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On the limits of graph neural 
networks for the early diagnosis 
of Alzheimer’s disease
Laura Hernández‑Lorenzo1,2,3*, Markus Hoffmann3,4, Evelyn Scheibling3, Markus List3,5, 
Jordi A. Matías‑Guiu2,5 & Jose L. Ayala1,5

Alzheimer’s disease (AD) is a neurodegenerative disease whose molecular mechanisms are activated 
several years before cognitive symptoms appear. Genotype-based prediction of the phenotype is thus 
a key challenge for the early diagnosis of AD. Machine learning techniques that have been proposed 
to address this challenge do not consider known biological interactions between the genes used 
as input features, thus neglecting important information about the disease mechanisms at play. 
To mitigate this, we first extracted AD subnetworks from several protein–protein interaction (PPI) 
databases and labeled these with genotype information (number of missense variants) to make them 
patient-specific. Next, we trained Graph Neural Networks (GNNs) on the patient-specific networks 
for phenotype prediction. We tested different PPI databases and compared the performance of the 
GNN models to baseline models using classical machine learning techniques, as well as randomized 
networks and input datasets. The overall results showed that GNNs could not outperform a baseline 
predictor only using the APOE gene, suggesting that missense variants are not sufficient to explain 
disease risk beyond the APOE status. Nevertheless, our results show that GNNs outperformed other 
machine learning techniques and that protein–protein interactions lead to superior results compared 
to randomized networks. These findings highlight that gene interactions are a valuable source of 
information in predicting disease status.

Neurodegenerative diseases (NDDs) are complex diseases showing progressive neuronal degeneration and death 
in the central nervous systems. The most common cause of NDDs is Alzheimer’s Disease (AD), a progressive 
brain disease that mainly affects cognitive functions and usually starts with memory issues1. Its pathological 
features are the accumulation of amyloid-β plaques and tau neurofibrillary tangles. The etiology of AD is unclear, 
but several risk factors are considered: aging, genetics, family history, and modifiable risk factors such as educa-
tion years, physical activity, or smoking1. The apolipoprotein E (APOE) gene is the major risk factor for AD, 
with various alleles encoding for different isoforms of the protein. APOE ε4 is the most risk-related isoform, 
significantly associated with late-onset AD (LOAD)2. However, this isoform has also been found in non-dementia 
subjects, suggesting that other genetic factors trigger the disease.

Precision medicine is a new approach in medicine whose main objective is to personalize the diagnosis and 
treatment of a patient. In particular, genomics holds the potential to identify risk factors that can be used for early 
diagnosis, which is crucial for NDDs, where the underlying biological mechanisms are triggered long before the 
onset of symptoms3. Early diagnosis of NDDs can justify regular neuroimaging follow-ups and possible treat-
ments to prevent or delay the onset of the disease.

Typically, the study of the genetic basis of diseases has followed a strategy focused on selecting one or several 
genes to find genetic variants that are established, with greater or lesser penetrance, as the genetic cause of the 
disease4. This strategy has significantly eased the understanding of the genetic architecture of many diseases. 
However, when studying polygenic diseases such as AD, the genetic complexity is hard to explain using one-gene 
approaches. Therefore, handling information about several affected genes, their interactions, and related products 
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seems necessary. In this regard, approaches related to systems biology, specifically network-based analyses, are 
crucially needed to study the genetic architecture of complex diseases5. These approaches propose genetic vari-
ants as perturbations that can modify the topology of the studied network6. Moreover, since the prediction of 
a phenotype through genetic information can be considered a high dimensional problem—that is known to be 
problematic to identify patterns—we present strategies based on machine learning (ML) algorithms as a solu-
tion to phenotype prediction.

The development of ML techniques and the availability of genetic cohorts during the last decade has cre-
ated interest towards ML-based phenotype prediction. In particular, deep learning (DL) models appear suited 
for this complex prediction task since they can model the nonlinear interactions of several genetic factors that 
rise to complex diseases7. For instance, DeepBipolar8 uses Convolutional Neural Networks (CNNs) to predict 
bipolar disorder from exome variants. Since the main challenge in creating robust prediction models is the high 
dimensionality and co-linearity of genomics datasets, several works have focused on feature selection or extrac-
tion techniques as a pre-processing step. To reduce the number of features, we can leverage prior knowledge and 
select only those genetic variants or genes for analysis that have previously been associated with the disease9,10. 
However, these approaches discard the biological interactions or relationships between these genes or proteins, 
which may contribute to the disease mechanisms. We propose that prior information about such interactions, 
captured in biological networks such as protein–protein interaction (PPI) networks, co-expression networks, or 
metabolic pathways, should be used for building phenotype prediction methods for NDDs.

Since graph-structured data is prevalent across different disciplines, DL strategies that can handle such data 
have been developed in recent years. Graph Neural Networks (GNNs) are a relatively new type of neural networks 
that operate on graph-structured data and have successfully been used in network biology applications, such as 
proteomics, drug development or discovery, polypharmacy, metabolic pathways analysis, or disease diagnosis11.

This study presents a genotype-to-phenotype prediction pipeline that uses GNNs in combination with biologi-
cal networks (PPIs and functional networks) related to AD. We employed this pipeline in different AD-cohorts: 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) genetic cohort of 808 subjects and the TGenII GWAS 
dataset with 1599 subjects. To the best of our knowledge, this is the first work integrating information from 
genetic variants into a biological network for disease prediction through Graph Neural Networks, applied in the 
context of neurodegenerative diseases. We aim: (i) to evaluate if GNNs are suitable ML models for phenotype 
prediction using genotype data, (ii) to assess the influence of using different biological networks for building the 
input graph datasets for GNNs, (iii) to test whether this phenotype prediction could benefit from structuring 
the information in a known biological network, and (iv) to assess limitations and opportunities for predicting 
AD-related phenotypes.

Materials and methods
In this work, we present a pipeline for predicting AD-related phenotypes using biological networks and geno-
type information through GNNs. We further performed extensive benchmarking work on how GNNs work 
with different input networks, with respect to other ML models, or using different datasets in the context of 
AD prediction. Figure 1 summarizes the methods employed in this work. First we show the main procedure 
for building graph datasets in Fig. 1a. Secondly, Fig. 1b summarizes the extensive benchmarking of GNNs in 
AD-related phenotypes prediction. We compared five different PPI databases for extracting disease-related 
subnetworks as input for GNNs and compared their performance against classical machine learning methods 
that leverage only the genotype information of the nodes, disregarding their interactions. The tested models 
included Logistic Regression, Support Vector Machine (SVM) with Linear and Radial Basis Function (RBF) 
kernels, and Random Forest. Finally, we evaluated the importance of the network structure and topology in 
GNNs models’ performance, by evaluating graph datasets built on random networks. We performed these steps 
using the ADNI cohort and two different labelings for classification: (i) amyloid positron emission tomography 
(PET) status (positive or negative), and (ii) amyloid-PET status together with the diagnosis (AD with positive 
amyloid-PET vs. Cognitively Normal with negative amyloid-PET). Lastly, we applied these steps to the TGenII 
cohort to see if we could expect similar classification behavior of GNNs using a completely different but also 
AD-related dataset. The manuscript is organized as follows. In Section “Materials and methods”, we describe 
the steps that form the proposed phenotype prediction pipeline (Fig. 1a) and the benchmarking steps carried 
out to evaluate it (Fig. 1b). In Section “Results”, we report the outcomes of the main pipeline and benchmarking. 
Finally, in Section “Discussion”, we discuss the results obtained mainly from the benchmarking point of view, 
going into their implications in the context of Alzheimer’s Disease prediction.

Data generation and filtering.  For this work, we made a prior selection of disease-associated genes that 
were extracted from DisGeNET13, a large database that collects associations of genes and variants to diseases. We 
obtained 101 genes associated with Alzheimer’s Disease (AD). Among all gene-disease associations obtained, we 
considered only those labeled in DisGeNET13 as coming from “curated” source databases.

We employed two independent genetic datasets to test this protocol: (i) the genetic cohort from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) and (ii) the TGenII GWAS dataset from NIAGDS. The ADNI (adni.loni.usc.
edu) was launched in 2003 as a public–private partnership led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI is to test whether serial magnetic resonance imaging, PET, other biological markers, and clinical 
and neuropsychological assessment can be combined to assess the progression of Mild Cognitive Impairment and early 
AD. The ADNI genetic cohort contains 808 subjects, whereas the TGenII cohort contains 1599. In both datasets, we first 
extracted genetic variants mapping to any of the genes of interest using GRCh37 genetic coordinates. Using Ensembl’s 
Variant Effect Predictor (VEP)14, we functionally annotated these variants. Lastly, using the “split-vep” plugin from 
BCFTools15, we selected from the annotated VCF files only missense variants.
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We labeled each dataset differently for later use as prediction tasks in classification (Fig. 1b). Regarding ADNI 
dataset, the first prediction task, named “PET”, represented each subject’s last visit amyloid-PET status. Using the 
“ADNIMERGE” table from ADNI, we queried each subject’s last visit Florbetapir or Pittsburgh Compound-B (PiB) 
standardized uptake value ratio (SUVR). Then we applied threshold values of 1.11 and 1.2716–18 for Florbetapir 
or PiB SUVR measurements, respectively, to obtain the positive or negative amyloid PET status of each subject’s 
last visit. The second prediction task, named “PET&DX” represented the last visit amyloid-PET status together 
with the diagnosis of each subject. This labeling corresponded to a subset of the first-mentioned one since it also 
considered the clinical diagnosis of each individual. PET&DX labeling included two types of subjects: amyloid 
PET positive individuals with a Dementia diagnosis, and amyloid PET negative individuals without cognitive 
impairment, identified as Cognitively Normal in ADNI. We decided to employ amyloid-PET status because of 
the heterogeneous nature of AD diagnosis. AD diagnosis could include controls probably misclassified as AD and 
non-AD dementias misclassified as probable AD19. Moreover, cognitive symptoms of AD are developed much 
later than the amyloid-PET status, which can be detected up to a decade before the development of this cognitive 
impairment. Lastly, regarding the TGenII dataset, we used the case or control labeling of the original data set with 
labels for Late-Onset Alzheimer’s Disease case (LOAD) or control.

(4) Change input dataset and disease label to predict(3) Randomized networks as input
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Figure 1.   (a) Overview of the workflow for phenotype prediction through genotype data. Starting with a set 
of genes of interest to study, we extracted the number of missense variants in each gene in a genetic cohort 
and built a protein–protein involving these genes. With the input networks and genetic data, we built different 
graph datasets, in which each graph represented a sample, including the number of missense variants as node 
attributes. These graph datasets are lastly used as input for phenotype prediction using Graph Neural Networks 
(GNNs), evaluated on a framework called GraphGym12. (b) Overview of the benchmarking. We compared the 
performance of GNNs (1) using graph datasets coming from different biological networks, (2) against other 
non-GNN models using the number of missense variants, (3) using graph datasets coming from randomized 
networks, and (4) for predicting of several labels from different input datasets.
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Generation of networks.  Biological networks.  Once the genes of interest were selected (see Section “Data 
generation and filtering”), we obtained molecular interactions between them. To this end, we queried multiple 
databases, allowing us to assess the importance of the network employed. In addition to the well-known interac-
tion databases STRING20 and BioGRID21, we also queried The Human Reference Interactome (HuRI)22, PPT-
Ohmnet23, and GIANT24. From STRING20 (v.11.5), we selected protein–protein physical interactions from the 
source databases, text mining, and predicted using the default confidence score. From BioGRID21 (v.4.4.206), we 
selected protein–protein human interactions from high-throughput experiments. HuRI22 (downloading date: 
March 2022) is a recent database storing only high-quality binary interactions between proteins, coming from 
a systematic experimental screening pipeline that included at least two types of experimental evidence. The 
PPT-Ohmnet23 (downloading date: March 2022) network stores protein–protein physical interactions specific to 
different human tissues based on co-expression information. We queried for brain-specific interactions between 
our genes of interest. Lastly, GIANT24 (downloading date: March 2022) is a tissue-specific predicted functional 
network. We selected only interactions found in brain tissue using the "gold standard" brain file restricted to 
functional edges between genes specifically coexpressed in the brain from GIANT. In all the described cases, we 
queried only for AD-related genes extracted from DisGeNET and kept only the largest connected component. 
Regarding this restriction, we lost a percentage of the original number of genes of interest, which varied between 
the different networks. From highest to lowest loss (number of lost nodes/original number of nodes, percent-
age): PPT-Ohmnet (29/45, 35.56%), HuRI (6/18, 33.33%), GIANT (9/45, 20%), BioGRID (8/48, 17.39%), and 
STRING (7/59, 11.86%). Among all the sources described, the most curated or high-quality interaction informa-
tion is found in HuRI. Lastly, there are only two sources with brain-specific interactions: PPIs from PPT-Ohmnet 
and functional interactions from GIANT.

The different subnetworks extracted as described above serve as "templates" for generating graph datasets, i.e. 
a network defining interactions between genes which we can further fill with different nodes (genes) attributes. 
Table 1 summarizes the graph properties of all the biological networks used as templates. For the remaining manu-
script, we use the following naming convention for the biological networks to differentiate them from the interac-
tion databases used: the first part describes the gene set and the second part describes the interaction database from 
which it comes, e.g. “AD STRING” refers to AD-related genes interacting in a PPI network coming from STRING.

Random networks.  As shown by Lazareva et al.25, the performance that obtains randomly perturbed networks 
in disease module mining often show comparable performance to the original networks. To make sure that the 
selected interactions offer additional value to the selected genes, we thus built random networks for the network 
that we selected as the “best”, meaning the network whose graph dataset obtained a better result for phenotype 
prediction. We used two different randomization algorithms named "Shuffled" and "Rewired" implemented by 
Lazareva et al.25. Randomization algorithms are methods that randomly alter the topology or elements (nodes or 
edges) of a network. The two randomization algorithms mentioned differ in how they randomly alter the origi-
nal network. The "Shuffled" algorithm shuffles the node labels while maintaining the original network topology. 
The "Rewired" algorithm rewires the edges maintaining the original degree of each node. For further informa-
tion, see Lazareva et al.25. For each randomization method, we generated 100 different random networks and 
built for each of them their corresponding graph dataset.

Creating patient‑specific graphs from genetic profiles.  We used the networks described in Sec-
tion “Generation of networks” as "templates" (both biological and random networks) for generating graph data-
sets. We built these datasets of patient- or subject-specific graphs for each cohort using the genetic and phe-
notypic data for supervised classification in graph neural networks. In each subject’s graph, we annotated the 
number of missense genetic variants per gene (see Section “Data generation and filtering”) as node attributes. 
We labeled each subject’s graph with the different labels described in Section “Data generation and filtering” for 
each of the cohorts. Accordingly, as all the labels were binary, we assigned the value 1 for the positive class (case/
disease) and 0 for the negative class (control/healthy). Considering the five different biological networks used 
and the two different labels of the ADNI cohort, we generated a total of ten different graph datasets that we ini-
tially evaluated during this work (see Section “Comparing results using different input networks”). To this total 
number should also be added the 200 (2 × 100) graph datasets created for the random networks (see  Section 
“Using randomized networks as input”) and the graph dataset created for the LOAD label of the TGen II cohort 
(see Section “Using another dataset as input”).

Table 1.   Properties of the biological networks.

Network name Description Network description

AD STRING Genes related with Alzheimer’s Disease
PPI network

52 nodes; 111 edges
density: 0.0837; diameter: 6

AD BioGRID Genes related with Alzheimer’s Disease
PPI network

38 nodes, 57 edges
density: 0.0810; diameter: 5

AD HuRI Genes related with Alzheimer’s Disease
PPI network

12 nodes, 13 edges
density: 0.1969; diameter: 6

AD PPT-Ohmnet Genes related with Alzheimer’s Disease
PPI network, brain-specific

29 nodes, 52 edges
density: 0.1281; diameter: 6

AD GIANT Genes related with Alzheimer’s Disease
Functional network, brain-specific

36 nodes, 100 edges
density: 0.1587; diameter: 6



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17632  | https://doi.org/10.1038/s41598-022-21491-y

www.nature.com/scientificreports/

Supervised classification.  Train and validation sets used.  We split the generated datasets into ten differ-
ent training and test sets by means of a stratified tenfold split. The stratified split makes sure the proportion of 
labels in all the folds is the same or very similar to the proportion of labels in the complete dataset. All the models 
evaluated throughout this manuscript were trained and tested with these ten splits.

Graph classification with graph neural networks.  GNNs are a type of deep neural network architecture that can 
operate over graph-structured data26. GNNs mainly work to obtain a new feature space, also known as node 
embeddings, representing both nodes and any other information found in the graph.

We trained and evaluated GNNs in the framework GraphGym12, tuning hyperparameters as the configura-
tions in the design space as recommended by its authors12 (see Supplementary Table 1), with two exceptions: 
considering the small diameter of the PPI networks employed here, we set the number of message passing layers 
to two and the number of epochs to 200 to avoid over-smoothing. Each experiment, meaning applying a GNN 
model or configuration to a dataset or task, is repeated three times (using three different random seeds). At the 
end of each experiment, GraphGym produces the mean and standard deviation of several performance metrics 
obtained in the three repeats for the training and validation sets. We ran GraphGym for each of the 10 different 
splits (see Section “Train and validation sets used”) and obtained the best GNN configuration in each split. Then 
we obtained the best GNN configuration across the ten folds and reported their results in the corresponding test 
sets over the ten different folds in terms of mean accuracy, precision, recall, F1-score, and area under the ROC 
curve (AUC). See Supplementary Information Sect. 1.1 for more details about GraphGym use.

Canonical machine learning models.  To compare the GNN results with other models that did not input graph-
structured data, we applied Logistic Regression, SVMs with Linear and RBF kernels, and Random Forest to our 
data. It is important to note that in this case, the data was structured in a tabular way, with no interaction infor-
mation between the genes. The idea behind this benchmark was to assess whether including interactions data, by 
using GNNs, was an advantage in phenotype prediction. For each of the mentioned algorithms, we performed 
nested cross-validation. For each of the described folds in Section “Train and validation sets used”, we obtained 
the best models’ hyperparameters by means of a 10-Fold cross-validation grid search on the training samples of 
that fold. The grid of hyperparameters evaluated for each of the algorithms are listed in Supplementary Table 2. 
We then evaluated this best model using the test set from that fold. Therefore, we performed 100 (10 × 10) runs 
for each of the machine learning algorithms described. As done with GNNs, we report the mean and standard 
deviation of accuracy, precision, recall, F1-score, and AUC on the test set over the ten different folds.

APOE gene significance assessment.  Due to the high importance of the APOE gene in AD or related endo-
phenotypes we tested its influence on the labels to be predicted. Firstly we built a Logistic Regression model that took 
only the APOE gene as input. We refer to these models as “baseline”, as they show what we can expect from the data-
sets by including a single gene closely related to AD. Secondly, because we expected this gene to greatly influence the 
classification regarding its high correlation with AD-related phenotypes, we also evaluated all models’ performance 
using datasets with and without this gene. We decided to delete APOE from the datasets to test whether there could 
be other genes influencing the development of the disease. This fact is especially important to unravel why some 
patients develop AD without having mutations in the APOE gene. Conversely, subjects without AD with the APOE 
gene affected might have variants in other genes that protect against the development of the disease.

Implementation.  All the steps previously described are implemented in Python 3 and R 4.1. The scripts used 
in each step are available at https://​github.​com/​laura​hdezl​orenzo/​graph_​genet​ics under a MIT License. Additional 
specifications about GNNs and methods described in this manuscript are described in an AIMe report: https://​
aime.​report/​thfKRo. Gene-disease associations were obtained using disgenet2r13. Genomic coordinates of the genes 
were obtained using biomaRt27. Variants from the VCF files were extracted using genomic coordinates employing 
VCFTools v.0.1.1628 and functionally annotated using Ensemble’s VEP v.105.014. Missense variants obtained in the 
genes of interest were extracted using BCFTools’ v.1.1115 plugin “split-vep”. Graph datasets were built using Python’s 
NetworkX v.2.6.3 library29. GNNs were tested using GraphGym v.0.2.012. Machine learning models were imple-
mented using Scikit-Learn v.1.0.2 library30. Lastly, statistical analyses were done using SciPy v.1.7.331.

Results
The results obtained are organized as follows. Section “Comparing results using different input networks” describes 
the results obtained with GNNs using different graph datasets obtained from the different biological networks 
described in Section “Biological networks” to select the best network for building graph datasets among the five 
candidates. Section “Benchmarking GNNs performance vs. canonical machine learning models” compares the 
results obtained with the best-performing graph dataset against other non-GNN models. In Section “Using ran-
domized networks as input”. we evaluated the GNNs classification performance on graph datasets coming from 
random networks to assess the importance of real interactions and the overall topology of the biological networks 
in classification. We performed these sections using the ADNI dataset with two different classification labels: 
PET and PET&DX. Lastly, in Section “Using another dataset as input”, we applied some of these previous steps 
using the TGenII dataset for LOAD prediction. This last section aimed to corroborate if we could expect similar 
results from an independent dataset and observe the differences in prediction using different classification labels.

Comparing results using different input networks.  Using the five different input interaction net-
works built (AD BioGRID, AD GIANT, AD HuRI, AD PPT-Ohmnet, and AD STRING), and two different labels 

https://github.com/laurahdezlorenzo/graph_genetics
https://aime.report/thfKRo
https://aime.report/thfKRo
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from ADNI cohort (PET and PET&DX) led to ten different classification tasks that we evaluated using GNNs. 
Supplementary Table 3 shows the best GNN configurations and their mean performance values in the validation 
set for each graph dataset and classification task proposed. Figure 2 shows the distribution of AUC values on the 
validation set over the ten splits.

Regarding the PET label (Fig. 2a, Supplementary Table 3a), results showed that the mean AUC performance 
was slightly higher for all networks (AD BioGRID: 0.6648 ± 0.0656, AD GIANT: 0.6635 ± 0.0786, AD HuRI: 
0.6692 ± 0.0624, AD PPT-Ohmnet: 0.6801 ± 0.0643, AD STRING: 0.6763 ± 0.0637) compared with the baseline 
model (0.6406 ± 0.0691). Among all the graph datasets tested, the one that obtained the best AUC value was 
the one built using the brain-specific PPI: AD PPT-Ohmnet. However, when performing the 1-sample t-tests 
against the PET baseline model result, the mean AUC values of all graph datasets were not significantly better 
than the baseline model. Although the p-values obtained were not significant, we used them as a ranking score 
of the datasets to select the best graph dataset. Therefore, in the case of the PET label, the ranking for each graph 
dataset resulted as follows: AD PPT-Ohmnet (0.1007), AD STRING (0.1224), AD HuRI (0.1718), AD BioGRID 
(0.21595), AD GIANT (0.2485).

Regarding the PET&DX label (Fig. 2b, Supplementary Table 3b), the mean AUC values of all graph data-
sets (AD BioGRID: 0.7526 ± 0.0819, AD GIANT: 0.7035 ± 0.0634, AD HuRI: 0.7397 ± 0.0682, AD PPT-Ohmnet 
0.7521 ± 0.0589, and AD STRING: 0.7502 ± 0.0563) were better than the baseline model (0.6901 ± 0.0979). The 
graph dataset that performed best was again AD PPT-Ohmnet. In the case of this graph dataset, the p-value 
obtained was very near to significance (0.05171). The p-values ranking for this label was: AD PPT-Ohmnet 
(0.0517), AD STRING (0.0547), AD BioGRID (0.0692), AD HuRI (0.1025), and AD GIANT (0.3604).

The PET&DX prediction task led to better results than the PET labeling. In both cases, AD PPT-Ohmnet and 
AD STRING were ranked first and second, and the GIANT brain functional network was always ranked the last. 
Therefore, for both labels, we selected the AD PPT-Ohmnet network for further analysis.

Benchmarking GNNs performance vs. canonical machine learning models.  We then compared 
the performance of the best GNN models obtained in the previous section to Logistic Regression, SVMs with 
Linear and RBF kernels, and Random Forest. Supplementary Table 4 shows the performances of all these models 
in terms of accuracy, precision, recall, F1-score, and AUC. Note that the AD PPT-Ohmnet network structure 
did not vary much when deleting the APOE gene (28 nodes, 46 edges, density 0.1217, diameter 6). Therefore we 
used the same best GNN configuration found for each label (PET and PET&DX) for the AD PPT-Ohmnet graph 
dataset (see Supplementary Table 3). Figure 3 shows AUC values distributions obtained on the validation set 
over the ten splits in each label used in the ADNI dataset. According to these performance results, we performed 
several statistical tests. Firstly, we tested whether these canonical machine learning models’ performances were 
significantly better than (i) the corresponding baseline model (t-test) and (ii) a random prediction (AUC value 
of 0.5, 1 sample t-test). Secondly, we tested if non-GNN models were significantly worse than the corresponding 
GNN model (t-test). Lastly, we compared if models without the APOE gene were significantly worse than those 
with it (t-test). Supplementary Table 5 summarizes all the obtained p-values.

When focusing on the PET label (Fig. 3a), the models that obtained a better mean AUC value were the GNNs, 
both in the case of datasets with APOE and those without. All non-GNN models performed significantly worse 
than their corresponding GNN model, except for Random Forest with the APOE gene and SVM RBF with the 

Figure 2.   Boxplots showing the AUC distribution on the validation set for different GNN models using 
different graph datasets built on different networks using as targets: (a) PET, or (b) PET&DX. Red boxplots 
(labeled as “Only APOE”) correspond to the baseline models. White triangles (△) represent mean AUC values.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17632  | https://doi.org/10.1038/s41598-022-21491-y

www.nature.com/scientificreports/

APOE gene (see Supplementary Table 5). However, neither GNNs nor non-GNN models significantly outper-
formed the corresponding baseline model. Furthermore, it is interesting to see that in the case of all models, 
when we removed the APOE gene from the input, their AUC performance significantly dropped compared to 
models with APOE. None of the models in the case of PET got significantly worse values than a random AUC 
of 0.5 (see Supplementary Table 5).

In the case of the PET&DX label (Fig. 3b), all models obtained a higher performance than the PET label but 
showed similar behavior to this label, with some exceptions. Again, all non-GNN models obtained a significantly 
worse AUC value than the corresponding GNN models, except for SVM RBF and Random Forest in the datasets 
without the APOE gene (see Supplementary Table 5). The models that obtained better performance in terms 
of mean AUC were the GNN in the dataset with APOE and SVM RBF and GNN models in the case of datasets 
without APOE. In the latter case, SVM RBF and GNN models obtained a very similar average performance 
(0.5571 ± 0.0481 and 0.5554 ± 0.0485, respectively, see Supplementary Table 4). Again, regarding datasets without 
the APOE gene, all the models obtained a significantly worse performance than models with APOE. Moreover, 
none of the models obtained a significantly worse value than random (AUC 0.5), except for Logistic Regression 
without APOE (see Supplementary Table 5). Lastly, as was the case in the PET label, none of the tested models 
performed significantly better than the baseline one. However, the GNN obtained a very near-significance 
p-value (5.1717e−02).

In all cases, GNN models showed better performance than non-GNN models. However, not all non-GNN 
models were significantly worse than the GNN ones. Importantly, the value obtained by the corresponding 
baseline models was not improved by any of the other models in any case. Furthermore, when we removed the 
APOE gene from the datasets, the performance of all models (both GNN and non-GNNN) worsened signifi-
cantly, highlighting the importance of APOE as a biomarker for AD.

Using randomized networks as input.  Compared to other non-GNN models, GNNs were the models 
that obtained the best classification performances in the classification task proposed, although they did not 
obtain a significantly better performance than the baseline model using only the APOE mutation status. How-
ever, structuring the genetic data in a graph or network model such as the GNNs may still yield additional 
insights into the biology behind the disease, so we wanted to understand if the interactions present only in the 
graph datasets contribute to this.

We selected the network AD PPT-Ohmnet as the best network candidate (see Section “Comparing results 
using different input networks”). To evaluate the importance of the interactions present in AD PPT-Ohmnet, 
we generated random networks from it. Then, we built their corresponding graph datasets and tested them in 
the proposed classification tasks with GNNs. These random networks involved the same sets of nodes (genes) 
of the original AD PPT-Ohmnet network but with different edges (interactions). We generated 100 different 
random networks for two randomization methods (“Shuffled” and “Rewired”, see Section “Random networks”) 
implemented by25, and built their corresponding graph datasets. These datasets were used for training and testing 
the original best GNN configurations obtained (Supplementary Table 3). We obtained a p-value for each fold, 
comparing the original AUC value in that fold against the 100 AUC values obtained using 100 different random 
graph datasets. We obtained these p-values through 1-sample one-sided t-tests, adjusted by the Benjamini–Hoch-
berg method32. Figure 4 shows the distribution of random datasets’ performance against the original datasets in 
each fold. Supplementary Table 6 includes all the p-values obtained here.

Figure 3.   Boxplots showing the AUC distribution values of different models on the test set using as targets 
either (a) PET, or (b) PET&DX. Red boxplots (labeled as “Only APOE”) correspond to the baseline models. 
White triangles (△) represent mean AUC values.
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Nearly all the p-values obtained for the PET label were significant (p-value < 0.05), except for the case of the 
folds number 8 and 9. Regarding the PET&DX label, the results were practically the same: all the folds obtained 
a significant p-value except for fold number 8. The fact that the majority of the folds yielded a significant p-value 
suggests that the specific topology of the PPI networks played an important role in both labels prediction.

Using another dataset as input.  Finally, we performed the steps described above using a completely 
different cohort: TGenII (see Section “Data generation and filtering”). This cohort contains more individuals 
(1599) than the ADNI cohort (808). In this case, the classification task was to predict the Late-Onset Alzheimer’s 
Disease (LOAD) diagnosis. We used the network AD PPT-Ohmnet to generate the corresponding graph dataset 
and obtained the best GNN model over the ten corresponding dataset splits (see Section “Train and validation 
sets used”) and its classification metrics on the validation set. As was the case in the previous scenarios with 
ADNI datasets, the GNN model was the one that obtained the best AUC results (0.6733 ± 0.0409, see Sup-
plementary Table 8). The other models obtained AUC values very similar to the baseline model, with a value 
of 0.6591 ± 0.0451. However, as with the ADNI cohort, none of these models, including the GNN, obtained a 
significantly higher value (1-sample t-test, see Supplementary Table 9) than the baseline model, although all 
were significantly higher than a random AUC performance. We wanted to compare these results with the ones 
obtained in ADNI. Figure 5 shows the AUC distribution over the ten splits in the three different classification 
labels used (PET, PET&DX, and LOAD) with the baseline and GNN models.

Figure 5 shows that the AUC value obtained for the models is highly dependent on the split used. This fact 
is especially noticeable in the dataset with fewer patients, PET&DX. In this case, the baseline model is the one 
that obtains the widest distribution of all those shown, ranging from ~ 0.55 to more than 0.80. On the contrary, 
the GNN model obtains a much shorter and upwards shifted distribution. For PET and LOAD labelings, these 
boxplot distributions are similar in width although slightly shifted upwards in the case of GNNs. Regarding 
the average performance of each label, the difference between PET and LOAD is shallow (0.6801 ± 0.0643 and 
0.6733 ± 0.0409, respectively), suggesting that these two labels are similar and more difficult to classify with 
the information provided than the PET&DX label (0.7521 ± 0.0589). Finally, as mentioned above, using only 
the APOE genotype as input in a logistic regression model led to results slightly better than GNNs, in all cases. 
Therefore, we must again emphasize the big influence of the APOE genotype in developing the three phenotypes 
evaluated in this work.

Discussion
In this study, we present a novel pipeline for predicting the phenotype of a subject through the use of missense 
gene variants, included as node attributes in a biological network (Fig. 1a). Taking this into account, we built 
several graph datasets and labeled them with different phenotype labels as input for GNNs. The complete analysis 
presented in this work is based on the importance of using datasets organized in graphs and models that can 
operate on them to study complex and heterogeneous diseases5, such as neurodegenerative ones. Additionally, we 
performed several benchmarking steps (Fig. 1b) to corroborate the hypothesis that GNNs can be an advantage 
in phenotype prediction through genotype in Alzheimer’s Disease (AD).

Figure 4.   Boxplots showing the distribution of AUC values over the ten different test sets (ten different folds) 
using (i) the original AD PPT-Ohmnet dataset (pink), (ii) 100 different “shuffled” datasets (light blue), and (iii) 
100 different “rewired” datasets (light green). White triangles (△) represent mean AUC values. Asterisks (*) 
represent a p-value < 0.05 (Benjamini–Hochberg correction) obtained by comparing original graph datasets’ 
performance vs. random graph datasets’ performance. Boxplots were obtained for (a) PET and (b) PET&DX 
labelings using the ADNI dataset.
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We analyzed most of the results obtained in this manuscript concerning a baseline model that only included 
the APOE number of missense variants as input for Logistic Regression. Because AD is the most common NDD, 
its genetic architecture is well studied, with a remarkable breakthrough when the strong association of the APOE 
gene with the disease was discovered33. APOE is a major genetic risk for AD19, as several variants have been 
implicated in increased amyloid-beta deposition34. Therefore, given the importance and relationship of this 
gene with AD-related phenotypes, we decided to use it as a reference for more complex models such as GNNs.

As the first step in this work, we selected several biological networks from different sources to use as input 
for building their corresponding graph datasets. Next, we evaluated these graph datasets using GNNs for graph 
classification. We based the selection of the “best” biological network on comparing their corresponding GNN 
models’ performance against the previously mentioned baseline models (Fig. 2). This step was performed on 
the ADNI dataset, using two different labels named PET and PET&DX. In both label cases, the best-performing 
graph dataset came from the AD PPT-Ohmnet network (see Table 1). This PPI network involving genes related 
to AD is specific to brain tissue. It comes from a large tissue-specific PPI network where all the physical PPIs are 
supported by experimental evidence35. However, none of the GNN models with the different networks or labels 
obtained a significantly higher performance than their corresponding baseline models.

Within this comparison with the different biological networks and phenotypes considered, we noticed an 
increase in performance between PET and PET&DX classification greater in AD BioGRID than in the rest of 
the biological networks (Fig. 2). The explanation for this observed phenomenon is complex given that many 
agents play a role in classification: the genes and their variants, their interactions, and the specific topology 
of the network. Moreover, it is not easy to establish which set of genes and interactions are the ones that had 
the most weight in the phenotype prediction since the GraphGym12 framework does not allow exporting the 
generated GNN model to perform an analysis of the weights and a subsequent interpretability analysis. A pos-
sible explanation could be based on the possibility that there are nodes and edges in the AD BioGRID network 
that favor the classification of the PET-amyloid-positive dementia phenotype (PET&DX label, Fig. 2b). More 
specifically, these genes would add value in the sense of cognitive impairment (cases with dementia) apart from 
beta-amyloid accumulation. AD BioGRID has a total of nine genes (TFAM, PGRMC1, TNF, SLC30A6, SLC30A4, 
MPO, DHCR24, AMFR, and TPP1) that are not present in any of the other biological networks. However, as the 
differences in the patient graphs fall on the variants used, we performed a small search on the variants present 
in the genes mentioned in the ADNI dataset. Among these, we found rs1937 in the TFAM gene. This variant 
has previously specifically been associated with cognitive impairment (MMSE neurocognitive test) but not with 
beta-amyloid accumulation (CSF biomarkers)36. Evaluating the differences of these networks regarding differ-
ent phenotypes is interesting for future work, although dependent on generating more interpretable models, as 
previously mentioned.

To verify if the small performance improvement of GNN w.r.t. the baseline model could be attributed to the 
information captured in the edges of the input network, we compared the results against other models that con-
sidered genotype information from the same gene set but did not use graph-structured data. For the prediction 
of the two considered labels (PET and PET&DX).

Firstly, none of the models performed significantly better than the baseline ones, although the GNN model 
in the PET&DX target was close to significance (p-value of 0.05172). There are several reasons why these GNN 
models did not obtain a better performance than the baseline model. First, there is a huge correlation between 
the rs429358 missense variant (present in the two cohorts used in this work) and the studied phenotypes. In fact, 

Figure 5.   Boxplots showing the AUC distribution values of baseline and GNN models on the test sets using 
as targets either PET&DX, PET from the ADNI cohort, or LOAD from the TGenII cohort. White triangles 
represent mean AUC values.
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in a benchmarking study of machine learning models for predicting AD through genotyping the feature that all 
models selected as most important was this same missense variant present in APOE37. All other variants selected 
as important were either intronic or located in intergenic regions. Because we used PPI networks to structure 
the data in graph datasets in this work, we thought it convenient to use only coding missense variants in the first 
approach, as they are expected to have the strongest functional impact. However, the results obtained in this 
work and concerning the results reported in37, support the notion that additional risk factors of AD in addition 
to the APOE gene are likely found in non-coding variants, including those found in enhancer regions38. Another 
important reason may be that the representation of the genotype information in the network is too simplistic. 
Although this way of coding obtained good results in the prediction of Crohn’s disease9, neural networks that 
directly encode sequence or structural information may be better suited.

Most non-GNN models were significantly lower in performance than the corresponding GNN models. When 
using the datasets with APOE, this was the case for all models except for Random Forest in the PET label. When 
using datasets without APOE, SVM RBF and Random Forest did not perform significantly lower than GNN in 
PET and PET&DX cases. These results indicate that the GNNs used in this work, while not yielding clinically 
relevant results in AD, have the potential for further exploration in disease prediction. When deleting the APOE 
gene from both the graph and tabular datasets employed, the performance of the models significantly dropped 
against models with APOE but did not obtain significantly worse values than random, except for the case of 
Logistic Regression in the PET&DX label. These obtained results highlight again the importance of missense 
variants in the APOE gene in the development of AD-related phenotypes.

We further sought to understand if the biological information coded in the edges of the network was used 
in prediction or if random networks with a similar topology could offer the same performance (Section “Using 
randomized networks as input”). In both label cases, PET and PET&DX, the original graph datasets obtained 
significantly better results than random graph datasets for both randomization methods (Supplementary Table 6). 
Therefore, interactions between genes and the overall topology of the specific brain PPI network played an impor-
tant role in classification. Even though these results detected interactions and the original PPI network structure 
as an important factor in classification, one of the main limitations of this work is related to the framework used 
for the implementation of the GNNs. In the case of GraphGym, it is not possible to export the trained models, 
so we cannot perform a proper interpretability analysis.

Lastly, we obtained all these classification performances using different cohorts (ADNI and TGenII) for 
different classification labels. The results with GNNs with the different classification labels and input cohorts 
raise interesting questions about predicting different AD-related phenotypes through genotype information 
organized in a graph. In this work, we have considered three different targets: (i) amyloid PET status (PET), (ii) 
amyloid PET status together with diagnosis (PET&DX), and (iii) diagnosis (LOAD). From a neurological point 
of view, we can rank these phenotype labels according to their complexity or heterogeneity. The LOAD target is 
a classical case–control design in which only the diagnosis information is available. In the context of AD, this 
type of classification could include several misclassifications, such as pre-symptomatic AD cases as controls or 
other non-AD dementias diagnosed as AD. Due to this heterogeneity in clinical diagnosis labeling, it is also 
encouraged to use different endophenotypes related to the disease, such as amyloid-beta deposition. The use of 
endophenotypes improves phenotype definition and contributes to unraveling the etiology of AD19. This idea 
inspired us to use amyloid-PET status labeling in the ADNI dataset. However, the GNN performances (and also 
the baseline models) of PET and LOAD labels were very similar (0.67 and 0.68, respectively), even though their 
sample size was different (726 subjects for PET and 1599 for LOAD). Therefore we did not observe an improve-
ment in phenotype prediction using AD diagnosis or amyloid PET status. In light of this, it is important to note 
that amyloid-beta deposition is not a specific biomarker for AD; therefore, subjects with different diagnoses and 
cognitive profiles could share the same amyloid-PET status. Accordingly, we created a subset of this target in the 
ADNI cohort, named PET&DX, using both amyloid-PET status and diagnosis. PET&DX target was the most 
homogeneous target as it only included patients diagnosed with AD with the positive amyloid-PET and subjects 
without cognitive decline with a negative amyloid-PET. These three targets’ characteristics are reflected in their 
classification results using GNNs. Consequently, classification is nearly significantly higher than the baseline 
model using a clearly-defined phenotype (PET&DX), genes previously associated with the disease (AD-related 
genes), and networks involving tissue-specific interactions (PPT-Ohmnet).

Conclusions and outlook
Using AD-associated genes reported in DisGeNET, we have generated patient-specific graphs annotated with 
genotype information on missense variants. Different biological networks were considered to define edges in 
these networks which were then used in Graph Neural Networks (GNNs) for predicting phenotype labels. The 
results showed that GNNs did not highly outperform other non-GNN models, even a baseline model using the 
APOE genotype only. One of the main reasons for this could be that we ignored other types of variants as well 
as variants in non-coding regions of the DNA. However, in all cases, GNNs obtained the best results in terms of 
mean performance, demonstrating that the approach generally shows potential. Moreover, using random net-
works as input for GNN models confirmed that the interactions between the genes and overall topology graphs 
are important for the correct prediction. Therefore, organizing genotype data in a graph-structured dataset could 
significantly contribute to the phenotype prediction and understanding and unraveling of the network-level 
effect of the occurrence of several mutations in the development of disease. The results obtained depended on 
the biological network used as input for building the graph datasets and showed that it seems preferable to use 
networks related to the disease’s affected tissue.

Because the results obtained with genetics and GNNs in predicting diseases as complex as AD are still disap-
pointing, it appears necessary to define several lines of future work and possible topics for improvement in the 
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proposed pipeline. (1) Firstly, as previously discussed, additional information needs to be coded in the graph 
as nodes or edges attributes. For example, stop-loss, stop gain, or splicing altering variants could be considered. 
PPI networks are limited in their most common form to the highest expressed form of the genes. Isoforms 
can have a significant impact on the PPI and thus on this pipeline39. (2) Secondly, another reason could be the 
lack of feature selection in the presented methodology. Including pathogenicity criteria could give more or 
less weight to the different variants, therefore, providing more information on how this network is perturbed 
and orienting the model towards the specific phenotype to be predicted. (3) Thirdly, the way that we coded the 
variants as node attributes does not include other important genetic phenomena such as epistasis or epigenetic 
mechanisms of gene regulation. Both mechanisms likely play an important role in the genomics of complex 
phenotypic traits38,40,41. (4) Finally, one of the most challenging tasks is to develop a more interpretable neural 
network model. For this, tools such as GraphGym give the scientific community the ability to test and evaluate 
complex models such as GNNs in a user-friendly environment. However, it is also important to develop ad-hoc 
models to extract how these complex neural network models work on the dataset.

Finally, it is interesting to note that this work is not at odds with further exploration of results. The GNN 
models could use larger biological network-based graph datasets that include neighbors of the selected genes 
(nodes) of interest. However, it is crucial to take into account the sample size. If many genes per individual are 
included, a dimensionality problem could arise from which it is not easy to extract information without overfit-
ting. In addition, it must be considered that the higher the dimensionality, the higher the computational cost 
of the models’ training. Therefore, we decided to conduct this first work in a reduced search space, using genes 
previously related to Alzheimer’s disease. The ideal scenario would be where we find as few genes or variants as 
possible organized in a network to predict the phenotype accurately.

In conclusion, we have carried out an exhaustive benchmarking work on using the very novel and actual 
GNNs to predict phenotype through genotype in the context of a highly complex disease such as AD. While in 
our study GNNs could not deliver clinically relevant results for the early diagnosis of AD, we consider it valuable 
to take these first steps towards phenotype prediction by structuring genomic data as graphs.

Data availability
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) data underlying this article are available at the ADNI 
website upon formal request: adni.loni.usc.edu. The TGen II data underlying this article are available at NIA-
GADS upon formal request: https://​www.​niaga​ds.​org/​datas​ets/​ng000​28.
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