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ABSTRACT: The multilevel summation method (MSM) offers an
efficient algorithm utilizing convolution for evaluating long-range
forces arising in molecular dynamics simulations. Shifting the balance
of computation and communication, MSM provides key advantages
over the ubiquitous particle−mesh Ewald (PME) method, offering
better scaling on parallel computers and permitting more modeling
flexibility, with support for periodic systems as does PME but also for
semiperiodic and nonperiodic systems. The version of MSM available
in the simulation program NAMD is described, and its performance
and accuracy are compared with the PME method. The accuracy
feasible for MSM in practical applications reproduces PME results for
water property calculations of density, diffusion constant, dielectric
constant, surface tension, radial distribution function, and distance-
dependent Kirkwood factor, even though the numerical accuracy of PME is higher than that of MSM. Excellent agreement
between MSM and PME is found also for interface potentials of air−water and membrane−water interfaces, where long-range
Coulombic interactions are crucial. Applications demonstrate also the suitability of MSM for systems with semiperiodic and
nonperiodic boundaries. For this purpose, simulations have been performed with periodic boundaries along directions parallel to
a membrane surface but not along the surface normal, yielding membrane pore formation induced by an imbalance of charge
across the membrane. Using a similar semiperiodic boundary condition, ion conduction through a graphene nanopore driven by
an ion gradient has been simulated. Furthermore, proteins have been simulated inside a single spherical water droplet. Finally,
parallel scalability results show the ability of MSM to outperform PME when scaling a system of modest size (less than 100 K
atoms) to over a thousand processors, demonstrating the suitability of MSM for large-scale parallel simulation.

1. INTRODUCTION

Significant long-range electrostatic interactions arise in many
biomolecular systems, such as negatively charged DNA and
RNA, polar or charged membranes, ion channels, and
electrostatic steering of protein−protein and enzyme−substrate
association. Accordingly, electrostatic interactions need to be
accurately represented in molecular modeling calculations. The
computational cost increases in principle as N2, where N is the
number of charged particles in the system.
The evaluation of electrostatic interactions can, through the

use of the fast Fourier transform (FFT), be approximated with
controlled accuracy by two finite range calculations, one in real
space and one in reciprocal space. However, these FFT-based
approximation methods, including particle−mesh Ewald
(PME)1,2 and particle−particle particle−mesh (PPPM),3

generally require simulations to describe infinite three-dimen-
sional lattices where each lattice cell is filled with a copy of the
simulated system. As a result, the simulations include unwanted
interactions with the copies. To prevent artifacts due to copy−
copy interactions, the biologically relevant components of each
copy must be surrounded by ample solvent to guarantee

enough spacing between copies, unfortunately increasing
system size and, thereby, computational cost. Moreover, the
communication cost of calculating in parallel the two 3-D FFTs
required by PME and PPPM outpaces the computational cost
as the number of atoms and number of processors increase, due
to the necessity of exchanging data between all of the
processors involved in the FFT calculation. On massively
parallel computers routinely employed today for large system
molecular dynamics (MD) simulations, the FFT communica-
tion becomes the main performance bottleneck, and efforts to
maintain scalability for PME have inspired various strategies,
such as reserving a subset of processors for the FFT
calculation.4 Alternative methods for calculating electrostatics,
including the real-space convolution method implemented in
the special-purpose Anton 2 supercomputer,5 have been
developed to avoid the FFT communication bottleneck. In
particular, the multilevel summation method (MSM) effectively
replaces the nonscalable FFT communication by more densely
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localized convolution calculations that permit better parallel
scaling and utilization of modern vector computational
hardware units.
An example where MSM is methodologically more suitable

than PME arises in studies of the asymmetric environment
across a membrane bilayer, where one might want to employ
periodic boundaries along the surface but not along the
membrane normal. If PME is employed and fully periodic
boundary conditions are required, one needs to use a dual-
membrane−dual-volume strategy, where two spatially separated
membranes are included6 and the computational cost is
doubled.
Interest in supporting systems having planar geometry has

led to the development of a 2-D Ewald summation method,7

although this method has not yet been implemented in any
mainstream MD software. Efforts have also been made to
circumvent the enforced periodicity from PME by creating a
nonperiodic “energy step” at the edge of a periodic simulation
cell to maintain asymmetric ion concentrations across a
membrane,8 but this approach cannot maintain a charge
gradient across a membrane. Non-Ewald methods,9 such as the
Wolf method10 and the isotropic periodic sum method with
discrete fast Fourier transform (3D-IPS/DFFT)11 (the latter
available in the Amber MD package12) can also be applied to
nonfully periodic systems, but good accuracy for heterogeneous
systems requires a large long-range cutoff value.13 MSM has the
advantage of providing a unified methodology that can treat
periodic, semiperiodic, and nonperiodic boundary conditions
with a single algorithm that, furthermore, offers good parallel
scalability.
MSM, employing so-called nested interpolation of softened

pair potentials in real space, follows a strategy for long-range
force calculation that differs from the one employed by PME.
MSM was initially introduced for solving integral equations14

and later applied to long-range electrostatic interactions in 2-
D.15 The method was then extended to calculate continuous
forces in 3-D suitable for MD simulation in case of nonperiodic
boundary conditions,16 intended originally to replace the
functionality of the fast multipole method (FMM).17,18 MSM
was further generalized to handle periodic boundary con-
ditions.19 The use of multiple spatial scales in MSM makes it
better suited than PME to multiple time stepping20 that is
employed in the time integration of MD simulations.
The difficulties with the parallel scaling of PME and other

FFT-based methods for ever greater numbers of processors
have generated renewed interest in FMM for improving the
scalability of MD,21,22 despite known stability problems caused
by FMM producing discontinuous potentials and forces that
require the use of computationally costly high order
approximations.23 The calculation of highly accurate electro-
static forces provides no discernible benefit to MD, which
instead requires continuous forces for the energy conserving
integration methods used for simulating long time scales. There
is also no added benefit from using adaptive solvers, such as
FMM or other related oct-tree methods, due to the general
uniformity of the particle density arising in applications of MD
simulation to biomolecular systems. MSM has a hierarchical
structure similar to that of FMM, allowing good parallel
scalability while also producing continuous forces that provide
stable dynamics without the high computational cost.16 A GPU-
accelerated implementation of MSM has been developed
already to calculate maps of the Coulombic potential.24−26

The methodology of MSM can also be applied to other

pairwise potentials without truncation,27 most significantly to
dispersion forces28 (the long-range part of van der Waals
forces), which have critical effects on membrane properties.29,30

In the present study, we compare MSM with PME, both as
implemented in version 2.10 of the MD program NAMD,31,32

for accuracy and efficiency. The parallelization of MSM in
NAMD is distinguished from other recent parallelization
efforts33 by making use of a combined domain decomposition
and force decomposition approach to provide scaling to large
numbers of processors, together with fine-grained SIMD (single
instruction, multiple data) parallelism employed to greatly
enhance the performance of the local grid calculations. The
practical accuracy produced by MSM, although shown to be
less than that typical for PME, is sufficient to reproduce the
PME calculations of various structural, dynamic, dielectric, and
mechanical properties of water. In particular, excellent
agreement between MSM and PME is found for interface
potentials at air−water and membrane−water interfaces, for
both periodic and semiperiodic simulations, indicating that
long-range Coulomb interactions are well represented with
MSM regardless of boundary condition. Applications demon-
strate also the suitability of MSM for systems with semiperiodic
and nonperiodic boundaries. Semiperiodic simulations have
been performed for membrane electroporation induced by an
imbalance of charge across a membrane and also for ion
conduction through a graphene nanopore with an ion gradient.
Standard use of PME for either system would require the
aforementioned dual-membrane−dual-volume strategy, dou-
bling the system size. Nonperiodic simulations have also been
performed for two well-studied proteins, each inside a spherical
water droplet, to further validate the use of MSM. Generally
speaking, the additional modeling options offered by MSM to
representative systems makes MSM more efficient than PME
by reducing the number of atoms needed for simulation.
Parallel scalability results are also presented that show the
ability of MSM to outperform PME when scaling a system of
modest size (less than 100 K atoms) to over a thousand
processors, demonstrating the suitability of MSM for large-scale
parallel simulation. We conclude that the improved modeling
offered by MSM, in combination with sufficient accuracy, better
parallel scaling than PME, and availability in a mainstream MD
program, makes MSM a compelling alternative to PME.

2. MULTILEVEL SUMMATION METHOD

For the convenience of the reader, we provide below a brief
overview of the multilevel summation method (MSM)
algorithm. Detailed discussions including the error analysis
employed are available elsewhere.16,19 Readers interested only
in the use of MSM, not in its algorithmic underpinnings, may
proceed to Section 3.

2.1. Algorithm. MSM approximates the Coulombic
potential energy for a system of N particles, having position
ri and charge qi,
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where χ(i) denotes for each i the set of atom indices to be
excluded from the summation, which includes j = i and,
typically for the simulation of biomolecules, also those atoms j

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5009075
J. Chem. Theory Comput. 2015, 11, 766−779

767

http://dx.doi.org/10.1021/ct5009075


that are either covalently bonded to i or to another atom that is
covalently bonded to i. The interaction kernel k is split into the
sum of a short-range part k0 smoothly truncated at cutoff
distance a and slowly varying parts k1,k2,...,kL−1,kL smoothly
truncated at cutoff distances 2a, 4a,...,2L−1a, ∞, respectively,
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The splitting can be defined systematically in terms of a
single unparameterized softening function γ(R) that softens 1/
R for R ≤ 1,
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The slowly varying parts are interpolated from grids of
spacing h, 2h,...,2L−2h, 2L−1h, respectively, for which inter-
polation operators i are defined in terms of interactions
between grid point positions rm

l = (xm
l , ym

l , zm
l )T and their

corresponding nodal basis functions ϕm
l ,
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where m and n index the grid points. The nodal basis functions
can be defined in terms of a single dimensionless basis function
Φ,
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Interpolation by piecewise polynomials of degree p provides
local support for Φ with stencil size p + 1. Continuous forces,
deemed important for energy conservation when simulating
over long time scales,34,35 are produced from a continuously
differentiable Φ and sufficient continuity from γ. Details
regarding the softening and interpolation basis functions are
provided in Section 2.2. The approximation is made efficient by
nesting the interpolation between levels,

′ ≈ + + + ··· +

··· ′
− −k k k k k kr r

r r

( , ) ( ( ( ( )

))) ( , )
L L L L0 1 1 2 2 1 1

(4)

The CHARMM force field prescribes a cutoff distance of a =
12 Å for calculating van der Waals forces,36 which we adopt, for
the sake of efficiency, in calculating all short-range nonbonded
interactions. The choice of grid spacing h = 2.5 Å, which is
slightly larger than the interatomic spacing, works effectively in
practice. The computational work per grid point is bounded by
a constant, and the number of grid points is reduced by about a
factor of 1/8 at each successive level. The computational cost of
MSM is O((p3 + (a/h)3)N), and analysis of the error19 shows
an asymptotic bound of the form
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Experiments in the present study test C1 cubic interpolation (p
= 3) with C2 splitting,16 for which the functional forms of Φ
and γ, given in Section 2.2, are among the lowest order choices
that produce continuous forces.
The Coulombic potential energy is approximated by

substituting eqs 4 and 2 into eq 1,
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where the first summation is the exact short-range part, the
second summation is the approximate long-range part, and the
final summation removes the excluded interactions from the
long-range part. The ei

long long-range electrostatic potential is
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The short-range part of eq 5 simply evaluates all particle pair
interactions within the cutoff distance a. The algorithm for ei

long

in eq 6 is made efficient by factoring the interpolation operator
in eq 3, calculating at each grid point intermediate charge qm

l

and potential em
l . The order of the calculation is the following:
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Figure 1 shows a diagram depicting the computational steps
and their dependencies. The bottom−left shows the particle
positions and charges, and the calculated potentials and forces
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are on the bottom−right. The gridded charges are calculated
for each level moving up the left side, and the gridded
potentials are calculated moving down the right side. The
horizontal arrows represent the calculation of the short-range
part along the bottom and the grid cutoff calculations for each
grid level, all of which collectively require the majority of the
computational effort. Forces are obtained analytically by taking
the negative gradient of eq 5,

∑ ∑

∑

ϕ

γ

≈

= − ∇ − ∇

+ ∇ | − |

χ

χ

∉

∈

⎜ ⎟⎛
⎝

⎞
⎠

q q k q e

q q
a a

f f

r r r

r r

( , ) ( )

1 1

i i

i
j i

j i i j i
m

m i m i

i
j i i

j i j i

MSM

( )
0

1 1

( )\{ } (13)

The interpolation of atomic potentials from the finest grid in
eq 12 evaluates for each atom position the nearby nodal basis
functions requiring O(p3) operations per atom. The anter-
polation (the adjoint of interpolation)14 in eq 7 performs
similar work to spread atomic charges to the grid. All of the
other functions ϕm

l and kl are evaluated at grid points, so can be
calculated a priori. The restrictions in eq 8 and prolongations in
eq 11 are gridded versions of anterpolation and interpolation,
each requiring just O(p) operations per grid point when
exploiting the regularity of the nodal basis function stencil by
factoring the sums along each dimension. After a sufficient
number of restrictions, the top level grid calculation in eq 10 is
performed between all pairs of a bounded number of grid
points. Most of the computational work for the long-range part
is due to the grid cutoff calculation in eq 9, which evaluates
pairs within a cutoff distance of 2a/h grid points, requiring
O((a/h)3) operations per grid point. The partial potential
em
l,cutoff is the convolution of grid charges qn

l with the stencil
kl (rm

l , rn
l ) = kl(0,rm−n

l ) for |m − n| < 2a/h as the convolution
kernel.
An alternative approximation scheme is available through

Hermite interpolation, an approach that exactly reproduces
function values and derivatives at grid points, discussed in more
detail in Section 2.2. When one extends Hermite interpolation
to three dimensions, there arise 23 = 8 values per grid point that
can account for all selections of zero or one derivatives
independently in each dimension. The calculation of the grid
point interactions is then expressed as 8 × 8 matrix−vector
products, which have a straightforward mapping to CPU vector
instructions, as discussed in Section 2.5. The increase in density
of the grids is offset by doubling the finest level grid spacing, so
that roughly the same amount of arithmetic operations are

required for Hermite as for cubic interpolation. The accuracy of
Hermite interpolation with doubled grid spacing is shown to be
between that of cubic and quintic interpolation.19

Periodicity along a dimension is accomplished by including
the periodic images of atoms contained within the cutoff
distance into the short-range part of eq 5 and wrapping around
the respective edges of the grid when calculating the long-range
part. The top level is reduced, in this case, to a single grid point,
for which the charge will be zero, if the system of atoms is
neutrally charged, or will be set to zero, which effectively acts as
a neutralizing background potential.19 The use of periodic
boundary conditions imposes additional constraints on the grid
spacing and the number of grid points along each periodic
dimension. The grid spacing must exactly divide the periodic
cell length, with the number of grid points chosen to be a
power of 2 to maintain the doubling of the cutoff distance and
grid spacing at each successive level. By permitting the number
of grid points to also have up to one factor of 3, the grid
spacings Δx, Δy, Δz can always be chosen so that 2 Å ≤ Δx,
Δy, Δz < 3 Å. This strategy also benefits SIMD implementation
discussed in Section 2.5, where an odd number of grid points
along a dimension will need to be processed only once, namely
on the top level.

2.2. Softening and Interpolation Functions. The
function γ(R) that softens 1/R for R ≤ 1 is defined in terms
of a truncated Taylor series expansion of s−1/2 about s = 1 and
substituting R2 = s. For example, the softening used in this
study with cubic interpolation is

γ =
− − + − ≤
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giving C2 continuity at the unit sphere and C∞ continuity
everywhere else. Additional advantages of an even-powered
softening are that γ((1/a)(x2 + y2 + z2)1/2) has bounded
derivatives and can be calculated without square roots.
A piecewise interpolating polynomial of odd degree p having

C1 continuity, as needed for producing continuous forces, can
be constructed as a linear blending of the two degree p − 1
interpolating polynomials centered on consecutive nodes. The
dimensionless basis function Φ(ξ) for cubic interpolation used
in this study is
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Higher order interpolation with quintic (p = 5), septic (p = 7),
and nonic (p = 9) polynomials provides improved accuracy, but
at greater computational cost. Empirical results show for degree
p interpolation the optimality of using C(p+1)/2 softening.19

An alternative approach for interpolating with C1 continuity
is to construct the Hermite interpolant that reproduces the
function values and first derivatives at nodes. Hermite
interpolation along one dimension requires two basis functions,
Φ[0](ξ) for the function values and Φ[1](ξ) for the first
derivatives:

Figure 1. Algorithmic steps for MSM.
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Performing Hermite interpolation in 3-D requires storing 23

= 8 values per grid point, to account for 0 or 1 partial
derivatives independently along the coordinate dimensions.
The 8-element vector of nodal basis functions is similarly
constructed by all products of Φ[0] and Φ[1] independently for
each of the three coordinates. The algorithmic calculations in
eqs 7−12 are modified accordingly. The anterpolation in eq 7
becomes multiplication of an 8-vector by a scalar, and the
interpolation in eq 12 becomes the inner product of two 8-
vectors. The restriction in eq 8 and prolongation in eq 11
become 8 × 8 matrix−vector products, where the restriction
matrices are transposes of the prolongation matrices. The grid
cutoff calculations in eq 9 and eq 10 are also 8 × 8 matrix−
vector products. The grid spacing for Hermite interpolation is
doubled from that of cubic interpolation to compensate for the
“density” of each grid point increasing by a factor of 8. A more
detailed mathematical description is available elsewhere.19

2.3. Comparison with PME Algorithm. Both MSM and
PME perform a splitting of the interaction potential, PME into
two parts and MSM into L + 1 parts. Both methods perform a
charge-spreading (anterpolation) step to a grid of charges and
an interpolation step from a grid of potentials. The major
difference between the two methods is that PME transforms
the grid of charges using a discrete 3-D fast Fourier transform
(FFT), followed by a simple scaling of the transformed charges
in Fourier space and a second FFT to transform back to the
grid potentials, while MSM performs nested interpolation
entirely in real space. The use of the FFT for PME is predicated
on the assumption that the molecular system is periodic in all
three dimensions, whereas MSM can be used flexibly with or
without periodic boundary conditions.
Although the asymptotic complexity of PME is O(N log N)

due to the use of the FFT, the overall operation count of PME
is relatively small for moderate system sizes, as the FFT by itself
is economical in the number of arithmetic operations required.
However, computing the FFT requires large strided memory
accesses that are inefficient for modern computer architectures.
Moreover, the FFT does not provide good parallel scaling, as
the communication pattern for implementing a 3-D FFT is
many-to-many, essentially the same as a matrix transpose. MSM
uses a hierarchical algorithm with close neighbor communica-
tion and arithmetically dense localized 3-D convolutions that
map well to multicore processors with vectorized instructions.
In spite of having a higher operation count for moderate system
sizes, the use in MSM of a more efficient communication
pattern combined with more effective use of computer
processing resources offers better parallel scaling and perform-
ance compared to PME.
The numerical accuracy of MSM compared to PME is

addressed in Figures 2 and 3 for simulations of an equilibrated
50 Å cube of 4142 water molecules. The figure compares
NAMD’s MSM using cubic, Hermite, and quintic interpolation,
discussed above, to NAMD’s smooth PME method using
quartic and sexic interpolation of the structure factors.2 The
employed PME grid spacings of 1.2 and 1.5 Å are
representative of the method’s use in practice; for instance,

GROMACS4 uses 1.2 Å as its default spacing and NAMD uses
1.5 Å as its default maximum spacing to provide a safety check
to the user. The relative error in average mass-weighted force
plotted in Figure 2 is calculated as
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with mass mi for each atom. The exact forces f i have been
calculated from a highly accurate PME force calculation using
octic (eighth order) interpolation with the cutoff between
short- and long-range parts set to 40 Å and the grid spacing set
to 0.1 Å, making use of the fact that PME converges to the

Figure 2. Comparison of the force accuracy of MSM and PME in
NAMD. Shown is the relative error in mass-weighted force versus
cutoff distance for simulations of a 50 Å cube of 4142 water molecules.
For MSM, the cutoff distance is used to control accuracy for a given
interpolation and splitting. Although MSM provides lower numerical
accuracy than PME (specifically, there is about one digit of precision
difference at the 12 Å cutoff distance between cubic MSM and quartic
PME with 1.2 Å grid spacing), force errors within 1% (i.e., less than
0.01) are deemed sufficient for application of MD to biomolecular
systems.

Figure 3. Comparison of the potential energy accuracy of MSM and
PME in NAMD. Shown for the 50 Å cube of 4124 water molecules is
the relative error in potential energy, averaged over 1000 frames of a 2
ns simulation trajectory, plotted versus cutoff distance.
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Ewald summation in the limit as the cutoff goes to infinity and
the grid spacing goes to zero. The error in potential energy
presented in Figure 3 has been averaged over ν = 1000 frames
of a 2 ns trajectory,

∑
ν
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| − |

| |=

U U
U

avg. potential energy error
1

n

v
n n

n1

approx

measured relative to a highly accurate PME calculation of the
potential Un. MSM provides lower numerical accuracy than
PME, but force errors within 1% are deemed sufficient for MD
applications, so that the force error is not greater than the error
incurred from time stepping employed in the integration of the
Newtonian equations of motion. Energy conservation for cubic
MSM with the 12 Å cutoff between short- and long-range parts
adopted here has been verified by simulating the cube of water
for 1 ns in the NVE ensemble with 1 fs time stepping and
observing that the standard deviation of total energy σE is 0.3%
of either the standard deviation of the kinetic energy or the
standard deviation of the potential energy, which is within the
20% criterion considered for energy conservation in an MD
simulation.37−39

2.4. Distributed Memory Parallelization. The paralleli-
zation of MSM is implemented using Charm++, the parallel
language extension of C++ used by NAMD that provides a
message-driven programming paradigm expressed as asynchro-
nously executable objects.40,41 NAMD employs a hybrid data
and force decomposition for scalable parallelism, decomposing
the atoms spatially into uniform patches and also decomposing
into objects the work of calculating the short-range nonbonded
forces between nearest neighbors.31,32 MSM and PME both
make use of the existing infrastructure in NAMD for calculating
their short-range parts, modifying the functional form of the
interaction to fit each respective method. For the long-range
part of MSM, the grids are decomposed into blocks of grid
points, analogous to the NAMD patches. As with the short-
range force calculation, sufficient work for scalable paralleliza-
tion is available by carrying out the grid cutoff calculations
involving interactions between neighboring MSM grid blocks
through separately schedulable work objects. The restriction
and prolongation calculations introduced above require a much
smaller amount of work, so they are best kept on the same
processor as their corresponding grid blocks, as the overhead of
communicating data to a remote processor exceeds the runtime
of the actual calculation step. Similarly, the anterpolation and
interpolation calculations involving atom coordinates are kept
processor-wise with the patches.
Each MSM grid block receives charges from below, either

from anterpolation at the patch level or from restriction of a
lower grid level. After all expected sub-blocks of charge are
received and summed, the grid block, assuming that it is not the
top-level block, performs a restriction to a local buffer and
sends sub-blocks of the restricted charge up to the upper level
grid blocks. After sending the restricted charges, the grid block
sends its charges to all of the block interaction work objects to
which it contributes. A block interaction work object receives a
block of charges and performs its part of the grid cutoff
calculation to a block of potentials, then sends that block of
potentials to its designated grid block. After all expected
contributions to its block of potentials are received and
summed by the grid block, including contributions from block
interaction work objects and from prolongation of a higher grid
level, the grid block will either send the potentials back to the

patch level for interpolation, if it is a first level grid block, or it
will perform a prolongation to a local buffer and send sub-
blocks of the prolongated potential down to the lower level grid
blocks.
Performance is improved through static (i.e., not measure-

ment-based) load balancing of the work objects and through
Charm++ message-driven task prioritization. The MSM grid
blocks are assigned to the multiprocessor nodes in a round-
robin manner; for large processor counts, the processors will
outnumber the grid blocks. The MSM block interaction work
objects are similarly assigned so as to achieve an even node-
level load distribution, with preference given to nodes that hold
either the source charge block or the target potential block for a
given block interaction, in order to reduce the amount of
internode communication required. Once the node assign-
ments have been made, the grid blocks and block interaction
work objects for each node are equitably divided among its
processors. Message priorities are assigned to give highest
priority first to sending restricted charges from the lowest grid
levels up to the highest, followed by the block interactions and
prolongated potentials from the highest grid levels down to the
lowest. The idea is to prioritize the critical path of
communication that goes through the top grid level and
back, in an effort to reduce the latencies involved with receiving
all contributions to a grid block of potentials from prolongation
and grid cutoff calculation before further prolongation or
interpolation can occur. MSM makes use of the existing NAMD
reduction infrastructure for summing the long-range potential
energy.

2.5. SIMD and Vector Parallelization. Nearly all
contemporary microprocessors offer some degree of support
for fine-grained parallel computing using so-called single-
instruction multiple-data (SIMD) processing units that execute,
in lock-step, the same arithmetic operation in parallel on several
independent data values. CPU and GPU SIMD hardware is
programmed using single-program multiple-data (SPMD)
programming languages such as CUDA,24,25 OpenCL,42

ISPC, and OpenMP (with SIMD directives), or at the machine
instruction level through the use of vendor-specific assembly
language or so-called compiler intrinsic functions. The MSM
algorithm is well suited to fine-grained parallel execution on
such CPU and GPU architectures, due to its predictably and
uniformly strided memory access patterns, and because its
innermost loops over grids can be decomposed into operations
on vectors that match the size and stride of the SIMD
processing units provided by the underlying computing
hardware.
MSM with Hermite interpolation is capable of most naturally

utilizing the SIMD processing units of CPUs, available through
the Intel x86 compiler intrinsics for SSE2 (up to 4-element
vector instructions) or AVX (up to 8-element vector
instructions). Hermite interpolation directly computes 8-
element grid points, with grid point interactions expressed as
8 × 8 matrix−vector products. A single precision implementa-
tion of Hermite interpolation can map each grid point directly
to two SSE2 registers or to a single AVX register. With the
matrices stored in row−major order, the matrix−vector
multiplication can be implemented in AVX using 8 multiply−
add instructions or twice as many for SSE. A similar
optimization is available to the other interpolation schemes
that employ single-element grid points. The optimization
involves clustering the grid points into 23-point cubes. With this
data reorganization, the clustered grid point interactions can be
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expressed as 8 × 8 matrix−vector products using the same
vector instructions as used for Hermite interpolation. The grid
point clustering might require up to one extra layer of grid
point padding in each of the x-, y-, and z-directions. Figure 4
illustrates the grid cutoff calculation from eq 9 modified to
operate on a sequence of vectors, where a vector of potentials
for a clustered grid point is calculated by summing over the
“sphere” of clustered grid points comprising vectors of charge.
Many-core processors such as GPUs and the Intel Xeon Phi

natively operate on larger vector lengths. Xeon Phi processors
support vector lengths of up to 16 single precision floating
point values, and contemporary GPUs natively operate on even
larger vectors or arrays containing 64 to more than 512
elements at a time. In the case of Xeon Phi, it should be
possible to organize the MSM data structures and use vector
mask operations to process two pairs of 8-element vectors per
instruction. A GPU implementation of MSM can be
constructed by clustering grid points into much larger tiles,
and using a 3-D work decomposition, with each GPU thread
block or workgroup assigned to different tiles. The most critical
issue for GPU performance is the use of memory layouts for the
clustered grid point tiles that enable so-called coalesced memory
access patterns that minimize the number of hardware memory
cycles. The best parallel work decomposition strategy for GPUs
hinges upon the amount of parallelism available in the work
assigned to one GPU. For MSM workloads that result in a
sufficiently large number of grid points, a spatially oriented
decomposition of grid point tiles and their associated
interactions allows the use of so-called gather style algorithms
that perform potential accumulation in on-chip registers. For
MSM workloads that present the GPU with insufficient work
for the spatial approach to be profitable, a parallel
decomposition over interactions between MSM grid blocks
will provide increased parallelism using a scatter type algorithm,
at the cost of an extra parallel reduction step required for
summing the partial potentials for each MSM grid block prior
to transferring results back to the host CPU.

3. SIMULATION PROTOCOLS

All simulations were carried out with a developmental version
of NAMD32 implementing the parallelized MSM algorithm that
has been subsequently released in NAMD version 2.10. A
modified TIP3P water model in the CHARMM force field was
used.36 The r-RESPA multiple time-step integrator43 was
applied with time steps of 2 and 4 fs for short-range nonbonded
and long-range electrostatic interactions, respectively. The
SETTLE algorithm44 maintained rigid geometry for water
molecules while RATTLE45 constrained the length of covalent
hydrogen bonds. The calculation of nonbonded interactions
excluded pairs of atoms covalently bonded to each other or to a
common atom. Temperature was set to 300 K for all systems
by a Langevin thermostat. All semiperiodic systems were
initially equilibrated for 500 ps with full periodic boundary
conditions in the NPT ensemble, where pressure was kept
constant at 1 atm by the Langevin piston method,46 before
running production simulations in the NVT ensemble using
semiperiodic boundary conditions.
Electrostatic interactions are treated either using MSM or

PME.2 The NAMD cutoff distance, set to 12 Å, defines both
the van der Waals truncation distance and the splitting between
short- and long-range parts of the electrostatic interactions for
both methods. The MSM simulations use the default cubic
interpolation with C2 splitting and the default grid spacing of
2.5 Å, except for the performance comparison, which uses
Hermite interpolation with C3 splitting and a grid spacing of 5
Å. The PME simulations use the default quartic interpolation
with a grid spacing of 1.2 Å.
Below we explain how semiperiodic and completely

nonperiodic systems are simulated in the case of MSM
electrostatic force evaluation. In the case of fully periodic
systems, PME and MSM simulations are specified identically in
NAMD, except for the choice of electrostatic algorithm.

Semiperiodic System. For semiperiodic systems, the
periodicities are established by defining just one or two of
the three cell basis vectors. MSM does not require any special
conditions for the cell basis vectors, except for linear
independence. However, any constraints for containing atoms
within the boundaries along nonperiodic dimensions are best
described by establishing orthogonal periodic basis vectors
aligned to the axes of the x,y,z-coordinate system chosen
accordingly. To demonstrate the use of MSM, we consider a
membrane bilayer with asymmetric content across the
membrane in the form of a difference in ion concentration
above and below the membrane. For this purpose, we utilize a
simulation cell that is periodic in the x,y-plane only. Along the
z-axis, we keep the simulated system constrained by a harmonic
restoring potential to a finite interval with a lower and upper
boundary at z = ± a. The boundary is realized through a
containing force along the z-direction of −k (z − a), for z > a
and +k (z + a), for z < −a, where k = 3 kcal/(mol·Å2); the
condition is implemented using the TclBC scriptable boundary
condition feature of NAMD.

Nonperiodic System. To demonstrate a simulation of a
completely nonperiodic system, we consider a protein solvated
together with ions in a spherical water droplet. The
components of the system, in particular the water molecules,
have a strong tendency to remain together at room temperature
when placed in vacuum, though once in a while a water
molecule or even more rarely an ion or the whole protein will
evaporate. To prevent such evaporation from happening, we

Figure 4. Grid point clustering algorithm for calculating eq 9. The
algorithm is illustrated in 2-D. For each cluster of grid point potentials,
the algorithm loops over the sphere of charge clusters and sums their
contributions, calculating the sum of matrix−vector products. The
clustered charges and potentials are stored contiguously as vectors that
match the processor’s SIMD vector length. The grid stencil matrix
elements are the precomputed kl(rm

l , rn
l ) values corresponding to the

positions of the individual grid points.
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surround a water droplet by a repulsive boundary surface of a
radius a chosen 5 Å larger than the radius of the droplet. For
this purpose we introduce a repulsive radial force directed
toward the center with magnitude k (r − a), for r > a; here, r is
the radial position of any atom in the system and the force
constant is k = 10 kcal/(mol·Å2), implemented using the
spherical boundary condition feature of NAMD. The center of
mass of the protein is constrained to the center of mass of the
droplet in order to keep the protein near the droplet center and
well solvated.

4. RESULTS AND DISCUSSION
In the following, we illustrate the capabilities of molecular
dynamics simulations with NAMD stemming from the MSM
algorithm. We first demonstrate the accuracy of the MSM
algorithm and of its implementation in NAMD through
comparison with NAMD simulations based on the well-tested
PME algorithm. We then present results of simulations for
semiperiodic and nonperiodic systems, until now unfeasible in
NAMD having relied on the PME algorithm. We finally
compare the scaling of NAMD on multiprocessor machines
running PME- and MSM-based simulations side-by-side.
4.1. Water Properties. Water is fundamental to molecular

processes in living cells, often due to the electrostatic
interactions among water molecules themselves and among
water molecules and proteins or ions that give rise to strong
dielectric screening. Accordingly, water is an excellent test bed
for the computational treatment of electrostatic forces. Indeed
numerous structural, dynamic, dielectric, and mechanical
properties of water can serve to illustrate the accuracy of
electrostatic force descriptions by means of MSM and PME, for
example, density, radial distribution function, diffusion
constant, dielectric constant, distance-dependent Kirkwood
factor or surface tension. To compare simulation results
obtained with MSM and PME electrostatic descriptions, a
box of water was simulated for 6 ns in an NPT ensemble with a
modified TIP3P water model in the CHARMM force field.36

The resulting water properties are compared in Table 1 and
Figure 5. For all water properties calculated, agreement is found
between MSM and PME, indicating that MSM furnishes the
same accuracy as PME in electrostatic descriptions.
The water self-diffusion constant was obtained from the

mean-square displacement using the Einstein relation. The
surface tension was calculated by Lz(−(Pxx + Pyy)/2 + Pzz)/2,
where Pij is the ij component of the pressure tensor, and Lz is
the length of the simulation cell in the direction normal to the
surface. The distance-dependent Kirkwood G-Factor was
resolved as contributions from spherical shells of radius R by
employing

∑
μ

μ μ= ⟨ · ⟩
| ≤
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1

K
j r R
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ij

where μj is the dipole moment of water and μ is the dipole
magnitude. The dielectric constant ε was calculated using

ε π= + ⟨ ⟩
Vk T
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where the collective rotational dipole moment is MD = ∑j = 1
N μj.

4.2. Interface Potentials at Air−Water and Mem-
brane−Water Interfaces. A key electrostatic property of
water arises at the water-membrane interface in living cells and
at the air−water interface47,48 in the form of the so-called
interface potential. This potential results from an alignment of
water dipole and quadrupole moments. Long-range electro-
static interaction is essential for the magnitude of the potential.
Only reliable electrostatic treatments can predict the correct
interface potential.47,48 As shown in Figure 6, MSM gives the
same interface potential as PME, at both air−water and
membrane−water interfaces, in case of either a fully periodic
boundary or a semiperiodic boundary. The results show that
MSM provides a reliable description of the long-range
electrostatic interaction. If truncated electrostatic interactions
are applied with a cutoff of 1.2 nm, an interface potential that is
too large is found, as seen in Figure 6. Only by elongating the
electrostatic interactions, for example, by elongating the cutoff
to 1.6 nm, is the calculated interface potential close to the value
determined by means of simulations employing MSM or PME
that account for the full long-range interaction.
All interface potentials Ψ(z) were calculated via

∫ ∫π ρΨ − Ψ = −
ϵϵ

″ ″ ′
′

z z z z( ) (0)
4

( )d d
r

z z

0 0

where ρ(z) is the charge density as a function of z.

Table 1. Comparison of Water Properties Determined from
Simulations Based on PME or MSM Electrostatic Force
Evaluation

water property PME MSM

density (kg/m3) 1006 ± 3 1008 ± 2
diffusion constant (×10−5 cm2/s) 5.2 ± 0.2 5.2 ± 0.1
dielectric constant 104 ± 2 102 ± 2
surface tension (dyn/cm2) 53 ± 3 52 ± 3

Figure 5. Comparison of PME and MSM algorithms via simulation of a water box. Properties compared are the water oxygen−oxygen radial
distribution function (a), a structural property, and the Kirkwood G-factor (b), a dielectric property.
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4.3. Membrane Electroporation in a Semiperiodic
Simulation. Cellular membranes surrounding living cells
commonly maintain a voltage gradient for battery-like energy
storage and for fueling many types of membrane processes such
as ATP synthesis or ion vectorial transport. The potential is due
to a difference in charge distribution across the membrane. In
the case that the charge distribution difference and, along with
it, the electrical field become too large, a pore is formed in the
membrane in a process termed electroporation.49−52 For
example, by having more cations on one side of the membrane
and more anions on the other, a strong electric field can be
generated across the membrane, thereby inducing electro-
poration.53,54

In simulations employing PME, an electric field across a
membrane, created by having different numbers of cations and
anions on each side of the membrane, requires actually two
different water compartments containing positive and negative
ions separated by two membranes in order to permit a periodic
boundary condition along the membrane normal. In case of
simulations employing MSM without periodicity in the z-
direction, only a single membrane is required to separate
positive and negative ions, roughly halving the computational
effort while describing a situation that is more realistic than
arising in the case of PME-based simulations.
MD simulations with MSM were performed for a membrane

bilayer made of POPC lipids and employing semiperiodic
boundary conditions. With an average NaCl concentration of
0.15 M, but more Na+ ions on one side of the membrane and
more Cl− on the other, an electric field of 0.7 V/nm was
created across the membrane. The numbers of cations and
anions were equal and the system charge was neutral. Within 1
ns, a water pore developed in the membrane. As illustrated
through a simulation snapshot in Figure 7, ions diffused
through the pore from one side of the membrane to the other.
Lipid head groups kept interacting with the ions within the
pore and created a toroidal pore structure. Exactly the same
behavior resulted in simulations with PME, but requiring two
membranes.53

4.4. Ion Conduction through a Graphene Nanopore in
a Semiperiodic Simulation. Bioengineering is today
developing nanoscale sensors for medical diagnostics, for
example, for cost-effective DNA sequencing. One type of
sensor involves nanopores situated in graphene sheets, the
sheets acting much like a cellular membrane. MD simulations
offer guidance to nanosensor development by offering

engineers microscopic views of the measuring processes
involving nanosensors. The ability of MSM to simulate single
membranes, illustrated above, can be put to good use in the
case of graphene nanopores. We illustrate this capability of
MSM by describing ion conduction through a nanopore
embedded into a single graphene sheet. The sheet separates,
just as the membrane in the previous example, ions initially at
different concentrations above and below the graphene sheet.
In the simulations, we chose the edge of the graphene

nanopore to contain either electrically neutral or positively or
negatively charged atoms. After carrying out MSM-based
simulations on the respective semiperiodic systems, we
compared the ion conductance through neutral, positive, and
negative graphene nanopores, where 2 M NaCl, described by

Figure 6. Comparison of PME and MSM algorithms in simulations determining interface potentials. Compared are resulting electrostatic potentials
at an air−water interface (a) and at a membrane (POPC)−water interface (b). The distances from water layer center and membrane center are
measured along the interface normal.

Figure 7. Formation of a pore in a membrane induced by an ion
concentration difference. A majority of cations were placed on one side
of the membrane and a majority of anions on the other side, creating
an electric field across the membrane. The electric field causes
membrane pore formation. For lipids and water molecules, the
following coloring has been chosen: carbon (green); oxygen (red);
nitrogen (blue); phosphorus (tan); hydrogen (white). Ions are shown
in yellow. For the sake of clarity, lipid tail hydrogen atoms are not
shown.
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CHARMM force parameters,55 was placed on one side of the
graphene and none on the other side. The nanopore measured
6 nm in diameter, with 30 carbon atoms forming the pore edge.
To charge the nanopore, 12 carbon atoms distributed evenly
along the pore edge were selected, and unit positive or negative
charges were placed on them. In comparison to employing
charged chemicals to decorate the pore,56 nanopores with these
charged carbon atoms have the same physical pore size as the
neutral pore. To neutralize the overall system charge, 12
additional Na+ or Cl− were added to the 2M-concentration side
when the nanopore edge was negative or positive, respectively.
Right after the simulation started, ions diffused through the

nanopore regardless of the pore charges, as shown in Figure 8a.
In the cases of charged nanopore edges, counterions trans-
located faster than the co-ions, until the charges on the two

sides of graphene became equal. The simulations revealed that
both positive and negative ions diffuse through the nanopore at
the same rate, regardless of pore edge charge, as shown by the
slope of ion passage in Figure 8c. For the charged nanopore
edges, however, the ion translocation rates are smaller than in
the case of the neutral nanopore. The ion translocation rate
through a neutral pore is 2.1 ns−1, while it is 1.7 ns−1 for the
positively charged pore edge and 1.6 ns−1 for the negatively
charged pore edge. For charged nanopore edges, counterions
tend to localize around the pore region. As shown in Figure 8b,
ion density is high around the charged pore region. Therefore,
the effective nanopore size is reduced for charged nanopores,
and thus, ion translocation rates are smaller.

Figure 8. Semiperiodic simulation based on the MSM algorithm describing ion conduction through graphene nanopores. (a) Simulation setup for a
neutral nanopore. Sodium ions are colored yellow and chloride ions green. Graphene carbon atoms are colored gray. For the sake of clarity, water
molecules are not shown. (b) Ion density profile around a nanopore with a charged edge. Charged edge carbon atoms are shown in red. (c) Number
of ions passed through the pore at time t. The slope of the curves shown is the translocation rate, which is affected by the nanopore edge charge.

Figure 9. Nonperiodic simulations based on the MSM algorithm describing a β-hairpin protein motif (a) and the protein Trp-cage (c) inside a water
droplet. Protein structures are characterized color-wise as follows: β-sheet (yellow); α-helix (purple); ordered turn (blue); disordered coil (white).
The RMSD values for β-hairpin and Trp-cage, defined here with reference to initial structure, are shown in parts b and d, respectively.
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All simulations were terminated at 18 ns, at which point the
ion concentration difference between the two sides of the
graphene sheet had decreased to ∼70% of its original value.
4.5. Water Droplet in Nonperiodic Simulation. MSM

can be applied not only to semiperiodic systems but also to
systems without any periodic boundary. For example, proteins
can be simulated in a large water droplet with MSM. The total
number of water molecules in a droplet is smaller than the
number of water molecules in a periodic rectangular or
dodecahedral box of the same maximum dimension. Moreover,
simulations with nonzero net charge can be performed with
MSM on a nonperiodic droplet, while the net charge must be
chosen to vanish for PME-based simulations.
One needs to be aware that biomolecules in single droplets

are subject to water surface tension created naturally by the
water−air boundary. Such tension arises for droplets suspended
in air and can be significant for droplets of small size. In the
case of bulk water surface tension does not arise, neither in a
real system nor in a system simulated with periodic boundary
conditions and completely filled elementary cells. Such
avoidance of surface tension may be an advantage of fully
periodic MSM and PME calculations; future calculations will
test if this advantage is really significant.
To illustrate the possibility of simulations of a single water

droplet, small proteins, β-hairpin57 and tryptophan cage (PDB:
1L2Y), were each simulated in a small spherical water droplet.
Each protein was placed at the center of the droplet, which was
20 Å larger than the radius of gyration of the proteins, as shown
in Figure 9. The β-hairpin is composed mostly of β-sheet
structure, whereas the tryptophan cage is composed mostly of
α-helical structure. The protein structures were monitored by
means of the root-mean-square displacement (RMSD) as
shown in Figure 9; both proteins maintain their structures over
1 μs of simulation, as indicated by RMSD values of less than 2
Å for most of the simulation time.
Comparing the nonperiodic MSM approximation to an exact

electrostatics calculation over all pairs of interacting atoms, the
droplet containing the β-hairpin showed a difference of 0.5
kcal/mol from a total energy of −2.3 × 104 kcal/mol, with a
relative error in average mass-weighted force of 8.5 × 10−3, as
measured by eq 14.
4.6. Performance Comparison. Performance and scaling

of MSM and PME are comparable, despite the fact that the
NAMD implementation of PME has had many more years of
development effort than MSM. MSM is shown to perform best
with Hermite interpolation, an approach that, as mentioned
previously, exactly reproduces function values and derivatives at
grid points. The 8 × 8 matrix−vector products resulting from
Hermite interpolation in three dimensions are calculated very
efficiently using CPU vector instructions.
A comparison of the NAMD implementations of MSM and

PME was performed on the β-hairpin protein solvated in a
cubic box of 3757 water molecules for a total of 11.5 K atoms
and simulated with multiple time step integration, in which
long-range electrostatic forces were evaluated every 4 fs using
16 processors (1 node) in a Dell PowerEdge compute node of
the TACC Stampede system. The comparison shows that PME
achieves a simulation rate of 18 ns per day, whereas MSM using
Hermite interpolation with C3 splitting achieves 15 ns per day
and using cubic interpolation with C2 splitting only 11 ns per
day.
However, a comparison for the case of a larger simulation

using more processor cores demonstrates the scaling benefits of

MSM. The NAMD benchmark system ApoA1 (92 K atoms)58

simulated with 1 fs single time stepping using varying numbers
of Cray XE6 nodes (32 cores per node) of the Blue Waters JYC
test computer system shows that, while PME achieves faster
simulation rates for smaller core counts, MSM achieves
comparable scaling results with slightly faster simulation rates
for larger core counts. Figure 10 plots the results showing
nanoseconds per day versus number of cores. Table 2 lists the
performance measured in milliseconds per time step. The
performance crossover point occurs between 256 and 512
cores; the MSM performance continues to scale up to 1536
cores, whereas the PME performance reaches a plateau at 1024
cores.

5. CONCLUSION
The multilevel summation method (MSM) has recently been
implemented in the molecular dynamics program NAMD31,32

and provides now a successful alternative in computing
electrostatic forces arising in molecular dynamics (MD)
simulations of biomolecular systems. The practical accuracy
produced by MSM, although less than the numerical accuracy
available in typical use of particle−mesh Ewald (PME),1,2 is
sufficient for MD, as shown by a comparison of calculated water
properties such as density, diffusion constant, dielectric
constant, surface tension, radial distribution function, and
distance-dependent Kirkwood G-Factor. Agreement is also
found between MSM and PME in calculations of the interface

Figure 10. Performance of MSM and PME on ApoA1 (92 K atoms)
with 1 fs time stepping, on a Cray XE6 (32 cores per node). MSM
using Hermite interpolation with C3 splitting, a 5 Å grid spacing, and
12 Å splitting distance achieves 19.6 ns/day with 1536 cores, whereas
PME using quartic interpolation with 1.2 Å grid spacing, and 12 Å
splitting distance tops out at 17.6 ns/day with 1024 cores.
Performance of MSM here exceeds PME at 512 cores and higher.

Table 2. NAMD Performance Data, Measured in
Milliseconds per Integration Time Step, for Parallel Scaling
of a Simulation of ApoA158 on a Cray XE6 (32 Cores per
Node)

no. of cores with PME, ms/step with MSM, ms/step

1 1139 1381
32 55.5 68.1
128 15.2 18.1
256 9.1 9.8
512 6.6 6.3
1024 4.9 4.6
1536 5.0 4.4
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electrostatic potential at air−water and membrane−water
interfaces.
MSM has key advantages over PME. With nested

interpolation of softened pair potentials in real space, MSM
permits simulations without periodic boundary conditions in
some or all of the simulated dimensions. Instead, PME in its
common implementations can only be applied with fully
periodic boundary conditions. For example, simulations with
MSM can be performed with periodic boundary conditions
along the x,y-directions but not along the z-direction. Such
simulations allow different ion concentrations to be placed on
either side of a membrane bilayer, producing membrane pore
formation in MSM-based simulations. A related example for
now feasible simulations with NAMD is ion conduction
through neutral and charged graphene nanopores in the
presence of a large ion gradient. MSM can be further applied
to spherical systems without any periodicity. To illustrate this,
two proteins, a β-hairpin motif and the protein tryptophan
cage, have been simulated in spherical water droplets. In this
case, the simulation with MSM not only may be more realistic
but also requires a smaller atom count, roughly described by the
ratio (4πr3/3)/8r3 ≈ 0.5; now with MSM available, the
argument that periodic systems, even though larger per
elementary cell, avoid surface effects such as surface tension,
can actually be tested. In any case, the simulation examples
described in the present study demonstrate that MSM offers
flexibility in regard to boundary conditions and provides more
alternatives in simulation design than does PME.
Moreover, MSM offers improved parallel scalability over

PME. Unlike the PME algorithm that is based on the Fourier
transform, requiring communication that poses a limit to
scalability, MSM instead has a hierarchical structure with highly
localized arithmetic operations that permit effective utilization
of modern vector computational hardware units. According to
our performance benchmarks, the superior scalability of MSM
makes it competitive with PME and actually faster than PME in
case of simulations of large systems.
Ongoing is the development of improved interpolation for

MSM to provide higher accuracy for a given polynomial degree
p without increasing the computational cost. Future work
includes also the calculation of dispersion forces without
truncation with MSM-based NAMD; these forces, in particular,
their long-range contribution, are considered to be important
for membrane properties.29,30 With support in NAMD also for
long-range dispersion forces, the present CHARMM-prescribed
12 Å cutoff/splitting distance can be used as a true control for
MSM accuracy. High performance simulations will then be able
to achieve practical accuracy with a reduced splitting distance,
where a splitting distance of between 8 and 9 Å is expected to
double the overall simulation performance. Other future work
includes extending our earlier development efforts on GPU-
accelerated MSM for calculating electrostatic potential maps25

to support MSM-based NAMD on large-scale GPU-accelerated
parallel computers.
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