic, pro-survival signal (116, 117), its role in kidney
disease is controversial. Several studies have supported a
relationship between S1P, myofibroblast transdifferentiation,
and ECM synthesis in kidney disease (reviewed in 118).
Alternatively, loss of sphingosine kinase 1 activity led to poorer
kidney outcomes in mouse models of DKD and kidney fibrosis
(119, 120). Notably, S1P signaling outcomes are dependent upon
downstream effectors of select G-protein-coupled S1P receptors,
which are differentially expressed in diabetic kidneys (121). C1P
has also been implicated as a regulator of mesangial cell
proliferation (122) and podocytopathy (123). Lastly,
gangliosides, namely GM3 and Gb3, accumulate in diabetic
kidneys and may contribute to diabetic renal pathogenesis
(124). Though we cannot cover these alternative sphingolipids
in depth, we encourage the reader to further explore these
alternative and compelling mechanisms, which have been
reviewed elsewhere (118, 125–127).
CONCLUSIONS

Thus far, the frontier of research delineating ceramides as
bioactive drivers of DKD remains minimally explored. We
present a unifying scaffold identifying ceramide as a potential
central lipid mediator of DKD pathology. The scientific premise of
the proposed action of ceramide in DKD is compelling. Additional
work is needed, however, to demarcate the function of ceramide
and sphingolipids in the onset of DKD and progression toward
renal failure. Better use of kidney cell-specific animal models with
genetic manipulation of ceramide accumulation and degradation
will be useful to identify which cell types are most affected by the
action of ceramide. Additionally, manipulation of ceramide
synthases in the kidney will determine which ceramide species
aremost implicated in disease. The current natural history of DKD
onset and advancement cannot explain the vast heterogeneity in
DKD presentation and rate of kidney functional decline. We look
forward to targeted mechanistic investigations of ceramide in
DKD processes to improve the state of knowledge regarding
January 2021 | Volume 11 | Article 622692
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DKD pathophysiology and to inform therapeutic development
and treatment strategies.
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