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Background and Objectives: Early warning of bacterial and viral infection, prior to the 
development of overt clinical symptoms, allows not only for improved patient care and 
outcomes but also enables faster implementation of public health measures (patient 
isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek 
to determine the upper limits of early warning detection through physiological measurements. 
Second, we investigate whether the detected physiological response is specific to the 
pathogen. Third, we explore the feasibility of extending early warning detection with 
wearable devices.

Research Methods: For the first objective, we developed a supervised random forest 
algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms 
(fever). We used high-resolution physiological telemetry data (aortic blood pressure, 
intrathoracic pressure, electrocardiograms, and core temperature) from non-human 
primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). 
Second, to determine reusability across different pathogens, we evaluated our algorithm 
against three independent physiological datasets from non-human primate models 
(N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. 
For the third objective, we evaluated performance degradation when the algorithm was 
restricted to features derived from electrocardiogram (ECG) waveforms to emulate data 
from a non-invasive wearable device.

Results: First, our cross-validated random forest classifier provides a mean early warning 
of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 
0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to 
datasets from different pathogen exposures – a mean early warning of 51 ± 14 h and 
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AUC of 0.95  ±  0.01. Last, with a degraded feature set derived solely from ECG, 
we observed minimal degradation – a mean early warning of 46 ± 14 h and AUC of 
0.91 ± 0.001.

Conclusion: Under controlled experimental conditions, physiological measurements can 
provide over 2 days of early warning with high AUC. Deviations in physiological signals 
following exposure to a pathogen are due to the underlying host’s immunological response 
and are not specific to the pathogen. Pre-symptomatic detection is strong even when 
features are limited to ECG-derivatives, suggesting that this approach may translate to 
non-invasive wearable devices.

Keywords: machine learning, random forest, physiological signals, incubation period, pre-symptomatic, early 
infection detection, filovirus and viral hemorrhagic fever, non-human primate

INTRODUCTION

Early warning of pathogen exposure, prior to the development 
of overt clinical symptoms, such as fever, has many advantages: 
earlier patient care increases the probability of a positive 
prognosis (Stiver, 2003; Bausch et al., 2010; Bociaga-Jasik et al., 
2014; Tosh and Sampathkumar, 2014) and faster public health 
measure deployment, such as patient isolation and contact 
tracing (Khan et  al., 1999; Eichner, 2003; Pandey et  al., 2014), 
which reduces transmission (Fraser et  al., 2004). Following 
pathogen exposure, there exists an incubation phase, where 
overt clinical symptoms are not yet present (Evans and Kaslow, 
1997). This incubation phase can vary from days to years 
depending on the virus (American Public Health Association, 
1995; Lessler et  al., 2009) and is reported to be  3–25  days 
for many hemorrhagic fevers (Bausch et  al., 2010; Eichner 
et  al., 2011; Pavlin, 2014; Tosh and Sampathkumar, 2014) and 
2–4  days for Y. pestis (Kool and Weinstein, 2005). Following 
this incubation phase, the prodromal period is marked by 
non-specific symptoms such as fever, rash, loss of appetite, 
and hypersomnia (Evans and Kaslow, 1997).

Figure  1 presents a conceptual model of the probability of 
infection detection Pd during different post-exposure periods 
(incubation, prodrome, and virus-specific symptoms) for current 
specific (i.e., molecular biomarkers) and non-specific (i.e., 
symptoms-based) diagnostics. Overlaid on this plot, we include 
an “ideal” sensing system capable of detecting pathogen exposure 
even during the earliest moments of the incubation period. 
We  hypothesized that quantifiable abnormalities (relative to a 
personalized baseline, for instance) in high-resolution 
physiological waveforms, such as electrocardiograms, blood 
pressure, respiration, and temperature, before overt clinical signs 
could be a basis for the ideal signal in Figure 1, thereby providing 
advanced notice (the early warning time, Δt  =  tfever − tideal) of 
imminent pathogen-induced illness.

In addition to characteristic clinical presentations, most 
infectious disease diagnosis is based upon the identification 
of pathogen-specific molecular signatures (via culture, PCR/
RT-PCR or sequencing for DNA or RNA, or immunocapture 
assays for antigen or antibody) in a relevant biological fluid 
(Evans and Kaslow, 1997; Ksiazek et al., 1999; Bausch et al., 2000; 

Drosten et  al., 2002, 2003; Mahony, 2008; Muldrew, 2009; 
Kortepeter et  al., 2011; Sedlak and Jerome, 2013; Liu et  al., 
2014b). Exciting new approaches enabled by high-throughput 
sequencing have shown the promise of pre-symptomatic detection 
using genomic (Zaas et  al., 2009; Woods et  al., 2013) or 
transcriptional (Malhotra et  al., 2013; Caballero et  al., 2014; 
Connor et  al., 2015; Speranza et  al., 2018) expression profiles 
in the host (Shurtleff et  al., 2015). However, these approaches 
suffer from often prohibitively steep logistic burdens and 
associated costs (cold chain storage, equipment requirements, 
qualified operators, and serial sampling); indeed, most infections 
presented clinically are never definitively determined etiologically, 
much less serially sampled. Furthermore, molecular diagnostics 
are rarely used until patient self-reporting and presentation of 
overt clinical symptoms such as fever.

Previous work on physiological signal-based early infection 
detection work has been heavily focused on systemic bacterial 
infection (Korach et  al., 2001; Chen and Kuo, 2007; Ahmad 
et  al., 2009; Papaioannou et  al., 2012; Scheff et  al., 2012, 
2013b), and largely centered upon higher sampling rates of 
body core temperature (Williamson et al., 2007; Papaioannou 
et al., 2012), advanced analyses of strongly-confounded signals 
such as heart rate variability (Korach et  al., 2001; Chen 
and Kuo, 2007; Ahmad et  al., 2009) or social dynamics 
(Madan et  al., 2010), or sensor data fusion from already 
symptomatic (febrile) individuals (Sun et  al., 2013). While 
great progress has been made in developing techniques for 
physiological-signal based early warning of bacterial infections 
and other critical illnesses in a hospital setting (Heldt et  al., 
2006; Liu et  al., 2011, 2014a; Lehman et  al., 2014), efforts 
to extend these techniques to viral infections or other 
communicable pathogens in non-clinical contexts using 
wearable sensor systems have only recently been pursued 
in observational studies on human subjects, primarily as a 
rapid response to the COVID-19 pandemic (Li et  al., 2017; 
Miller et  al., 2020; Mishra et  al., 2020; Natarajan et  al., 
2020; Quer et  al., 2021). While rapid progress has been 
made in detecting COVID-19 in humans using physiological 
signals, the uncontrolled conditions inherent in an 
observational study preclude the type of systematic analyses 
that are possible with controlled animal models.
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In this paper, we  present a proof-of-concept investigation 
on detecting pathogen exposure from physiological measurement 
data. We  leverage telemetry data collected on animal models, 
where the exposures are well characterized in terms of the 
challenge time and the route, dose, and strain of the pathogen 
exposure. We  focus the investigation around three research 
questions: (1) what are the upper limits for detecting pathogen 
exposure based solely on physiological measurements? (2) are 
the indications derived from physiological measurements specific 
to a pathogen? and (3) is it feasible to use non-invasive wearable 
sensors to monitor for illness?

MATERIALS AND METHODS

Figure 2A outlines our overall methodology: telemetry systems 
continuously measured and recorded physiological data for six 
non-human primate model studies, where the animals were 
exposed to different viral or bacterial pathogens. The data are 
labeled and pre-processed to remove time dependence and 
extract summary features. Using a subset of the studies, 
we  develop two random forest classifiers to detect the signs 
of pathogen exposure during the pre-fever and post-fever time 
periods and leverage a binary integration technique to add 
an element of memory into the model and control the false 
alarm rate. We  describe these, our core methods, together 
with the fine tuning of our model parameters and performance 

evaluation of our trained models against the held-out studies 
here. Using this methodology, we  determine the upper limits 
of sensitivity to detect pathogen exposure that can be achieved 
in these controlled conditions.

Data Set: Animal Studies
Table 1 provides a summary of the six non-human primate studies 
conducted at US Army Medical Research Institute of Infectious 
Diseases (USAMRIID). All animal studies were conducted under 
an Institutional Animal Care and Use Committee (IACUC) approved 
protocol in compliance with the Animal Welfare Act, PHS Policy, 
and other Federal statutes regulations relating to animals and 
experiments involving animals; the research facility is accredited 
by the International Association for Assessment and Accreditation 
of Laboratory Animal Care and adheres to principles stated in 
the Guide for the Care and Use of Laboratory Animals, and the 
National Research Council, 2011.

In studies 1 and 2, rhesus and cynomolgus macaques, 
respectively, were exposed to the Marburg Angola virus referred 
to as MARV (Marburg virus/H.sapiens-tc/ANG/2005/Angola-
1379c – USAMRIID challenge stock “R17214”). In study 3, 
cynomolgus macaques were exposed to Ebola virus (EBOV) at 
a target dose of 100 plaque forming units (pfu; Ebola virus/H.
sapiens-tc/COD/1995/Kikwit-9510621; 7U EBOV; USAMRIID 
challenge stock “R4415;” GenBank # KT762962). In study 4, 
African green monkeys were exposed to the Malaysian Strain 

FIGURE 1 | Phases following pathogen exposure. This notional schematic shows the probability of detection (Pd) for current symptoms-based detection (red curve) 
and an ideal signal (green curve) vs. time (viral exposure at t = 0), overlaid with a typical evolution of symptoms. An ideal sensor and analysis system would 
be capable of detecting exposure for a given Pd (and probability of false alarm, Pfa) soon after exposure and during the incubation period (tideal), well before the non-
specific symptoms of the prodrome (tfever). We define the difference Δt = tfever − tideal as the early warning time.
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of Nipah virus (NiV) isolated from a patient from the 1998 to 
1999 outbreak in Malaysia and provided to USAMRIID by the 
Centers for Disease Control and Prevention. In study 5, cynomolgus 

macaques were exposed to the Josiah strain of the Lassa virus 
(LASV; challenge stock “AIMS 17294;” GenBank #s JN650517.1, 
JN650518.1). In study 6, African green monkeys were exposed 

A

B

C

FIGURE 2 | Overview of the workflow of our early warning algorithm. (A) Top level approach including the timeline for labeling the data. (B) Detail on how beat-by-
beat data is conditioned to remove noise and diurnal cycles and summary statistics are extracted as features for the two classifiers. (C) A block diagram of a  
two-stage detection logic to reduce false alarms.
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to Yersenia pestis (Y. pestis), a causative bacterial agent of bubonic 
and pneumonic plague. Additional details on studies 1, 5, and 
6 have been published elsewhere (Malhotra et al., 2013; Johnston 
et al., 2015; Ewers et al., 2016). Dependent on the study, animals 
were exposed under sedation via either aerosol, intramuscular 
(IM) injection, or intratracheal (IT) exposure (see Table  1).

In each study, the animals were implanted with remote 
telemetry devices (Konigsberg Instruments, Inc., T27F or T37F, 
or Data Sciences International Inc. L11: see details in Table  1) 
3–5 months before exposure, and, if used, with a central venous 
catheter 2–4  weeks before. They were then transferred into 
BSL-3 (bacterial exposures) or BSL-4 (viral exposures) 
containment 5–7  days prior to challenge. Baseline data from 
the telemetry devices were collected for 3–7 days before exposure. 
Monitoring via the telemetry devices continued until death 
or the completion of the study. The mean duration of recordings 
within each study is shown in Table  1. The exposure time 
(t  =  0) denotes the time of IM injection or IT exposure or 
when a subject was returned to the cage following aerosol 
exposure (~20  min).

Data from a total of 46 animal subjects from the six studies 
were available. Eight subjects from the EBOV exposure study 
were excluded from post-exposure analysis because they received 
therapeutic interventions following the challenge, which could 
be  a confounding factor. Five subjects across the cohorts were 
excluded on the basis of either substantial data loss from 
equipment failure or development of fever more than 2  days 
prior to the studies’ mean (i.e., possible co-morbid infections 
or complications). This resulted in a total of 33 animal subjects 
for our analytical cohort (N  =  33).

Multimodal physiological data from the animal subjects 
were made available in NSS format (Notocord Systems, 
Croissy-sur-Seine, France). The multimodal physiological data 
from the implanted telemetry devices included raw waveforms 
of the aortic blood pressure (sampling frequency fs = 250 Hz), 
electrocardiogram (ECG; fs  =  500  Hz), intrathoracic pressure 
(fs  =  250  Hz), and core temperature (fs  =  50  Hz). All signals 
were measured internal to the animals, which generally 
resulted in very high-signal fidelity. Using Notocord software, 
we  extracted the features listed in Table  2 from the 
raw waveforms.

Data Labeling
We categorized all features retrieved from the Notocord system 
(Table  2) as: pre-exposure baseline or simply baseline – data 
collected from the start of the recording up to 12  h before 
the viral or bacterial challenge; and post-exposure – data collected 
24  h after the viral or bacterial challenge until death or the 
completion of the study. Relative timing of the labeled regions 
is depicted in Figure  2A. Data from 12  h before and 24  h 
after viral or bacterial challenge were excluded from performance 
metrics due to differences in animal handling and exposure 
sedation that resulted in significant physiological deviations 
from baseline data unrelated to pathogen infection.

All subjects across all six studies developed fever as a result 
of the pathogen exposure. For early warning, fever onset is 
an important reference point. We  define fever onset as the 
first time that the subject’s core temperature measurement 
exceeds 1.5°C above that subject’s diurnal baseline (Laupland, 
2009) with the additional constraint that the temperature is 
sustained above threshold for at least 2  h. Leveraging this 
fever onset, we  further categorized the post-exposure data as 
being pre-fever – before onset of fever; or post-fever – after 
onset of fever.

Data Pre-processing: Conditioning 
Physiological Data
Figure  2B illustrates the key steps taken to condition the 
features (Table  2) extracted from the Notocord system after 
the data labeling. These steps are applied per subject and per 
feature to reduce diurnal and inter-subject time dependencies 
in the data. As an example, the time series feature, Bazett, 
which represents QT-corrected intervals from an ECG waveform 
are shown at each processing stage.

Step  1: Quantile Filtering
We apply quantile filtering to remove any outliers that result 
due to motion, poor sensor placement, or intermittent 
transmission drop outs. We  batch process the raw beat-to-beat 
values for the feature/subject pair in non-overlapping intervals, 
k-minutes per epoch, and omit local outliers from the top 
and bottom 2% of each interval.

TABLE 1 | Summary of non-human primate studies used.

Study Pathogen
Exposure 
method

Species
Total 

subjects
Exclusions 

number, reason
Subjects 

analyzed (M, F)

Days of 
data 

mean ± std

Days to fever 
mean ± std

Telemetry 
system(s)

1 MARV (Ewers et al., 2016) Aerosol Rhesus 5 0 5 (3, 2) 14.4 ± 0.3 4.0 ± 0.4 ITS T27F
2 MARV IM Cynomolgus 11 2, premature fever 9 (7, 2) 11.4 ± 0.9 3.9 ± 1.5 ITS T27F
3 EBOV Aerosol Cynomolgus 15 1, corrupt signal  

8, therapeutic 
interventions

6 (3, 3) 12.0 ± 2.6 3.9 ± 0.3
ITS T37F; 
DSI L11

4 NiV (Johnston et al., 2015) IT African green 
monkey

7 2, premature fever 5 (5, 0) 15.6 ± 7.1 4.1 ± 1.8 ITS T27F

5 LASV (Malhotra et al., 
2013)

Aerosol Cynomolgus 4 0 4 (4, 0) 24.2 ± 15.2 3.5 ± 0.4 ITS T27F

6 Y. pestis Aerosol African green 
monkey

4 0 4 (4, 0) 10.3 ± 1.2 3.2 ± 1.0 ITS T27F
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Step  2: Baseline Diurnal Statistics
We estimate diurnal statistics (mean, μi, standard deviation, 
σi) for each ith interval of a 24  h  day across all baseline 
days. For example, consider a k  =  60  min epoch and the 
i  =  1 interval spanning 12:00  AM to 1:00  AM, then for a 
single subject, we  find all the feature samples from baseline 
days that were measured within the 1st hour of their respective 
day. From this multi-day set, we  compute μ1 and σ1, which 
represent the subject’s baseline between the hours of 12:00 AM 
and 1:00  AM. We  repeat this for each hour of the day, 
i  =  2, 3, …, 24, each feature, and each subject to construct 
individualized baseline diurnal profiles, as illustrated in 
Figure  2B.

Step  3: Normalization
Using the baseline mean, μi, and standard deviation, σi for 
each interval i, we  normalize all corresponding intervals (i) 
in the pre- and post-exposure data, thereby removing the 
diurnal time dependence from the data.

Step  4: Extract Summary Statistics
Lastly, we  down-sample the standardized, high-resolution (beat-
to-beat) data obtained from Step 3 by extracting summary statistics 
from each l-minute epoch. The summary statistics include mean, 
25th quantile and 75th quantile. Extracting the summary statistics 
serves to characterize the underlying distribution within an epoch, 
but also provides time alignment across the different feature 
sources, which may be  sampled at disparate rates. Note that the 
k-minute epoch selected for steps 1–3, and l-minute epoch selected 
for step  4 need not be  the same length.

Random Forest Ensemble
We train our random forest models on two post-exposure 
stages, thus allowing the algorithms to adapt to different 
physiological cues during the pre-fever and post-fever phases. 
The pre-fever random forest model is optimized to discriminate 
the earliest stages of illness by training it on pre-fever data 
samples vs. baseline. The post-fever random forest learns 
discriminants of the febrile phase of illness by training it on 
post-fever data samples vs. baseline. The number of data points 

used for training is balanced for equal representation of 
the classes.

Both models, pre-fever and post-fever, are trained using 
the l-minute epoch summary statistics generated in the data 
pre-processing step, including mean, 25th and 75th quantiles 
for all 12 features listed in Table  2.

The models are implemented using the TreeBagger class in 
the MATLAB Statistics and Machine Learning Toolbox.

Detection Logic
We next apply a two-stage detection process, depicted in 
Figure  2C, to the prediction scores generated by the pre- and 
post-fever models for each l-minute epoch, with the primary 
goals of reducing the overall false alarm rate and incorporating 
recent historical scores in the decision.

In stage one of the detection process, a time series of feature 
vectors is processed on two parallel paths. One path calculates 
a pre-fever random forest score while the other path 
independently calculates a post-fever random forest score. On 
each path, the score is compared to a threshold associated 
with the respective model (threshold selection is described in 
section “Model Tuning”). Initial detections occur when a score 
exceeds the threshold. To reduce the likelihood of spurious 
detections, we  buffer the initial detections over a window of 
n epochs and perform binary integration (Shnidman, 1998), 
calculating a moving average over an l*n minute window.

In stage 2 of the detection process, the parallel paths are 
reunited by taking the maximum of the pre-fever and post-
fever moving average value at each epoch. This combined score 
is compared to a second stage threshold of m/n, where m is 
an integer such that m ≤ n. Combined scores in excess of 
m/n are declared to be  in the exposed class, and we  use the 
term “declaration” to denote the final decision from the two-stage 
processing. Note that the buffering aspect of binary integration 
imposes some latency on the system, so no declarations are 
reported in the first l*n minutes.

Performance Metrics
We evaluate overall performance of our models using three 
key performance metrics: probability of detection, Pd, probability 

TABLE 2 | List of extracted physiological features and the raw waveform from which they are derived.

Feature name prefix Raw signal Description

AOPAMean Aortic blood pressure Approximated mean arterial pressure between two successive diastoles,  
1/3*Psystolic + 2/3*Pdiastolic

AOPDiastolic Aortic blood pressure Aortic pressure during diastole
AOPSystolic Aortic blood pressure Aortic pressure during systole
RR Electrocardigram Interbeat interval measured between adjacent R peaks
HR Electrocardigram Heart rate computed between two successive diastoles from the ECG waveform (inverse of RR)
PR Electrocardigram Time interval between P and R waves
QRS Electrocardigram Time interval between Q and S waves
QT Electrocardigram Time interval between Q and T waves
Bazett Electrocardigram QT interval corrected per the Bazett method, /QT RR  (Bazett, 1920)
Fridericia Electrocardigram QT interval corrected per the Fridericia method, 3/QT RR  (Fridericia, 2003)
RespMean Intrathoracic pressure Mean respiratory rate calculated over a non-overlapping 200 s time window
Temp Temperature Core temperature

For each feature name prefix, three summary statistics are computed with suffixes _Mean, _Q25, and _Q75 for the mean, 25th and 75th quantiles, respectively.
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of false alarm, Pfa, area under the receiver operating curve 
(AUC), and mean early warning time Δt.

We calculate the probability of correct declaration, Pd, as the 
number of true positive declarations over the total number of 
post-exposure samples. In addition, we compute Pd on the subset 
of pre-fever and post-fever samples. We  use the term, system Pd, 
to represent correct detection over all post-exposure data samples 
regardless of fever status, while pre-fever Pd indicates the refinement, 
where correct detections are evaluated exclusively on the subset 
of pre-fever data samples. The probability of false alarm, Pfa, (also 
referred to as the system Pfa) is defined as the number of false 
positive declarations over the total number of baseline samples. 
In order to estimate small false alarm rates with meaningful 
precision, we  require a large number of baseline data samples. 
For false alarm analysis, we  supplement with baseline data from 
some animals that were excluded from the primary analysis. These 
data include seven full days of measurements from each of nine 
animals prior to pathogen exposure: seven subjects from the 
EBOV study (excluded due to therapeutic intervention following 
exposure) and two subjects from the NiV study (which developed 
fever earlier than our exclusion criteria). We compute 95% confidence 
intervals for Pd and Pfa assuming normal distribution as the 
number of trials is large (the number varies depending on the 
dataset and metric under evaluation, but is greater than 500 for 
all scenarios considered here).

We generate receiver operating characteristic (ROC) curves 
to measure system performance by calculating Pd vs. Pfa at a 
series of threshold values (sweeping the first-stage detection 
threshold while holding the second-stage m/n threshold constant) 
and report the AUCs evaluated against pre-fever and post-fever 
data samples.

Another important measure of system performance is the 
mean early warning time, Δt. The early warning time for 
an individual subject is defined as the time of the first true 
declaration minus the time of fever onset. We  compute the 
mean across all subjects to characterize the early warning 
time afforded by the system and report 95% confidence 
interval based on a t-distribution since the number of subjects 
is small (<30 for the two subgroups considered here).

Performance Evaluations
We evaluate detection performance under three distinct scenarios 
to address our core research questions. First, to answer the 
fundamental question of how well pathogen exposure can 
be detected based solely on physiological measurements, we focus 
on data from the subset of N  =  20 animal subjects from the 
EBOV and MARV studies (Studies 1–3). We  develop our 
algorithms using a 3-fold cross-validation approach, which has 
been shown to perform better (Shao, 1993) than leave-one-out 
validations for small dataset. This approach explicitly varies 
five experimental variables (species and sex of animal, exposure 
route, pathogen, and target dose; see Table  1) across the three 
partitions, which reduces the likelihood of biasing the model 
for any particular condition.

Second, to evaluate whether the early warning capabilities 
of our algorithm extend to other pathogens, we  train the 

models on the N  =  20 subjects from EBOV and MARV and 
apply them to an independent dataset of N = 13 animal subjects 
from the LASV, NiV, and Y. pestis studies (Studies 4–6).

For the third research question, we  investigate performance 
degradation when the inputs of the classifier are restricted to 
emulate a limited set of measurements that could be  obtained 
with a non-invasive wearable device. While direct measurement 
of aortic blood pressure, core temperature, and intrathoracic 
pressure rely on invasive or intrusive sensors, ECG signals 
can be  readily measured with wearable sensors. For this 
evaluation, we limit the classifier inputs to the set of EGG-derived 
features. This scenario is also trained on the EBOV and MARV 
data set and applied to the LASV, NiV and Y. pestis data set.

Model Tuning
Model tuning, including feature selection and other classifier 
and detection parameters is performed using systematic parameter 
sweeps within the subset of N  =  20 animals exposed to EBOV 
and MARV. Table  3 summarizes the tunable parameters from 
sections Data Pre-Processing: Conditioning Physiological Data, 
Random Forest Ensemble, and Detection Logic.

To characterize performance as a function of different epoch 
lengths and number of trees, we  make use of the random 
forest out-of-bag errors. Random forest ensembles are generated 
through an aggregated bagging process, whereby a random 
subset or “bag” of data points is selected with replacement to 
build a decision tree. The process is repeated until a specified 
number of trees are generated. Out-of-bag errors are calculated 
during training by evaluating decision trees against the samples 
that were not in their bag, providing a convenient assessment 
of classifier performance. We  sweep the parameter values for 
k, l, and ntrees and consider tradeoffs for both the out-of-bag 
errors and the computation times for pre-processing the data.

For feature selection and determining the number of features, 
nfeatures, we  assign one of the three cross-validation partitions 
for parameter tuning and the remaining partitions for model 

TABLE 3 | Algorithm parameters.

Parameter Description Stage of algorithm Value

k Epoch length Feature normalization 30 min
l Epoch length Summary statistics 30 min
ntrees Number of trees in 

random forest
Classifier training 15

nfeatures Number of features in 
random forest

Classifier training/
testing

10

Feature sets Set of most important 
features on which the 
random forest is grown

Classifier training/
testing

See Table 4

tpre-fever First-stage threshold for 
the pre-fever random 
forest scores

Detection logic 0.75

tpost-fever First-stage threshold for 
the post-fever random 
forest scores

Detection logic 0.21

m Second-stage threshold Detection logic 11
n Binary integration buffer 

length
Detection logic 24 epochs 

(12 h)
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training and performance validation. We  use a backward 
elimination feature selection method, leveraging the out-of-bag 
errors to iteratively identify and drop the feature ranked least 
important. The impact of varying nfeature is further characterized 
by the Pfa and pre-fever Pd in this parameter tuning partition.

First-stage detection thresholds are selected based on a user-
defined target Pfa, evaluated at the final stage of the declaration 
logic. We  sweep the first-stage thresholds independently for 
the pre-fever and post-fever classifier and select the smallest 
threshold for each model that achieves a target Pfa  ≤  0.01.

For the second-stage detection parameters, we  sweep m 
and n, from n  =  1 (30  min) to n  =  36 (18  h) and m  =  1, 
2,…, n. For each pair (m, n), we  evaluate performance in 
terms of the mean early warning time Δt and AUC. We  also 
consider the performance when m is set to the estimated 
optimal threshold for a constant (non-fluctuating) signal in 
noise, m nopt ≈

−10 0 02 0 8. .  (Shnidman, 1998).

RESULTS

We present our results in four parts. Section “Parameter 
Selection” describes the result of parameter sweeps for model 
tuning and justifies the parameter values used in the algorithms. 
The remaining three subsections show the resulting detection 
performance related to our three research objectives: section 
“Detection Performance for 20 Subjects Exposed to Ebola or 
Marburg Virus” demonstrates performance within the cross-
validation data set, section “Applicability of Pre- and Post-fever 
Models to Other Pathogens” evaluates performance when the 
algorithms are applied to pathogens other than the ones they 
were trained on, and section “Emulation of Early Warning 
Performance for Wearable Systems” evaluates performance on 
a limited feature set that could be measured by wearable devices.

Parameter Selection
We begin by evaluating trade-offs for the k- and l-minute epoch 
length. Figure  3A shows the relative computation time for the 
data conditioning steps of section “Data Pre-Processing: 
Conditioning Physiological Data” as a function of the normalization 
epoch, k-minutes. Preprocessing was performed on a Dell desktop 
computer with dual Intel Xeon E5607 processors and 12GB RAM. 
Preprocessing is very time-consuming for the shortest epochs 
but the time burden decreases with increasing epoch length, 
leveling out around 30  min. Figure  3B shows the impact of 
both the feature normalization and summary statistics epoch 
lengths on classifier performance. In general, shorter epochs for 
the feature normalization are associated with lower errors and 
therefore better classification accuracy. In contrast, long epochs 
for the summary statistics provide better accuracy than short 
ones. The result suggests selecting l ≥ k, that is, the summary 
statistics epoch should be  at least as long if not longer than the 
normalization interval. As a balance between processing time 
and classifier accuracy, we  select our epochs as k  =  l  =  30  min. 
With 48 epochs in a 24  h period and three summary statistics 
per physiological features listed in, we  nominally compute 144 
features per subject per day.

Next, we  optimize the random forest parameters, ntrees and 
nfeatures. As shown in Figure  4, both the false positive rate and 
the pre-fever Pd improve as nfeatures increases from 1 to about 
10, but performance plateaus beyond 10. Similarly, classifier 
accuracy improves as ntrees increases but plateaus beyond about 
15. We  settle on a classifier composed of 15 trees grown on 
the 10 highest ranked features.

Table  4 shows the 10 highest-ranked features for each of 
the three partitions used in cross validation as well as the 10 
highest-ranked features when we  re-train the models on the 
full set of N  =  20 animals. The ranked feature importance 
shows consistency with clinical symptomology, namely that 
core temperature-based features (mean and quantiles of 
temperature) in the post-fever model rank highest in importance. 
Before fever, however, ECG- and blood pressure-derived features 
are among the highest in feature importance, as has been 
reported at the earliest stages of sepsis (Korach et  al., 2001; 
Chen and Kuo, 2007; Ahmad et  al., 2009; Scheff et  al., 2012). 
Among the blood pressure features, quantiles of systolic and 
diastolic aortic pressure rank as the most important. Among 
ECG-derived features, means and quantiles of QT intervals 
[corrected (Bazett, 1920; Fridericia, 2003) or not], RR intervals 
and PR intervals are routinely selected as those with the greatest 
predictive capability. Respiratory rate features derived from the 
intrathoracic pressure waveform were seldom ranked among 
the most important.

The first stage threshold values, listed in Table 3, are estimated 
for the pre- and post-fever models to enforce a target Pfa = 0.01. 
Using these first-stage thresholds, we  see in Figure  5, that 
larger n (longer buffer length) enables slightly better detection 
capability in the sense of AUC, but at the expense of reduced 
early warning time. The estimated optimal threshold, denoted 
by the dashed line, is reasonably aligned with peak performance 
for both early warning time and AUC at each n, allowing for 
a methodical assignment of the second-stage threshold, mopt, 
given a binary integration window, n. In this analysis, we select 
n  =  24 and m  =  mopt  =  11 to achieve high AUC while 
maintaining a system latency of no more than 12  h.

Detection Performance for 20 Subjects 
Exposed to Ebola or Marburg Virus
A time series of the combined score resulting from the two-stage 
detection process for a representative animal subject from the 
MARV aerosol study is shown in Figure  6A. The combined 
score, for this subject, remains below the detection threshold 
(dashed horizontal line) before virus challenge, rises sharply 
around exposure (which is excluded) due to anesthesia, then 
rises again at ~2  days post-exposure, where the first “exposed” 
declaration (dashed vertical green line) occurs.

In this cross-validation assessment, we evaluated performance 
over a total of 9,931 decision points from N  =  20 subjects 
and found a system Pd = 0.80 ± 0.01, a pre-fever Pd = 0.56 ± 0.02, 
a system Pfa  =  0.01  ±  0.003, and a mean early warning time 
of Δtmean  =  51  ±  12  h. Detailed performance metrics on each 
subject can be found in the Supplemental Material.

We further evaluated algorithm performance for all subjects 
with the family of ROC curves shown in Figure  6B, where the 
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Pd is separately evaluated against pre- and post-fever data samples. 
For this three-fold cross-validation, we  find AUC  =  0.93  ±  0.01 
for pre-fever data, and AUC  =  0.99  ±  0.001 for post-fever data.

Figure  6C shows a plot of correct declarations as a function 
of early warning time. This plot focuses on detectability in the 
pre-fever region for a threshold corresponding to Pfa = 0.01. Mean 
early warning time, estimated for each pathogen exposure is shown 
as a dashed vertical line, which indicates individual differences 
between pathogens and exposure study conditions. Among these 
three studies, we  see the earliest mean warning time for MARV 
IM exposure at Δtmean = 69 ± 16 h, while the two aerosol exposures, 
EBOV and MARV, have similar mean values at Δtmean = 33 ± 26 h 
and Δtmean  =  39  ±  18  h, respectively.

Applicability of Pre- and Post-fever Models 
to Other Pathogens
We test our pre- and post-fever models against data from the 
LASV aerosol, NiV intratracheal, and Y. pestis aerosol studies 
(Table  1, N  =  13 subjects). The combined score vs. time is 

shown in Figure  7 for one representative subject for 
each pathogen.

This independent validation set includes over 11,000 decision 
points including the supplemental baseline data from nine 
subjects that were otherwise excluded (the supplemental points 
contribute only toward Pfa; they are excluded from Pd calculations). 
The corresponding ROC curves and mean early warning times 
for the independent validation set are shown in Figure  8A. 
Again, detection performance against post-fever samples is 
nearly perfect, and we  observe significant pre-fever positive 
predictive value of the model, with an AUC  =  0.95  ±  0.01. 
Across the three pathogens, we find a system Pd = 0.90 ± 0.007 
and Pfa  =  0.03  ±  0.004, a pre-fever Pd  =  0.55  ±  0.03, and a 
mean early warning time of Δtmean  =  51  ±  14  h. Calculating 
Δtmean for each pathogen exposure study individually, we  find 
that the NiV IT study has the longest Δtmean  =  75  ±  30  h 
(though NiV subjects also have the longest incubation period, 
~5 days), and that LASV aerosol and Y. pestis aerosol exposure 
studies have Δtmean  =  33  ±  26  h and Δtmean  =  41  ±  25  h, 
respectively (with a mean incubation period ~3.5  days). A 

A B

FIGURE 3 | (A) Total pre-processing time per subject per day. (B) Classification accuracy as a function of the epoch lengths for feature normalization, k, and 
summary statistics, l. We chose k = l = 30 min (red box) as a compromise between these two cost objectives.

A B C

FIGURE 4 | Justification for the number of features (10) and trees (15) in our random forest models. (A) Pfa and (B) pre-fever Pd plateau at around 10 features, and 
(C) the classification accuracy plateaus at around 15 trees.
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BA

FIGURE 5 | Performance evaluation across detection logic parameters m and n for a system Pfa = 0.01. The theoretical optimal value (Shnidman, 1998) of m for a 
given n and Pfa is indicated by the dashed line, and our selected operating point of (m = 11, n = 24) is indicated by the asterisk. (A) AUC improves with larger values 
of n, while (B) small values of n promote earlier warning times (Δt) by limiting the buffer length required for a declaration decision.

summary of the performance metrics from this independent 
validation data set are shown along with the cross-validation 
data set performance in Table  5.

Emulation of Early Warning Performance 
for Wearable Systems
As an in silico simulation for degrading our animal dataset 
to what may be  collected using a wearable monitoring device 
for humans, we  reduced the considered feature set to include 
only ECG-derived features such as RR, QT, QRS, and PR 
intervals. Figure  8 compares our algorithm performance using 

all available features (Figure  8A) and features derived only 
from the ECG waveform (Figure 8B). For the degraded feature 
set, we  see only modest decreases in performance with 
Δtmean  =  46  ±  14  h, pre-fever Pd  =  0.55  ±  0.03, and system 
Pd  =  0.89  ±  0.008 and Pfa  =  0.03  ±  0.004.

DISCUSSION

Non-biochemical detection of pathogen incubation periods 
using only physiological data presents an enabling new tool 
in infectious disease care. Previous work has shown that reducing 

TABLE 4 | Ranked importance of the 10 selected features for models trained with subjects from MARV IM, MARV aerosol and EBOV aerosol.

Rank
3-fold cross-validation

All subjects (N = 20)
Partition 1 (N = 6) Partition 2 (N = 7) Partition 3 (N = 7)

Pre-fever

1 AOPDiastolic_Q25 PR_Mean Temp_Mean QRS_Mean
2 AOPSystolic_Q75 RR_Q75 RR_Mean Temp_Mean
3 Temp_Mean QT_Q25 PR_Mean RR_Q75
4 PR_Mean Bazett_Q25 QT_Q75 AOPDiastolic_Q25
5 Bazett_Mean Temp_Mean AOPSystolic_Q75 AOPAMean_Q25
6 RR_Mean QRS_Mean PR_Q75 Bazett_Mean
7 Temp_Q25 QRS_Q25 QT_Mean QT_Q25
8 Bazett_Q25 QRS_Q75 HR_Mean PR_Q25
9 Fridericia_Mean PR_Q25 Bazett_Mean AOPDiastolic_Mean
10 AOPDiastolic_Mean Temp_Q25 RespMean_Mean QT_Mean

Post-fever

1 Temp_Mean Temp_Mean Temp_Mean Temp_Mean
2 PR_Mean AOPSystolic_Mean Temp_Q75 RR_Q75
3 Temp_Q25 Temp_Q75 AOPDiastolic_Mean AOPAMean_Mean
4 AOPDiastolic_Q75 AOPSystolic_Q75 AOPSystolic_Q75 QRS_Mean
5 Temp_Q75 Temp_Q25 RR_Q75 AOPDiastolic_Mean
6 RespMean_Mean AOPSystolic_Q25 Temp_Q25 Bazett_Q25
7 RR_Mean AOPAMean_Mean AOPDiastolic_Q75 PR_Mean
8 AOPDiastolic_Mean QT_Q75 AOPDiastolic_Q25 AOPSystolic_Mean
9 RespMean_Q75 HR_Q25 QT_Q75 Bazett_Mean
10 RR_Q75 RR_Q75 HR_Mean AOPDiastolic_Q25
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transmission during the viral incubation period is as or more 
effective an intervention as reducing the inherent transmissibility 
(R0) of the pathogen in controlling emerging outbreaks 
(Fraser  et  al., 2004). Over the past year, during the COVID-19 

pandemic, a number of efforts have reported results for detecting 
COVID-19 using wearable devices such as smart watches and 
smart rings. In these observational studies with human subjects, 
reported AUCs range from 0.69 (Quer et  al., 2021) to 0.77 

A

B

C

FIGURE 6 | Algorithm output and performance measures from the three-fold cross-validation. (A) The combined score (blue curve) vs. time for a subject from the 
MARV aerosol exposure study, where samples declared as “exposed” are shown as green circles. The red vertical line indicates the fever onset time, and the green 
dashed vertical line denotes the first true positive declaration. The early warning time Δt is the interval between the green and red vertical lines. (B) ROC curve 
across 20 subjects, indicating nearly perfect performance after febrile symptoms and strong positive predictive power (AUC = 0.93 ± 0.01) before fever. (C) Pd vs. 
time before fever. The mean Δt for each of the three constituent studies is indicated by the dashed line. We find that half of the subjects are correctly identified as 
exposed at least 24–36 h before fever, regardless of the particular pathogen, exposure route, or target dose.
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A

B

C

FIGURE 7 | Representative single subject outputs from each of three independent datasets. Scores and declarations for: (A) LASV, (B) NiV, and (C) Y. pestis. 
Declarations made in the pre-exposure data represent false positives.

(Natarajan  et  al.,  2020) including data from the symptomatic 
period while the reported probability of detection for data 
restricted to the pre-symptomatic period was around Pd = 0.20 
at Pfa  =  0.05 (Miller et  al., 2020; Natarajan et  al., 2020). In 
our effort, which leverages animal model studies, we had three 
primary objectives. First, we  aimed to understand the upper 
limits of detecting illness during the asymptomatic incubation 
period using medical grade devices under controlled conditions. 

Second, we  sought to determine whether the detection was 
specific to a particular pathogen. And third, we  investigated 
the feasibility of extending the detection capability to wearable 
devices under controlled conditions.

We developed detection algorithms composed of random 
forest classifiers coupled with novel declaration logic to provide 
early warning of illness using physiological waveforms collected 
from non-human primates infected with several pathogens. 
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We  then evaluated the detection capability of our algorithms 
under three distinct scenarios.

First, to answer the fundamental question of how well 
pathogen exposure can be  detected based on physiological 
measurements, we  evaluated data from the subset of N  =  20 
animal subjects from the EBOV aerosol, MARV aerosol, and 

MARV IM studies using a 3-fold cross-validation approach. 
In this evaluation, we achieved a pre-fever detection performance 
of Pd  =  0.56  ±  0.02 with Pfa  =  0.01  ±  0.004 and a mean early 
warning time of Δtmean  =  51  ±  12  h. Second, to determine 
whether this capability is specific to the pathogen, we  took a 
model trained on the EBOV and MARV studies and applied 

A B

FIGURE 8 | Performance measures from independent data set validations. ROC and detectability vs. time before fever curves were using (A) all available features 
from the implantable telemetry system (Table 2), and (B) using only features derived from the ECG waveform. Even when all temperature, blood pressure, and 
respiratory features are excluded, algorithm performance drops only slightly from Δtmean = 51 to 46 h, and from pre-fever AUC = 0.95 to 0.91.

TABLE 5 | System performance metrics for the three validation conditions.

Primary  
objective

Training set Test set
Mean Δt ± 95% 

CI (h)
Pre-fever 

AUC ± 95% CI
Post-fever 

AUC ± 95% CI
Pre-fever 

Pd ± 95% CI
System Pd and 

Pfa ± 95% CI

Initial proof of 
concept

EBOV & MARV 
(Studies 1–3)

EBOV & MARV 
(Studies 1–3)

51 ± 12 0.93 ± 0.01 0.999 ± 0.001 0.56 ± 0.02 0.80 ± 0.010 
0.01 ± 0.003

Extension to 
different pathogens

EBOV & MARV 
(Studies 1–3)

LASV, NiV & Y. 
pestis (Studies 
4–6)

51 ± 14 0.95 ± 0.01 0.998 ± 0.001 0.60 ± 0.03 0.90 ± 0.007 
0.03 ± 0.004

Feasibility for 
wearable devices

EBOV & MARV 
(Studies 1–3) Only 
ECG-derived 
features

LASV, NiV & Y. 
pestis (Studies 
4–6) Only ECG-
derived features

46 ± 14 0.91 ± 0.001 0.998 ± 0.001 0.55 ± 0.03 0.89 ± 0.008 
0.03 ± 0.004
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it to an independent dataset of N  =  13 animal subjects from 
the LASV, NiV, and Y. pestis studies. Evaluating this independent 
dataset, we  found very comparable performance with pre-fever 
detection of Pd  =  0.55  ±  0.03 with Pfa  =  0.03  ±  0.004 and 
mean early warning time of Δtmean = 51 ± 14 h. This successful 
extension for a hemorrhagic fever virus (LASV), a henipavirus 
(NiV), and a gram-negative coccobacillus (Y. pestis) suggests 
algorithm insensitivity to particular pathogens, and possible 
generalization for novel or emerging agents for which data 
has not or cannot be  collected. Third, we  emulated a scenario 
for a non-invasive wearable device by restricting the classifier 
to use only ECG-derived features such as RR, QT, QRS, and 
PR intervals. Again, performance was comparable, with only 
a slight decrease in mean early warning time: pre-fever 
Pd = 0.55 ± 0.03 with Pfa = 0.03 ± 0.004 and Δtmean = 46 ± 14 h. 
These results were achieved in the absence of core temperature, 
and hence without direct observation of febrile symptoms. 
Performance from this ECG-only feature set suggests that the 
implementation of this approach is possible with non-invasive 
wearable devices.

During the non-symptomatic pre-fever stage of infection, 
where early warning is most meaningful, we observed strong 
positive predictive value with ECG and temperature-related 
features emerging as the most important features. In the 
febrile prodrome stage of infection, core temperature-derived 
features were consistently ranked most important. We  also 
observed differences in the mean early warning time based 
on the route of exposure (intramuscular vs. intratracheal 
vs. aerosol) and pathogen. The NiV IT and MARV IM 
studies, which used exposure routes that allow for more 
precise control of dose, had the longest early warning at 
Δtmean  =  75  ±  30  h and Δtmean  =  69  ±  16  h, respectively. 
Across the aerosol exposures, mean early time was considerably 
lower with Δtmean = 41 ± 25 h for Y. pestis, Δtmean = 39 ± 18 h 
for MARV aerosol, Δtmean  =  33  ±  26  h for EBOV, and 
Δtmean  =  33  ±  26  h for LASV. These differences potentially 
highlight a dose–response associated with the route of 
exposure and the mean early warning time of the 
physiological perturbations.

We postulate that underlying immuno-biological events of 
the innate immune system are responsible for the observable 
changes in the physiological signals that enable this early 
warning capability. In particular, the systemic release of 
pro-inflammatory chemokines and cytokines from infected 
phagocytes (Hayden et  al., 1998; Leroy et  al., 2000; Gupta 
et  al., 2001; Hensley et  al., 2002; Martinez et  al., 2008; Connor 
et al., 2015), as well as afferent signaling to the central nervous 
system (Tracey, 2002; Beishuizen and Thijs, 2003), are 
recapitulated in hemodynamic, thermoregulatory, or cardiac 
signals. For instance, prostaglandins (PG) are upregulated upon 
infection [including EBOV (Geisbert et  al., 2003; Wahl-Jensen 
et al., 2011)] and intricately involved in the non-specific “sickness 
syndrome” (Saper et  al., 2012); the PGs are also known to 
be  potent vascular mediators (Funk, 2001) and endogenous 
pyrogens (Sugimoto et  al., 2000; Ek et  al., 2001). Recent work 
has shown how phagocytic immune cells directly modulate 
electrical activity of the heart (Hulsmans et  al., 2017). Past 

work has clarified how tightly integrated, complex, and oscillating 
biological systems can become uncoupled (Godin and Buchman, 
1996; Goldberger et al., 2002; Bravi et al., 2011) during trauma 
(Cancio et  al., 2013) or critical illness (Scheff et  al., 2012, 
2013a), which would be captured in the comprehensive, multi-
modal physiological datasets used in our present work.

Our study has several key strengths. First, using non-human 
primate data collected under extremely controlled environments, 
we  are able to set the bar for the upper limits of early warning 
detections, showcasing that recent efforts for early warning of 
COVID-19 using wearables have potential for significant 
improvement. Second, we  show that the body’s immunological 
response is not specific to the pathogen. This result is of great 
importance as algorithms developed for COVID-19 can likely 
provide early warning for influenza and other illnesses, providing 
a tool that can be used to steer public health policies and individual 
medical care. Third, to the best of our knowledge, we  are the 
first to highlight the potential relation between early warning 
time and the route of pathogen exposure. Fourth, the importance 
of ECG features in detecting an immunological response to 
pathogen provides impetus for device manufacturers to leverage 
wearables as important tools for personal and public health.

We also note some limitations of our study. First, our 
sample size for the animal studies is relatively small. While 
we  compensate for the small N by employing a case cross-
over methodology, where in each subject is a control for 
themselves, we  believe our results can be  strengthened with 
a larger N. Second, while Δt for an individual subject is 
very useful clinically, we  note that for our datasets the 
mean early warning time is potentially unstable due to the 
low sample sizes. Third, in an operational, clinically useful 
early warning system, it may be  desirable to calculate Pd 
and Pfa on a per-device, per-subject, or per-day basis. However, 
given our sample size, we  calculated Pd and Pfa across all 
30-min epochs. This approach penalizes for false negatives 
(missed detections) that may occur after an initial early 
warning declaration is made, and thus provides a conservative 
estimate of sensitivity on a per-subject basis. Furthermore, 
we  chose a target system Pfa~0.01 based on the limited 
sample size, but this could lead to an unacceptable daily 
false alarm rate of about one declaration every 2  days (for 
30  min epochs). We  estimate Pfa should be  ~10−3 or less, 
which corresponds to one false alarm approximately every 
3 weeks of continuous monitoring (again, for 30 min epochs). 
Reducing this critical system parameter to more clinically 
acceptable levels is the subject of on-going work, and will 
require larger sample sizes or more refined processing 
algorithms. Finally, the effect of physiological confounders, 
such as intense exercise, arrhythmias, lifestyle diseases, and 
autochthonous or annual infections, has not been explored 
in this initial study.

CONCLUSION

Detecting pathogen exposure before symptoms are self-reported 
or overtly apparent affords great opportunities in clinical care, 
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field uses, and public health measures. However, given the 
consequences of using some of these interventions and the 
lack of etiological agent specificity in our algorithm, we envision 
this current approach (after appropriate human testing) to 
be  a trigger for “low-regret” actions rather than necessarily 
guiding medical care. For instance, using our high sensitivity 
approach as an alert for limited high specificity confirmatory 
diagnostics, such as sequencing or PCR-based, could lead to 
considerable cost savings (an “alert-confirm” system). Public 
health response following a bioterrorism incident could also 
benefit from triaging those exposed from the “worried well.” 
Ongoing work focuses on adding enough causative agent 
specificity to discern between bacterial and viral pathogens; 
even this binary classification would be  of use for front-line 
therapeutic or mass casualty uses. Eventually, we  envision a 
system that could give real-time prognostic information, even 
before obvious illness, guiding patients, and clinicians in 
diagnostic or therapeutic use with better time resolution than 
ever before.
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