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Abstract. Pseudoexfoliation syndrome (PEXS) is a systemic 
disease caused by defects in the extracellular matrix (ECM) 
remodelling process leading to the chronic deposition of 
extracellular, fibrillary, white flaky pseudoexfoliation mate‑
rial (PEXM) throughout the body. Specifically, PEXM 
deposits on the lens capsule cause open‑angle glaucoma, 
cataracts and blindness in patients with PEXS. Several gene 
single nucleotide polymorphisms are linked to the develop‑
ment of PEXS in humans, including lysyl oxidase‑like 1 
gene, clusterin and fibulin‑5. The exact reason for the PEXM 
generation and its resulting pathogenesis is not well under‑
stood. However, defective ECM remodelling and oxidative 
stress (OS) have been hypothesized as significant events 
leading to the PEXM. Specifically, the link between OS and 
PEXS has been well studied, although the investigation is 
still ongoing. The present review explored recent advances 
in various aspects of PEXS and the involvement of OS in the 
eye for PEXS development.
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1. Introduction

Pseudoexfoliation syndrome (PEXS) is an age‑associated 
systemic disorder characterised by abnormal production and 
turnover of extracellular matrix (ECM), leading to the progres‑
sive deposition of extracellular, fibrillary, white flaky deposits 
in different tissues and organs of the body. ECM is a 3‑dimen‑
sional network of interacting macromolecular effectors that 
apart from tissue support and integrity affects growth factors 
availability, cell signaling and functional properties such as 
oxidative stress (OS) pathways (1,2). The most commonly 
affected ocular tissues reveal deposition of pseudoexfoliation 
material (PEXM) in the pupillary margin of the iris (3‑5). 
These alterations are responsible for pathological changes 
and sequelae in the anterior part of the eye, such as cataracts, 
zonular weakness, phacodonesis, lens subluxation/disloca‑
tion, iris rigidity and synechiae, blood‑aqueous barrier 
dysfunction, melanin dispersion, capillary haemorrhage, poor 
mydriasis, radial body complication, trabecula impairment, 
keratopathy, and even retinal vein occlusion in the posterior 
eye segment (6,7). As a result of the PEXM deposit on the lens 
capsule, a higher rate of open‑angle glaucoma cataracts and 
resulting blindness was observed in most PEXS patients. In 
addition to the eye, deposits are also found around the blood 
vessels of the connective tissue and organs such as the lungs, 
heart, liver, kidneys, gallbladder, and meninges (8‑10). Studies 
suggest that PEXM is associated with the development of 
systemic hypertension, myocardial infarction and cerebrovas‑
cular events.

Lindberg firstly described PEXS in 1917, when observed 
the whitish‑grey material deposit on the pupillary border in 
glaucoma patients. However, the term PEXS was coined later 
in 1954 by Dvorak‑Theobald, who noticed the aggregation of 
PEXM on the lens capsule, ciliary body, and zonules (3‑5). 
Ocular deposition of PEXM can be found in all structures 
of the anterior part of the eye (11,12). PEXM deposits can 
be macroscopically observed during the dilated slit‑lamp 
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examination and anterior segment optical coherence tomog‑
raphy. Although the production site of PEXM has not yet been 
identified, it is hypothesized to be synthesised either from 
the iris, lens epithelium, ciliary body or trabecula (11,13). 
Studies identified the chemical nature of the PEXM deposits, 
and it is made up of a complex glycoprotein/proteoglycan 
matrix comprising glycosaminoglycan, chondroitin and 
heparin sulfate, and tropoelastin. Further, it also consists of 
fibrillin‑1, fibronectin, vitronectin, laminin, collagen, amyloid, 
nidogen/entactin, microfibril‑associated glycoprotein, latent 
TGF‑b binding proteins, residues of galactose, a‑mannose, 
N‑acetyl‑D‑glucosamine, lysyl oxidase‑like 1 (LOXL1), and 
apolipoprotein E (14‑16). The particles of this abnormal mate‑
rial are insoluble, follow the aqueous humor's (AH) natural 
flow, and are finally deposited in the trabecula. Gradually, they 
inhibit the normal outflow of AH, leading to an increase in 
the intraocular pressure (17) and the development of a severe 
type of open‑angle glaucoma, identified as PEXG (pseudoex‑
foliation glaucoma). PEXG is the most commonly recognised 
cause of open‑angle glaucoma worldwide, accounting for 25% 
of this type of glaucoma. The 10‑year cumulative probability 
of PEXS patients developing PEXG is ~15% (18). PEXG is 
characterised by progressive degeneration of retinal ganglion 
cells, and their axons affect peripheral vision and result in a 
severe and irreversible visual loss (12,19). Therefore, prompt 
diagnosis of PEXS/PEXG is crucial because the affected 
patients have rapid and severe clinical course, poorer response 
to medications, higher rates of surgical complications, and 
worse prognosis than other forms of open‑angle glaucoma (12). 
Considering this and the significant impact of PEXS and 
PEXG in terms of patient health and socio‑economic costs, 
there is a necessity for innovative preventive and therapeutic 
policies. However, advances in treatment are mainly based 
upon an in‑depth comprehension of the underlying molecular 
mechanisms, especially in the early stages of the disease (20). 
Although the specific pathogenesis of this condition remains 
unknown, various studies have suggested OS, diminished 
cellular defence status, and ischemia being the most frequently 
reported factors (Fig. 1) (21).

Although the cause of the deposition and its resulting 
pathogenesis is not well understood, the role of ECM remodel‑
ling and OS has been studied in detail. Specifically, the link 
between OS and PEXS has been well established in recent 
years. In this review, we discuss advances in the pathogenesis 
of PEXS, especially the involvement of OS.

2. Methods

A systematic review of the literature published in English was 
performed from November 2021 to March 2022 in order to 
identify all published reports pertaining OS in PEXS in the 
eye. Studies were identified through a search consisting of: 
(1) a computerized search of Cochrane, Scopus and PubMed 
(National Library of Medicine) databases from January 
1952 through January 2022, (2) review of major ophthalmic 
textbooks and (3) the database ClinicalTrials.gov (www.
clinicaltrials.gov) was also searched for information about 
clinical trials. The following keywords and MeSH terms were 
used ‘pseudoexfoliation’, ‘pseudoexfoliation syndrome’, ‘pseu‑
doexfoliation material’, ‘oxidative stress’, ‘reactive oxygen 

species’, ‘eye’, ‘pathogenesis’. The searches were performed by 
three independent investigators (MP, PP and KK had equal 
contribution and performed the literature review and analysed 
the data). We only included articles with full text available in 
English. All pertinent articles were thoroughly assessed, and 
their reference lists were searched to identify other potentially 
relevant studies. The reviewers came to consensus on the selec‑
tion of full texts through discussion. CDG approved the final 
list of included studies, finalized the work and is the academic 
supervisor.

3. Incidence of PEXS

PEXS is a multifactorial disease which is widespread 
worldwide. Although PEXS occurrence is negligible in the 
middle‑aged population, its global incidence varies consid‑
erably across populations and countries, with the reported 
prevalence of PEXS ranging from 1.5 to 40.9% world‑
wide (22,23). The prevalence of PEXS varies from 3.6 to 34.2% 
in European countries, from 1.5 to 22.1% in Asian countries, 
and from 1.5 to 40% in African countries, suggesting a general 
lack of consensus on these epidemiologic studies (22,23). As 
of yet, it is unclear whether incidence of PEXS varies across 
populations or whether the reported variation could be because 
of study parameters such as study design, location, age of the 
population and target sample size. Nevertheless, older age, 
Scandinavian and Mediterranean race, genetic mutations, and 
solar/cosmic radiation are considered major risk factors for 
PEXS (24,25). Especially, PEXS have a high incidence among 
Scandinavians, and half of open‑angle glaucoma cases are 
caused by pseudoexfoliation in this population (7). Population 
studies have shown that PEXS is rarely observed before the 
age of 40, and its incidence increases with age (Fig. 1). Several 
studies on the PEXS estimated a 5 to 20% prevalence in an 
aged population regardless of geographical features (26). 
Specifically, PEXS is common in individuals >50 years, with 
its incidence increasing with age. Notably, the prevalence rates 
of PEXS are 25% in Icelanders over the age of 60, 20% in 
Finlanders, 0 in the Inuit population, 4.7% in Germans, and 
4% in English individuals (27‑29). Notably, the prevalence of 
PEXS was 5.0% over the age of 40 in Turkey. Further the popu‑
lation‑based studies suggest the prevalence of PEXS in India 
(1.5%), Pakistan (6.4%), England (4.0%), Saudi Arabia (9.3%), 
China (0.4%), Germany (4.7%), Saudi Arabia (9.3%), Greece 
(11.5‑17%) and Norway (6.3%). In general, there was no gender 
preference in PEXS occurrence (22, 27‑30). Besides, although 
PEXS is an age‑related disorder and most affected individuals 
are over 50 years old, there are also reported cases at younger 
ages (31). In these cases, it was remarkable that all patients had 
previously undergone one or more intraocular procedures, and 
so it was suggested that might be a causative association (31).

4. Genetic susceptibility of PEXS

Genetic studies conducted in populations worldwide clearly 
suggest a significant role of genetics in the pathogenesis 
of PEXS (Fig. 1). Initially, the genetic basis of PEXS was 
uncovered through a genome‑wide association study (GWAS) 
conducted on northern Europeans. Two single nucleotide 
polymorphisms (SNPs), rs1048661, and rs3825942, located in 
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the coding region of the lysyl oxidase‑like one gene (LOXL1), 
were linked to the development of PEXS in Scandinavians (32). 
LOXL1, a gene that encodes a lysyl oxidase, catalyses elastin 
and collagen crosslinking, located on chromosome region 
15q24.1, is essential for elastin fibre formation and homeo‑
stasis. After this initial observation, the association between 
these LOXL1 variants and PEXS has been extensively studied 
worldwide. Subsequent genetic studies have demonstrated that 
SNPs in exon 1 of the LOXL1 gene indicate the critical genetic 
risk factor for PEXS and PEXG in different individuals (9,33). 
These two SNPs of the LOXL1 gene have been identified across 
the globe (80‑100%) in PEXS/PEXG patients. Especially the 
association of LOXL1 SNPs with PEXS have been found in 
several human populations, including Europe, North America, 
Asia, Africa, and Australia.

In addition to LOXL1 polymorphisms, loss of 
heterozygosity (LOH) was observed in 94.11% of PEXS 
patients, with the highest incidence being observed in 
the markers D13S175, D7S478 and D7S479. The authors 
concluded that LOH possibly suggests a genetic role in 
PEXS pathogenesis (34,35). Its correlation with the altitude 
at which these patients lived could indicate an increased 
vulnerability to ultraviolet radiation (UVR) in the examined 
chromosomal regions (34,35). Similarly, genetic variants 

in Calcium Voltage‑Gated Channel Subunit Alpha1 A 
(CACNA1A) are linked with susceptibility to PEXS. Studies 
indicate that CACNA1A could change calcium levels at the 
cell surface leading to PEXM deposition (9,33,36). Besides, 
PEXS pathogenesis has been linked to fibulin‑5 (FBLN5), 
an extracellular framework protein that activates LOXL1, 
in PEXS progression. The authors reported that two novel 
noncoding polymorphisms within the FBLN5 gene were 
significantly associated with PEXS as risk factors (37). 
Interestingly, the mRNA and protein expression levels of 
FBLN5 are reduced in PEXS affected lens capsules, and this 
downregulation is associated with ECM remodelling (37).

5. Environmental factors affecting PEXS onset and 
progression

Nutrition plays an essential role in the progression and patho‑
genesis of PEXS (Fig. 1). A diet containing nutrients such as 
selenium can regulate the PEXS onset and progression. OS 
has also been linked to PEXS pathogenesis in the presence 
of nutrient deficiences (38). Specifically, regular consumption 
of dietary fibre‑rich vegetables and fruits, particularly when 
started from a young age, has been related to a lower risk of 
PEXS occurrence, signifying an antioxidative and protective 

Figure 1. Factors associated with the onset and progression of PEXS. PEXS, pseudoexfoliation syndrome. 
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role against this condition. Similarly, mild to moderate caffeine 
consumers were less likely to present PEXS than those who 
consume a lot of coffee (39,40). It has been proposed that 
caffeine consumption on a long‑term basis may contribute to a 
continuous PEXM accumulation in the eye.

Moreover, caffeine consumption has been shown to 
increase plasma homocysteine (Hcy) concentrations (41,42). 
Since Hcy has also been found elevated in AH, tear fluid and 
serum of PEXS patients (43), it could be suggested that the 
Hcy‑increasing effect of caffeine may signify a good asso‑
ciation between coffee consumption and PEXS (20). It is also 
known that Hcy has pro‑oxidant action. Its high concentra‑
tions may participate in the abnormal ECM repair detected 
in PEXS and other tissues, thus explaining the high vascular 
risk observed in PEXS patients (11,12). Therefore, it would be 
rational for such patients, especially those with bilateral eye 
involvement, to have total serum Hcy levels screened.

In a study by Kozobolis et al (44) about the epidemiology 
of pseudoexfoliation on the island of Crete, Greece, the 
authors reported that the prevalence of PEXS was higher 
in men and increased with age. They also found a possible 
correlation with high altitude and that PEXS was a risk factor 
for early intraocular presure (IOP) disturbances, especially 
in women. In two large studies from the USA, demographic, 
geographic and climatic factors were associated with PEXS 
occurrence (45,46). The authors examined mainly Caucasian 
individuals of different European ancestry and could not 
identify differences in PEXS incidence among the various 
descents. They found that participants who lived in the middle 
and southern regions of the country exhibited a reduced risk of 
PEXS, and they concluded that ambient temperature and sun 
exposure might be significant environmental factors involved 
in PEXS pathogenesis, as recent studies also confirmed (47,48).

6. Pathogenesis of PEXS

The pathogenesis of PEXS manifested mainly through the 
generation and deposition of insoluble fibrillary extracel‑
lular material on connective tissues and tissues close to the 
bloodstream. Other pathological changes that contribute to the 
PEXS include dysregulated degradation and ECM production, 
increased inflammation, and enhanced OS. Since PEXM is 
insoluble, it aggregates at the trabecular meshwork and blocks 
the normal flow of AH and thus, increasing the intraocular 
pressure in the eye. Although the primary cause is not yet 
understood, it is hypothesized that the PEXM deposition is one 
of the reasons for complications, including cataracts, zonular 
weakness, and lens dislocation.

LOXL1. Defects in the functions of LOXL1 are one of the 
major contributors to abnormal deposits of PXEM in ocular 
tissues. LOXL1 essentially maintains the homeostasis of 
fibrillar ECM via regulating the generation, maintenance and 
repair of the elastic connective tissue (49). LOXL1 essentially 
acts as a framework element ensuring spatially defined elastin 
deposition. Particularly, LOXL1 is involved in the crosslinking 
of elastin and collagen through its pro‑peptide, which binds to 
both fibulin‑5 and tropoelastin to target elastic microfibrils at 
elastogenesis sites (49). It has been demonstrated that LOXL1 
is a vital factor in preventing age‑related elastic fibre damage 

and loss of elasticity (50). Furthermore, LOXL1 expression 
is essential for standard IOP control, while deficiency causes 
modified conventional outflow physiology and ECM repair 
and homeostasis (51). Specifically, the fibrillar material 
deposits found in PEXS patients contain elastin and tropo‑
elastin, suggesting the link between defects of LOXL1 and 
the pathogenesis of PEXS. Changes in LOXL1 activation can 
result in an excessive aggregation of elastic fibre fragments 
into PEXS eyes.

Further, LOXL1 deficiency was found in the eye, and its 
deficiency increases susceptibility to optic nerve damage (52). 
Since the dysregulation in elastic fibre production and cross‑
linking is hypothesized to be the major contributor to the 
pathogenesis of PEXS, LOXL1 expression and polymorphisms 
have also been linked to the pathogenesis of this syndrome. 
Besides this, OXL1‑AS1, a long non‑coding RNA (lncRNA) 
synthesised from the LOXL1 gene, also has been linked to the 
PEXS. The nuclear LOXL1‑AS1 selectively bind to the mRNA 
processing protein, the heterogeneous nuclear ribonucleopro‑
tein‑L (hnRNPL). Both have a vital role in regulating total 
gene expression in eye cells. Interestingly, SNPs regulating 
the expression of LOXL1‑AS1 have been found in the patients 
of PEXS, suggesting the vital role of the LOXL1 gene in the 
pathogenesis of PEXS (53).

TGF‑β1. Another critical protein involved in the ECM 
remodelling and the pathogenesis of PEXS is tumor growth 
factor‑β1 (TGF‑β1), a fibrosis‑associated growth factor found 
in high levels, specifically in fibrotic diseases and experi‑
mental fibrosis models (54). Increased TGF‑β1 levels were 
noted in the AH of PEXS patients, and it has been associated 
with the production of several elastic fibrillary elements, like 
fibrillin‑1, that comprise the PEXM (55). Notably, TGF‑b1 is 
one of the most vital factors that triggers the expression of both 
LOXL1 and fibrillin‑1, which is the critical element of PEXS 
fibrils. Additionally, these factors also seemed to activate the 
construction of a specific elastic microfibrillar network into 
PEXS‑like fibrils, suggesting the contribution of TGF‑β1 in the 
PEXM deposition (56). Further, TGF‑β1 expression is corre‑
lated with decreased degradation of ECM via regulation of the 
activities of matrix metalloproteases (MMPs) and their tissue 
inhibitors (TIMPs). Of note, TGF‑β1 reduces the expression of 
MMP1 and MMP3 while increasing the expression of MMP2, 
TIMP1, and TIMP3, leading to reduced degradation of the 
newly synthesised matrix material. In patients with PEXS, 
inactive forms of MMP‑2, MMP‑3, and the active forms of 
TIMP1 and TIMP2 are higher than other MMPs. The aber‑
rant expression of these tissue remodelling enzymes leads to 
insufficient degradation of excess matrix material leading to 
the accumulation of PEXM (57).

Clusterin. Studies suggest that TGF‑β1 activation causes 
downregulation of clusterin (CLU), a molecular chaperone 
essential for folding denatured and misfolded proteins in the 
AH during the PEXM generation (58,59). CLU is a glyco‑
protein component of biological fluids and is found at higher 
levels in ocular cells. CLU isoforms act as an extracellular 
chaperone that reduces abnormal aggregation of proteins by 
favouring their unfolded state for proper refolding. Notably, 
the expression levels of CLU have been correlated with both 
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physiological and pathological processes, including regulation 
of lipid transport, apoptosis, cell‑cell and cell‑matrix interac‑
tions, and OS. Interestingly, elevated levels of CLU are found 
in PEXM deposits, which are colocalised with exfoliation 
fibrils and LOXL1 (59,60). Furthermore, the expression of 
CLU decreases in PEX individuals, which could be respon‑
sible for reduced chaperone function and deposition of PEXM 
in the anterior segment of the eye (61).

Fibulin‑5. Studies have suggested that LOXL1 activity is 
tightly regulated by fibulin‑5 (FBLN5), an extracellular scaf‑
fold protein. FBLN5 plays a crucial role in the activation of 
LOXL1, thereby controlling the deposition of elastin in the 
ECM. Notably, FBLN5 activates LOXL1 via binding to the 
N‑terminus of LOXL1. Studies have suggested that two poly‑
morphisms that have been found in the noncoding part of the 
FBLN5 gene could be a risk factor for PEXS (37). Further, 
studies have shown that low mRNA and protein levels of 
FBLN5 in the lens of PEXS patients promote deposition of 
PEXM by affecting ECM dynamics. Remarkably, FBLN5 
deficiency and the loss of interaction between FBLN5 and 
LOXL1 could cause accumulation of the inactive form of 
LOXL1, leading to the pathogenesis of PEXS.

7. Involvement of OS in PEXS

OS. OS is defined as excess reactive oxygen species (ROS) 
production in cells, mainly due to the imbalance in the genera‑
tion and clearance of free radicals and reactive metabolites. 
The presence of active oxygen radicals in biological mate‑
rials was first established in 1954 by Gerschman et al (62). 
Specifically, the toxic nature of oxygen was related to its 
partially reduced forms (63). Two years later, a hypothesis that 
oxygen radicals are produced as by‑products of biological reac‑
tions were responsible for mutations, cellular damage, cancer, 
and ageing (64). The discovery of the enzyme peroxidase 
dismutase was the beginning of a new era for exploring the 
effects of ROS on living organisations (65). In the subsequent 
decade, extensive investigations revealed that ROS is capable 
of causing oxidative damage in DNA, lipids, proteins, and 
other cellular targets (66). Nowadays, it has become clear that 
living organisms have adapted to moderately increased levels 
of ROS and have also developed mechanisms for using them 
in numerous physiological functions. Free radicals are now 
products of normal cellular metabolism and play a dual role: 
either beneficial to cells and organisms or harmful, depending 
on the amount generated at a particular time (67).

In biological systems, OS typically occurs when ROS 
are overproduced or the antioxidant defense mechanisms are 
insufficient. The delicate balance between ROS's beneficial 
and harmful effects is critical to living organisms and is main‑
tained by ‘redox regulation’. The redox regulation maintains 
homeostasis and protects living organisms from OS (68). 
Importantly, OS is essentially a disorder in the redox regula‑
tion (69), OS plays a significant role in biology and has been 
implicated in numerous pathophysiological processes (70). 
Depending on OS, a wide range of disorders may occur 
involving cellular dysregulation or altered processes such 
as inflammatory responses dysfunction, accelerated ageing, 
abnormal proliferation, carcinogenesis and even cell death (71).

OS in the eye. Recently we have reviewed the critical role of 
ECM in pathogenesis and treatment and particularly the roles 
of ECM effectors and biochemical pathways involved in the 
development and the progression of the PEXS (Fig. 1) (8). 
Here we further focused on the emerging roles of OS in PEXS. 
The eye is a highly metabolic organ devouring large amounts 
of energy. OS can affect the eye due to its anatomical and 
functional features. Specifically, the structural characteristics 
of the anterior eye segment tissues render them susceptible 
to a number of risk factors that can lead to an oxidative 
status (20). Notably, the eye is one of the organs constantly 
exposed to environmental factors that induce ROS production. 
Its anterior part and mainly the cornea is directly exposed to 
harmful atmospheric oxygen, toxins, radiation, physical abra‑
sion, air pollution, artificial light, cigarette smoke, fumes and 
gases from household cleaning products, toxic chemicals and 
some drugs (72,73). Further, the solar UVR consists of UVA 
(315‑400 nm), UVB (280‑315 nm) and UVC (100‑280 nm) is 
the primary source of ROS in the eye. The cornea is exposed 
directly to UVR and absorbs all UVC, 80% UVB and 34% UVA. 
Besides this, AH absorbs some of the UVB, the lens absorbs 
66% of UVA and 20% of UVB, and the retina absorbs only a 
minimal percentage of UVA (<1%), but no UVB or UVC (72). 
Absorption of UVR by ocular tissues, especially UVC and 
UVB, eventually leads to photochemical production of ROS 
[e.g. singlet oxygen (1O2), superoxide (O2

•‑), hydroxyl radical 
(OH•), peroxyl radical (ROO•)] (73,74) causing UVR‑induced 
molecular modifications (e.g. chain breaking, pyrimidine and 
thymine dimers and protein crosslinks) associated with patho‑
logical ophthalmic conditions such as cataract, glaucoma and 
age‑related macular degeneration (AMD) (75,76).

In addition to UVR, some chemotherapeutic, phototoxic 
or even herbal origin drugs and diagnostic dyes can induce 
the generation of ROS in the eye and thus cause early cata‑
racts or transient vision loss (77). For example, a drug widely 
used in photodynamic tumour therapy, such as γ‑cyclodextrin 
bicapped C60 [(γCyD)2/C60, CDF0], can effectively produce 
1O2 (78). Apart from its anatomical characteristics, the eye can 
also be affected by OS by virtue of its physical and metabolic 
characteristics. Notably, the mitochondria are a significant 
endogenous source of ROS in the eye, as it is a metabolically 
active organ that consumes large amounts of O2. Additionally, 
the eye's transparent structures, such as the cornea, AH, 
lens, vitreous and retina, allow continuous photochemical 
production of ROS (79). The biomolecular effectors of OS are 
summarised in Table I.

OS in the crystalline lens. The lens is particularly vulnerable to 
OS due to its continuous exposure to solar UVR and oxidants 
throughout its life. Since the lens has mostly fibrous cells, it 
does not regenerate after damage. Moreover, the reduced levels 
of antioxidant molecules in the lens nucleus and the absence 
of protein turnover lead to an impaired ability to repair. Thus, 
damages accumulate over time (80). Except for solar UVR, 
other sources of OS in the lens include smoke and oxidants 
from AH or those produced by the lens cells themselves. The 
lens acts as a filter and absorbs over 60% of UVA and 20% 
of UVB, thus preventing much of the radiation to reach the 
retina (73). As a result, the photooxidation of the thiol groups 
of the lens's crystallins forms disulfide bridges between the 
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Table I. Biomolecular effectors of OS in PEXS/PEXG.

   Expression levels 
Author Biomarkers Sample source increase/decrease  (Refs.)

Koliakos et al 8‑Iso‑PGF2a ΑH ↑ (127)
Saxena et al AGEs ΑH, serum ↑ (92,110,111,112)
Aydın Yaz et al
Schlötzer‑
Schrehardt U,
Shirakami et al
Botling Taube et al Antothrombin III ΑH ↑ (128)
Strzalka‑ ALDH1A1 (expression) Anterior lens ↑ (114)
Mrozik et al  capsule 
Dursun et al ARE ΑH, serum ↓ (129)
Dmuchowska et al Arginine and homo‑arginine AH ↓ (130)
Koliakos et al Ascorbic acid ΑH ↑ (130‑132)
Ferreira et al    
Dmuchowska et al    
Yimaz et al Ascorbic acid Serum ↓ (108)
Botling Taube et al C3 ΑH ↑ (128)
Dmuchowska et al Carnitine (Hydroxybutyryl‑ AH ↓ (130)
 and decatrienoyl‑ )
Dairou et al CAT serum ↓ (97,99,110)
Hosler et al    
Aydın Yaz et al    
Botling Taube et al CLSTN1 ΑH ↑ (128)
Doudevski et al Clusterin ΑH ↑ (59)
Zenkel et al Clusterin Lens epithelial cells ↓ (61)
Botling Taube et al CPE ΑH ↓ (128)
Sorkhabi et al CRP Serum ↑ (133)
Browne et al CTGF  ΑH ↑ (117)
Botling Taube et al DBP ΑH ↑ (128)
Tetikoğlu et al Disulphide Serum ↑ (134)
Koliakos et al ET‑1 ΑH ↑ (135,136)
Koukoula et al    
Park et al Flt3 ligand AH ↑ (137)
Park et al Fractalkine AH ↓ (137)
Botling Taube et al GPX3 ΑH ↓ (128)
Gartaganis et al GSH Lens epithelial cells ↓ (115)
Aydın Yaz et al GSH Serum ↑ (110)
Gartaganis et al GSSG ΑH ↓ (116)
Gartaganis et al GSH/GSSG ΑH ↓ (116)
Reddan et al H2O2 ΑH, serum ↑ (98,105)
Megaw
Puustjärvi et al Hcy ΑH, serum ↑ (43)
Dmuchowska et al Hydroxyanthranilic acid AH ↓ (130)
Zenkel et al IL‑6 ΑH ↑ (138)
Park et al IL‑8 ΑH ↑ (137,138)
Zenkel et al    
Dmuchowska et al Indoleacetaldehyde AH ↑ (130)
Botling Taube et al KNG‑1 ΑH ↑ (128)
Gartaganis et al MDA Lens epithelial cells ↑ (115)
Yağci et al MDA Serum ↑ (107,108,110)
Yimaz et al
Aydın Yaz et al
Strzalka‑Mrozik et al MGST1 (expression) Anterior lens capsule  ↑ (114)
Stafiej et al MGST1 (expression) Lens epithelial cells ↓ (139)
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Table I. Continued.

   Expression levels 
Author Biomarkers Sample source increase/decrease  (Refs.)

Park et al MIP‑1α AH ↑ (137)
Schlötzer‑Schrehardt et al MMP‑2 ΑH ↑ (120)
Strzalka‑ mRNA of SOD2, Lens tissues ↑ (114)
Mrozik et al ALDH1A1, MGST1
Vulovic et al NO• ΑH ↑ (140)
Yağci et al NO2

‑ (levels) Serum ↑ (107)
Turan G and Turan M PCNA Lens epithelial cells ↓ (141)
Dursun et al PON (activity levels) ΑH ↓ (129)
Yağci et al PON (activity levels) Serum ↓ (107)  
Dursun et al   ↓ (129)
Yağci et al Protein carbonyls ΑH ↑ (107,142)
Papadopoulou et al 
Papadopoulou et al Protein carbonyls Lens epithelial cells and ↑ (142)
  Anterior lens capsule
Yağci et al Protein carbonyls Serum ↑ (107)
Botling Taube et al RBP3 ΑH ↓ (128)
Dmuchowska et al S‑adenosylmethionine AH ↓ (130)
Yimaz et al Selenium ΑH, serum ↓ (38)
Ferreira et al SOD (activity levels) ΑH ↑ (132)
Uçakhan et al SOD (activity levels) Lens capsule ↑ (143)
Yağci et al SOD (activity levels) Serum ↑ (107,110)
Aydın Yaz et al
Strzalka‑Mrozik et al SOD2 (MnSOD) (expression) Anterior lens capsule ↑ (114)
Tetikoğlu et al SPA Serum ↓ (144)
Dursun et al TAC ΑH ↓ (129)
Dursun et al TAC Serum ↓ (129)
Faschinger et al TBARS ΑH ↑ (109,116)
Gartaganis et al
Schlötzer‑ TGF‑b1 ΑH ↑ (56,137)
Schrehardt et al
Park et al
Schlötzer‑Schrehardt et al TIMP‑2 ΑH ↑ (120)
Fountoulakis et al TIMP‑4 AH ↑ (145)
Vulovic et al TNF‑α ΑH ↑ (140)
Sorkhabi et al TNF‑α serum ↑ (133)
Dursun et al TOS ΑH ↑ (129)
Dursun et al TOS Serum ↑ (129)
Tetikoğlu et al Total thiol and native thiol Serum ↓ (134)
Tetikoğlu et al Thiol/disulfide Serum ↓ (134)
Turan G and Turan M TUNEL Lens epithelial cells ↑ (141)
Simavli et al XO (activity levels) ΑH ↑ (146)
Yağci et al XO (activity levels) Serum ↑ (107)
Yildirim et al Zinc Lens ↓ (22)

8‑iso‑PGF2α, 8‑iso‑prostaglandin F2α; AGEs, advanced glycation end products; AH, aqueous humor; ALDH1A1, aldehyde dehydrogenase 1; 
ARE, arylesterase; C3, complement factor 3; CAT, catalase; CLSTN1, calsyntenin‑1; CPE, carboxypeptidase E; CRP, C‑reactive protein; CTGF, 
connective tissue growth factor; DBP, vitamin D‑binding protein; ET‑1, endothelin 1; GPX3, glutathione peroxidase 3; GSH, glutathione; 
GSSG, glutathione disulfide; H2O2, hydrogen peroxide; Hcy, homocycteine; IL‑6, interleukin‑6; IL‑8, interleukin‑8; KNG‑1, kininogen‑1; 
MDA, malondialdehyde, malonic aldehyde; MGST1, microsomal glutathione S transferase; MMPs, metalloproteinases; mRNA, messenger 
ribonucleic acid; NO•, Nitric oxide; NO2‑, Nitrite (nitrogen oxoanion); PCNA, proliferating cell nuclear antigen; PON, paraoxonase; SOD, 
superoxide dismutase; SPA, serum prolidase activity; TAC, total antioxidant capacity; TBARS, thiobarbituric acid reactive substances; TIMPs, 
tissue inhibitors of metalloproteinases; TGF‑b1, transforming growth factor beta 1; TNF‑α, tumor necrosis factor; TOS, total oxidant status, 
total oxidative stress; TUNEL, terminal deoxynucleotidyl transferase‑mediated dUTP‑biotin nick end labeling; XO, xanthine oxidase.
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molecules, leading to protein aggregation and cataract forma‑
tion (81) ROS in the lens [e.g., O2

•‑, hydrogen peroxide (H2O2), 
OH•] can also be created endogenously through cellular 
metabolism in different cell compartments, such as mitochon‑
dria, peroxisomes and cytoplasm.

For example, O2
•‑can be produced by the typical electron 

transport system and the activity of cytochrome P450. The nico‑
tinamide adenine dinucleotide phosphate (NADPH) oxidase 
complex with Rac GTPases, associated with activating plasma 
membrane receptors by external signals like growth factors, 
can also produce O2

•‑. In addition, growth factor receptors can 
be activated by the UVR and produce ROS. Intracellular H2O2 
can be derived from superoxide dismutase (SOD) activity or 
created from ascorbate and O2 in the presence of Fe+3 or even 
generated from the AH. Finally, the reaction of H2O2 with 
metal ions (M+) can lead to OH• H O2

•‑ via the Fenton reac‑
tion (82). However, the endogenous production of ROS in the 
lens does not necessarily lead to OS since low concentrations 
of H2O2 could play a role as a signal transduction factor in the 
differentiation of lens epithelial cells and also be a significant 
regulatory molecule of numerous vital enzymes, such as phos‑
phatases and kinases (83). Under OS conditions, the selective 
oxidation of specific amino acids in the lens results in aggrega‑
tion and degradation of proteins, reduction of water solubility, 
crosslinking, charge changes, etc. (84,85) can significantly 
contribute to cataract development (86).

Additionally, ROS causes increased oxidation of amino 
acid residues of methionine, cysteine, tryptophan and phenyl‑
alanine in the lens, as evidenced by the formation of protein 
disulfides kynurenine, o‑Tyr and Met‑SO (87,88). Specifically, 
the associated ageing increase in Met‑SO formation is related 
to the loss of a number of protein activities that affect various 
functions of the lens (89,90). To protect against oxidation, 
the lens has evolved as an anaerobic system containing high 
concentrations of ascorbic acid and glutathione (GSH), an 
endogenous antioxidant molecule part of the antioxidant 
defence system (91). However, these defensive antioxidant 
molecules decrease with age, with GSH declining significantly 
in the lens nucleus. Subsequently, ascorbic acid is increasingly 
oxidised, leading to the accumulation of crystalline‑bound 
advanced glycation end products (AGEs) that contribute to the 
cataractogenesis (92).

OS in the epithelium of the crystalline lens. The metabolically 
active lens epithelial cells are primarily responsible for their 
defence against OS (93). UVA is the main responsible for ROS 
production in the lens epithelial cells. About 70% of UVA 
passes through the cornea towards lens epithelial cells reacting 
with NADPH and nicotinamide adenine dinucleotide (NADH), 
which are present in high concentrations in these cells producing 
ROS (e.g., 1O2, O2

•‑, H2O2) (94). Exposure of lens epithelial cells 
to UVA results in increased lipid peroxidation, decreased anti‑
oxidant enzymes e.g. catalase (CAT), reduced viability and cell 
death (95). UVB is estimated to be only 3% of the total UVR 
reaching the lens and can trigger apoptotic mechanisms in the 
lens epithelial cells and inactivate enzymes (96,97).

In addition to UV‑induced photooxidation, oxidative 
damage to the macromolecules of lens epithelial cells is 
also caused by elevated levels of cellular oxidants produced 
by exposure to toxic chemicals and failure of antioxidant 

defences (97). Moreover, lens epithelial cells can be affected 
by the high levels of H2O2 in the AH (98). H2O2 and peroxyni‑
trite (ONOO‑) are thought to be the essential oxidants of acute 
or chronic exposure of lens epithelial cells (97) and their 
elevated levels can cause oxidation‑dependent inactivation 
of crucial enzymes such as CAT, proteasome, and arylamine 
N‑acetyltransferases (NATs) (97,99). Oxidative damage to lens 
epithelial cells can also cause osmotic swelling of the lens and 
loss of its transparency (100).

OS in the AH. ROS production in AH is mainly due to UVR 
and inflammatory processes in adjacent structures, e.g., 
surgery (101,102). The AH contains ascorbic acid, proteins, 
certain amino acids (e.g. tyrosine, phenylalanine, cysteine, 
tryptophan) and uric acid, which act as filters absorbing 
the majority of UVR, leaving only a tiny part of it reaching 
the structures of the eye (103). Despite the critical role of 
endogenous UV filters like ascorbic acid, their photooxida‑
tion can produce potent oxidising molecules, such as 1O2 and 
H2O2 (104). The increased concentration of H2O2 in the AH 
has been found to reduce GSH metabolism (105). It may cause 
damage to the corneal endothelium, the lens and the radial 
body, particularly the trabecular meshwork. In vitro studies 
have associated increased H2O2 levels with reduced AH 
drainage, resulting in glaucoma (79).

In contrast to the findings mentioned earlier, there is a view 
that OS does not cause permanent damage to the AH. Any 
alterations of vital components are considered to be part of its 
antioxidant defence and are relatively reversible after restoring 
optimal conditions. However, long‑term exposure to OS results 
in loss of antioxidants and tissue damage (89).

OS in the pathogenesis of PEXS. OS plays a crucial role in 
the pathogenesis of several eye diseases, including PEXS. 
Disturbances in the delicate balance between ROS and 
antioxidant defense mechanisms of the eye may contribute 
to the development of PEXS. Evidence suggests that high 
malondialdehyde (MDA) levels, which are the end‑product of 
polyunsaturated fatty acid peroxidation reaction and a marker 
of free radical‑mediated lipid peroxidation, are found in the 
patients of PEXS (106‑108). Similarly, high levels of thiobarbi‑
turic acid reactive substances (TBARS), the major breakdown 
products of lipid peroxides, were significantly higher in the 
AH samples collected from primary open‑angle glaucoma 
patients (109). Besides, increased levels of AGEs are also 
observed in the AH and serum of PEXS patients (110,111).

Additionally, these specific oxidation and glycation prod‑
ucts could trigger the glaucoma formation associated with 
PEXS (112). Specifically, these end products can induce ROS 
generation, thus resulting in the deterioration of trabecular 
meshwork cells. Therefore, correcting the OS‑induced 
damage using antioxidants could be considered a thera‑
peutic strategy to prevent glaucoma in PEXS patients (113). 
According to these findings, OS and its end products might 
be a vital factor in PEXS pathogenesis. Further, the levels 
of superoxide dismutase 2 (SOD2), aldehyde dehydrogenase 
1a1 (ALDH1A1), and microsomal glutathione transferase 1 
(MGST1) which are part of the essential antioxidant defense 
system, are high in the anterior lens capsule of PEXS 
patients (114). However, antioxidant enzymes, SOD and CAT 
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were significantly lower in PEXS patients (110). Similarly, the 
levels of GSH decrease in the lens epithelial cells of PXES 
patients (115,116). The antioxidant system defence failure 
could result in inadequate OS response and pseudoexfoliation 
development.

OS elevates the levels of free radicals, TGF‑b1 and other 
growth factors in the eye. It is a critical factor in developing 
fibrosis in the PEXS‑affected eyes (117). Also, OS disrupts the 
balance between MMPs and TIMPs, leading to dysregulated 
ECM in the eye of PEXS patients (118). TIMPs imbalance 
has been implicated in various abnormal fibroblastic disor‑
ders (119), including the development of PEXM and 
PEXG (120). Studies have found that TGF‑b1 may up‑regulate 
OS and have a synergic external role in the PEXS develop‑
ment (121,122). Especially, TGF‑b1‑mediated upregulation of 
LOXL1 could promote fibrosis in the eye of PEXS patients. 
Further, studies have indicated the synergy between TGF‑β1 
and OS in the activation of the LOXL1 (20,122). Therefore 
it could be suggested that the abnormal ECM deposition can 
be triggered by OS, and TGF‑b1 under the high‑risk LOXL1 
haplotype may contribute to the PEXS aggregates in the ocular 
tissues (20).

OS is also known to modify glutamine synthase and 
thus influence glutamate/glutamine metabolism, leading 
to increased neurotoxic concentrations of glutamate (123). 
Further, OS can also damage the mitochondria present in 
the cells of optic nerves resulting in a reduced energy supply. 
Considering the critical role of mitochondrial disfunction in 
glaucoma evolution, therapies targeting mitochondria with 
specific antioxidants may improve the survival of retina 
ganglion cells to protect them from glaucomatous degen‑
eration (124). Indirectly, OS can also cause vascular changes 
resulting in impaired blood flow to the optic nerve, injury 
to trabecular meshwork that decreases AH outflow and 
elevated IOP and glial cell dysfunction (110,125,126). Overall 
these studies point to the regulation of OS to regulate the 
pathogenesis of PEXS.

8. Conclusions and future directions

Numerous studies have shown that OS plays a crucial role in 
pseudoexfoliation and is critical for determining the onset and 
evolution of either the PEXS or PEXG. With human longevity 
increasing, PEXS and PEXG will become severe clinical 
problems as they cause several severe complications, including 
vision loss. Hence, a prompt diagnosis is essential to avoid a 
challenging clinical course with poor response to treatment, 
timely surgery and an overall good prognosis. Diagnostics 
have greatly improved, and standardised treatment protocols 
are currently available. Current disease management focuses 
primarily on increasing antioxidants concentrations to 
compensate for OS. Specifically, the diet modifications and 
various antioxidant supplements have been used in patients 
with PEXS, however, with limited success. Therefore, we need 
to develop novel tools to reduce OS in the eye of the patient 
with PEXS.

Over the past decade, several studies have been undertaken 
to elucidate the molecular basis of this disease. Still, the exact 
mechanism of triggering the PEXM and its deposition and 
associated pathologies remain unclear. Efforts to unearth the 

causes for this devastating disease should be a priority. At 
present, we better comprehend the genetic and environmental 
factors involved in the PEXS. However, the involvement of 
genetic and environmental factors in making one population 
susceptible has to be elucidated. Recent studies have uncovered 
several genes involved in the pathogenesis of PEXS/PEXG. 
Still, we do not have clear reasons for all the pathological 
processes. Thus, we may need to expand the studies on both 
population and molecular levels to get insights into the patho‑
genesis of PEXS. Also, future studies are required to uncover 
the reasons for varying degrees of susceptibility between 
human populations.
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