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Viruses infecting marine phytoplank-
ton are key biogeochemical ‘engines’

of the oceans, regulating the dynamics of
algal populations and the fate of their
extensive blooms. In addition they are
important ecological and evolutionary
drivers of microbial diversification. Yet,
little is known about mechanisms influ-
encing viral dispersal in aquatic systems,
enabling the rapid infection and demise
of vast phytoplankton blooms. In a
recent study we showed that migrating
zooplankton as copepods that graze on
marine phytoplankton can act as trans-
mission vectors for algal viruses. We
demonstrated that these grazers can con-
centrate virions through topical adsorp-
tion and by ingesting infected cells and
then releasing back to the medium, via
detachment or defecation, high viral
titers that readily infect host populations.
We proposed that this zooplankton-
driven process can potentially boost viral
dispersal over wide oceanic scales and
enhance bloom termination. Here, we
highlight key results and further discuss
the ecological and evolutionary conse-
quences of our findings.

Phytoplankton blooms are ephemeral
events of exceptionally high primary pro-
ductivity thriving seasonally in the sunlit
layer of the oceans, while driving mass
transfer of gases and elements between the
water layer, the atmosphere and oceans-
floor and composing the basis of marine
food-webs.1 A key bloom-forming species
is the coccolithophore Emiliania huxleyi, a
cosmopolitan calcifying microalgae whose
large-scale blooms are detectable by satel-
lite imagery.2-4

The interplay between E. huxleyi and a
specific, lytic virus, Emiliania huxleyi virus
(EhV), is known to regulate the termination

and fate of such vast blooms. At the cellular
level EhV infection triggers a complete
remodeling of the host metabolism, resulting
in the production of hundreds of virions per
cell that burst out to the environment.5-8 At
the macroscale, EhV leads to the collapse of
whole bloom-patches within about a week,
with great ecological and biogeochemical
implications.4,9,10

Although major progress has been
achieved on the molecular basis for host-
virus interactions, there is still limited
understanding of this dynamic at the mac-
roscale. In our study, we aimed to link
scales and identify transmission mecha-
nism that can link infection on the single
cell level to large scale synchronized bloom
demise. How are marine viruses able to
rapidly spread killing such large scales
bloom-features?

As submicron size particles, viruses are
constrained by low Reynolds number vis-
cous forces, thus diffusing slowly in
seawater.11 We estimated that EhV diffu-
sion coefficient in seawater is about
2 mm2 £ s¡1.12 Moreover, further advec-
tive processes often entail little internal
mixing or create confined water bodies,
thus constraining viral particle dis-
persal.13,14 As blooms are also grazed by
zooplankton such as copepods that are
able to swim over large distances seeking
phytoplankton patches to fulfill their
nutritional requirements,15,16 we hypoth-
esized that they can act as transmission-
vectors enhancing viral dispersal within
and across water masses at sea.

Our field observations supported this
concept.12 Over 80% of copepods col-
lected at 2 locations in the North Atlantic,
where E. huxleyi were abundant, con-
tained EhV DNA. This clearly confirmed
the association between zooplankton
and phytoplankton viruses. We further
isolated a new infective EhV strain (EhV-
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ice 01) from a copepod microbiome, indi-
cating that copepod-borne viruses main-
tained infectivity and thus were putatively
transmissible to new algal populations.
Copepods acted as a natural concentration
system, retaining high viral titers in their
microbiome (we detected up to 2.5 £ 104

EhV per copepod, relative to a few thou-
sands suspended in the water column) by
ingesting infected cells and viable viruses
in their intestinal tracks. The isolation of
marine viruses in the oceans often involves
the concentration of large volumes of sea-
water. We therefore suggest this approach
can be highly valuable for isolation of new
aquatic viruses.

We also showed that copepods, as well
as other zooplankton species, can also
intake virions in the absence of host cells,
possibly via feeding currents or bound
non-specifically to other food particles or
cells. Furthermore, virions can be
adsorbed topically to the animals’ exoskel-
eton. Subsequently EhV can be carried
and be potentially dispersed by interaction
with zooplankton both via viral-dense
fecal pellets (Figure 1) or topical detach-
ment. Transmitted by this proposed
mechanism viruses can readily propagate
to new host populations and considerably
enhancing the rate of infection. Intrigu-
ingly, we demonstrated that the half-life
of EhV residing within fecal pellets is pro-
longed by about 35% (35 hours) relative
to EhV suspended in seawater (23 hours).

This suggests that zooplankton activity
can significantly enhance EhV resilience
and effective transmission.

Taken together our results indicated
that zooplankton can concentrate, carry
and promote the dispersal and dynamic of
infection of phytoplankton populations.
We propose that while foraging zooplank-
ton can rapidly connect phytoplankton
micropatches within a same water mass
along typically heterogeneous centimeter
scale seascape topographies, possibly
guided by the infochemical scent derived
from prey hotspots.17-19 Furthermore,
zooplankton display daily migration pat-
terns of tens to hundreds of meters along
the water column.16,20 Such pervasive
behavior can enable the translocation of
virions across water bodies separated by
density gradients otherwise impassable for
small particles as algal cells and viral
particles.11,21

The notion of viral dispersal via animal
vectors commonly observed in terrestrial
ecosystems (e.g.22,23), can be therefore
extrapolated to aquatic systems, and likely
to be extended to other marine groups of
both vectors and viruses (or other types of
parasites). The interplay between the 2
main competing “top-down” regulators of
algal blooms in viruses-vector association
as demonstrated in our current study adds
a new perspective to the complexity of tro-
phic interactions and on mechanisms of
pathogen transmission in the oceans.
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