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Enhanced spatial processing of local visual details has
been reported in individuals with autism spectrum
conditions (ASC), and crowding is postulated to be a
mechanism that may produce this ability. However,
evidence for atypical crowding in ASC is mixed, with
some studies reporting a complete lack of crowding in
autism and others reporting a typical magnitude of
crowding between individuals with and without ASC.
Here, we aim to disambiguate these conflicting results
by testing both the magnitude and the spatial extent of
crowding in individuals with ASC (N ¼ 25) and age- and
IQ-matched controls (N¼ 23) during an orientation
discrimination task. We find a strong crowding effect in
individuals with and without ASC, which falls off as the
distance between target and flanker is increased. Both
the magnitude and the spatial range of this effect were
comparable between individuals with and without ASC.
We also find typical (uncrowded) orientation
discrimination thresholds in individuals with ASC. These
findings suggest that the spatial extent of crowding is
unremarkable in ASC, and is therefore unlikely to
account for the visual symptoms reported in individuals
with the diagnosis.

Introduction

The ability to recognize stimuli in our peripheral
vision is limited. This ability is hindered by a
phenomenon called ‘‘crowding,’’ the breakdown of
object recognition in cluttered visual environments
(Bouma, 1970). Crowding poses a fundamental limita-
tion on the spatial range over which objects in the
periphery of our visual field can be resolved despite
accurate detection of their presence (Levi, Hariharan,
& Klein, 2002).

Psychophysically, this limitation on perception can
be characterized by measuring a participants’ ‘‘critical
distance,’’ the spatial range over which flankers
interfere with target detection. A related measure is the
magnitude of crowding, the reduction in visual
performance when flankers surround a target at one
target–flanker distance relative to when a target is
unflanked. These two parameters are influenced by
multiple factors, including target eccentricity (Bouma,
1970; Mareschal, Morgan, & Solomon, 2010; Tripathy
& Cavanagh, 2002; Westheimer & Truong, 1988),
target–flanker feature similarity (Chung, Li, & Levi,
2007; Kennedy & Whitaker, 2010; Kooi, Toet, Tri-
pathy, & Levi, 1994; Louie, Bressler, & Whitney, 2007;
Nazir, 1992), and the relative size and position of
targets and flankers (Banks, Bachrach, & Larson, 1977;
Bouma, 1970; Feng, Jiang, & He, 2007; Toet & Levi,
1992).

Spatial processing of visual information is thought to
be atypical in autism spectrum conditions (ASC).
Experimentally, people with autism demonstrate supe-
rior visual search (O’Riordan, Plaisted, Driver, &
Baron-Cohen, 2001; Plaisted, O’Riordan, & Baron-
Cohen, 1998), a steeper fall-off in visual acuity with
distance from a cued location (Robertson, Kravitz,
Freyberg, Baron-Cohen, & Baker, 2013), a bias
towards local perception when viewing hierarchical
local–global stimuli (Koldewyn, Jiang, Weigelt, &
Kanwisher, 2013), and heightened self-reports of visual
sensitivity to local details in the visual environment
(Robertson & Simmons, 2013).

One component of visual perception that might
contribute to autistic visual symptomatology is
crowding. Specifically, the reported enhancement of
perception of local details in a visual environment may
arise from a reduction in peripheral crowding in
autism. A few studies have investigated crowding in
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individuals with ASC, so far with mixed results. One
study (Baldassi et al., 2009) tested the effect of
crowding on orientation detection , using nine flankers
arranged in a circle around a central target at one
target–flanker distance (18 of visual angle), and found
reduced crowding in individuals with ASC. Another
study (Kéı̈ta, Mottron, & Bertone, 2010), confirmed
this reduced magnitude of crowding in ASC, but only
at the closest tested flanker condition (one gap width of
a Landoldt C). These findings support the notion that
visual processing in ASC may be less vulnerable to
crowding effects, specifically within a local spatial
region around a visual target. However, two subse-
quent studies (Constable, Solomon, & Gaigg, 2010;
Grubb et al., 2013) reported no differences in the
magnitude or the spatial extent of crowding between
individuals with and without ASC.

These mixed results may be explained in part by
discordance among the paradigms used in previous
studies. Crowding is thought to independently occur
at multiple levels of visual analysis (Whitney & Levi,
2011): in a given scene, crowding occurs between low-
level stimulus features (Parkes et al., 2001), objects
parts (Martelli, Majaj, & Pelli, 2005), and whole
objects (Farzin, Rivera, & Whitney, 2009). Crowding
at these various levels of visual analysis has different
characteristics. For example, crowding between simple
stimuli with common low-level features (e.g., Gabor
patches) is known to lead to compulsory feature-
pooling (e.g., orientation; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001). On the other hand,
crowding between more complex stimuli such as
objects, while driven at least in part by averaging
(Dakin, Cass, Greenwood, & Bex, 2010), is also
thought to involve probabilistic visual substitution of
the flankers and target stimuli (Freeman, Chakravar-
thi, & Pelli, 2012).

The stimuli used in previous studies of crowding in
ASC were of different visual complexities: Baldassi et
al. (2009), who found reduced crowding in ASC, used
Gabor patches (flanked by vertical Gabors), while
Grubb et al. (2013) and Constable et al. (2010), who
both found typical crowding in ASC, employed multi-
feature stimuli (letters and shapes, respectively). This
pattern of results may therefore indicate that crowding
of simple stimuli is selectively reduced in ASC, but that
when multifeature stimuli are used, crowding is intact
in ASC. However, two other points of experimental
clarification might contribute to the pattern of results.
First, the finding of reduced crowding effects in ASC
(Baldassi et al., 2009) is difficult to interpret, as the
crowding effect in this study was calculated as a ratio
between crowded and uncrowded orientation discrim-
ination thresholds, and only the latter was significantly
worse in the ASC group. Therefore, their finding of a
reduced crowding effect in ASC may have primarily

been driven by baseline differences in the groups’
orientation discrimination thresholds, rather than
crowding per se. Second, only one previous study
examined crowding in ASC while monitoring gaze
stability (Grubb et al., 2013), leaving open the question
of whether previous findings of reduced crowing in
ASC might be driven by weaker gaze stability.

We therefore tested the magnitude and spatial extent
of crowding in individuals with and without ASC
(matched for age, IQ, and gaze-stability) during a
feature-based crowding paradigm. Participants per-
formed a simple orientation discrimination task, in
which they were asked to identify the tilt of a Gabor
target. This paradigm was similar to that used by
Baldassi et al. (2009), which demonstrated a striking
reduction in crowding in ASC with simple Gabor
stimuli. Furthermore, to confirm that our findings were
not attributable to basic differences in orientation
discrimination between the two groups, we also
measured peripheral orientation discrimination without
flanking stimuli.

Methods

Participants and psychometric testing

Forty-eight participants (25 with ASC) completed
Experiments 1–3. Out of these 48, we excluded 13
participants in total from our analyses: six participants
(five in the ASC group) based on poor performance
during the thresholding procedure prior to the exper-
iment, and seven participants (two in the ASC group)
based on poor fixation during the experiment. For
details of exclusion criteria, please see Practice and
Thresholding and Eye tracking below. It is important to
note that excluding participants from the study based
on poor performance during the thresholding proce-
dure or poor gaze stability fixation, did not qualita-
tively affect the results reported here (all p . 0.162).
Participants were matched for age (Controls: 29.6 6
8.6, ASC: 33.3 6 12.3, p . 0.31) and nonverbal IQ
(Controls: 114.5 6 22.3, ASC: 121.5 6 8.8, p . 0.22),
as assessed using the Wechsler Abbreviated Scale of
Intelligence (WASI). ASC participants all had clinical
diagnoses of an autism spectrum disorder, as evaluated
by qualified clinicians based on DSM-IV criteria, and
were assessed using the ADOS-II (Module 4) by a
research-reliable experimenter. Participants also com-
pleted the Autism Quotient Questionnaire (AQ; Baron-
Cohen, Wheelwright, Skinner, Martin, & Clubley,
2001), the Sensory and Perception Questionnaire (SPQ;
Tavassoli, Hoekstra, & Baron-Cohen, 2014), and the
Glasgow Sensory Questionnaire (GSQ; Robertson &
Simmons, 2013). All participants had normal or
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corrected-to-normal vision, and did not have a
diagnosis of epilepsy or attention-deficit / hyperactivity
disorder. All participants had normal or corrected-to-
normal vision and no diagnosis of epilepsy or
attention-deficit / hyperactivity disorder.

Stimulus presentation

Stimuli were presented using the Psychophysics
Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli,
1997) on a TFT-LCD display (width: 33.7 cm, height:
27.0 cm, 1280 3 1024, refresh rate 120 Hz; Tobii
Technology, Danderdyd, Sweden). Viewing distance
from the screen was fixed using a chin rest (60 cm),
and all testing took place in a darkened room.

Procedure: Experiment 3

On each trial, participants fixated on a cross (white,
diameter: 0.38) in the center of the screen and reported
the orientation of a peripheral Gabor target (Radius:
0.858; Gaussian envelope: standard deviation of 0.158,
maximum 100%; Sinusoidal modulation: 3.5 c/8;
Duration: 33.3 ms), presented on the horizontal
meridian of the screen, 108 either to the left or right of
fixation (Figure 1a). The target was tilted either
clockwise (CW) or counterclockwise (CCW) from
horizontal, and participants were asked to report the
direction of tilt by pressing either the left-button (CW)
or the up-button (CCW) on a standard keyboard. The
angle of the target was set to each participants’ 75%
correct detection, obtained through a standard thresh-
olding procedure after thorough practice with the task
(see Practice and Thresholding).

To measure the spatial extent of crowding, this
orientation discrimination task was embedded in a
standard flanker paradigm. On each trial, the target
was presented in the context of two flankers (Radius:
0.858; Gaussian envelope: standard deviation of 0.158,
maximum 100%; Sinusoidal modulation: 3.5 c/8;
Duration: 33.3 ms), one directly above and one below
the target. These flankers had no tilt (horizontal
orientation), and were presented at one of six distances
from the target on each trial (0.858, 1.058, 1.258, 1.458,
1.858, and 2.258; Figure 1). Participants were allowed 5
s to respond to each trial, and a fixation period of 1.5 s
began each trial. Participants were instructed to
respond as soon as they knew the answer. Trials were
presented using the method of constant stimuli (18
trials at each distance and screen side, 216 trials total),
and screen side and target tilt were counterbalanced
across trials. Response time and accuracy were
recorded on each trial. During all experiments, subjects
were instructed to maintain fixation throughout the

experiment, and fixation accuracy was monitored
throughout the experiment (see Eye tracking and gaze
analysis in the following material).

Procedure: Practice

Three blocks of practice trials preceded the experi-
mental stage. In the first block (20 trials), the stimuli
were presented on the screen until the participant
responded. In the second block (96 trials), presentation
time was gradually reduced from 300 ms to 33 ms. In
the third block (96 trials), stimuli were presented for 33
ms. The target angle was randomly chosen on each
practice trial (min ¼ 20, max ¼ 458), and the target–
flanker distance was randomly picked out of the six
possible distances (Figure 1). To ensure participants
performed above chance, participants were required to
achieve at least 60% overall accuracy during these
practice blocks to proceed to the full experiment,
otherwise they did not proceed with the study. Given 96
practice trials, 60% is the smallest accuracy level that is
significantly different from chance [v2(1, N ¼ 96)¼
4.167, p ¼ 0.041].

Procedure: Thresholding experiments
(Experiments 1–2)

After practice, we determined two perceptual
thresholds using a staircase procedure: (a) the tilt of the
target at which participants achieved 75% performance
accuracy without flankers, (b) participants 75% dis-
crimination thresholds under crowding at the closest
target–flanker distance. The target was initially pre-
sented at 458 of rotation. With each trial, the angle of
rotation was reduced by one step size if the response
was correct, and increased by three step sizes if the
response was incorrect. For the first five reversals, the
step size was 7.5% of the previous orientation. Then,
for 15 reversals, the step size was 2.5% of the previous
orientation. The average of the last seven reversals was
taken as the 75% threshold. Each individual’s 75%
correct crowded orientation discrimination threshold
from Experiment 2 was used as the target tilt in
Experiment 3. Crowding effects are diminished when
the target is not perceptually grouped with the
surrounding flankers (Livne & Sagi, 2010, 2011;
Saarela, Sayim, Westheimer, & Herzog, 2009; Yeoti-
kar, Khuu, Asper, & Suttle, 2011). To avoid breaks in
perceptual grouping known to occur when targets and
flankers are orthogonal (Livne & Sagi, 2011; Yeotikar
et al., 2011), we excluded participants whose threshold
was closer to being orthogonal than parallel (above 458,
N ¼ 6, 5 with ASC).
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Performance analysis: Experiment 3

To analyze performance in the six distance condi-
tions, we first discarded all trials in which responses
were faster than 150 ms, or more than two standard
deviations outside of their mean reaction time. We also
discarded trials on which fixation was broken (see Eye
tracking and gaze analysis below). In order to estimate
the critical distance, the target–flanker distance at
which performance reaches 90% of the plateau value,
we also fit exponential curves for each subject’s data

based on previous literature (Yeshurun & Rashal,
2010) using the following equation:

y ¼ a3 expðb3xÞ þ c;

where x refers to the target–flanker distance, with the
constraints that a and b had to be negative, and c had to
fall between 0.5 and 1.�0.2,�2, and 0.95 were chosen as
the starting values for a, b, and c, respectively. This
ensured that the curve rose with increasing distance, and
plateaued to a value between 50% and 100% perfor-
mance (the lower and upper bound). The critical

Figure 1. Display layout (A) and trial time course (B). Images not to scale. (A) The target was presented 108 of visual angle from the

fixation cross. It was flanked by two identical, horizontal Gabor patches. To measure the spatial range of the crowding effect, target–

flanker distance varied on each trial (0.85–2.258). Only the closest target–flanker distance (0.858) is shown. (B) Stimulus presentation

lasted 33 ms, and was preceded by 1.5 s of fixation time (the intertrial interval). Response time was left to the participant, but could

last a maximum of 5 s, after which the trial was counted as an error.
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distance was therefore calculated as:

d ¼
ln �0:1 3 c

a

� �

b
:

Eye tracking and gaze analysis

Eye tracking was performed using a Tobii T120 eye
tracker, via the Tobii MATLAB SDK (Tobii Tech-
nology, sampling rate 120 Hz, spatial resolution 0.58).
Participants successfully completed a nine-point cali-
bration routine that was repeated if the eye tracker
detected gaze position more than 0.928 away from the
actual gaze position. Tracking was performed
throughout the whole experiment. Fixation data from
the left eye were analyzed starting 250 ms before
stimulus onset until stimulus offset using custom
MATLAB analysis scripts. Data from time points
during which the eye-tracker did not receive input from
the eye (e.g., blinks) were removed from the analysis.
We excluded trials in which it was impossible to
determine eye position due to lack of sampling, and
trials in which the median eye position was more than
28 from the fixation point. We then excluded partici-
pants for whom more than 50% of trials in any

condition were missing due to lack of fixation or eye
tracking data (n¼ 7, 2 with ASC). This did not affect
the outcome of any statistical tests used.

Results

Experiment 1: No impairment of orientation
discrimination in ASC

We first aimed to characterize peripheral orientation
discrimination in individuals with and without ASC. We
used a staircase procedure to identify the angle of
rotation at which participants were able to identify the
orientation correctly with 75% accuracy. We found no
differences between the orientation discrimination
thresholds of participants with and without ASC [U(18,
17)¼ 100, p , 0.247, mean ASC: 5.18, mean Control:
3.78, Cohen’s d¼ 0.36, Figure 2]. This demonstrates that
orientation discrimination in peripheral vision is com-
parable between individuals with and without ASC.

Experiment 2: Equivalent maximum effect of
crowding

Next, we aimed to characterize the magnitude of
crowding in individuals with and without ASC. We
therefore tested orientation 75% orientation discrimi-
nation thresholds used the same staircase procedure as
before, but this time under crowded conditions (using
the closest target–flanker distance in Experiment 3,
0.858). As expected, both groups evidenced a significant
increase in thresholds during crowding: a 2 3 2
ANOVA with Flanker Presence as within group factor
and Diagnosis as between group factor revealed a main
effect of Flanker Presence, F(1, 33)¼ 29.814, p , 0.001,
Figure 2. However, there was no interaction between
Group and Flanker Presence, F(1, 33) ¼ 0.285, p ,
0.597, mean ASC: 13.28, mean Control: 10.358,
indicating that the magnitude of this effect was
comparable between the two groups. This shows that
the addition of flankers introduced equal levels of
difficulty to the task for the two groups.

Experiment 3: Comparable performance in both
groups

Having established comparable orientation discrim-
ination and crowding effects at close target–flanker
distances in ASC, we next sought to investigate whether
the spatial extent of crowding differs between individ-
uals with and without ASC. We therefore measured

Figure 2. 75% discrimination thresholds in Experiment 1

(Uncrowded) and 2 (Crowded). Error bars represent one

standard error of the mean. The crowding effect was significant

in both groups (***, p , 0.001). This effect was equally strong

in both groups, and there were no group differences overall.
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performance at six target–flanker distances using the
method of constant stimuli. In Experiment 3, the target
tilt was set to the individual’s 75% accuracy threshold
at the closest distance (see Experiment 2). We analyzed
mean accuracy and median reaction time with separate
2 3 6 repeated-measures ANOVAs, using Distance as
the within-subject factor and Diagnosis as the between-
subject factor (Figure 3).

As predicted, performance accuracy increased with
flanker distance in both groups, as evidenced by a
significant main effect of Distance, F(5, 165)¼14.949, p
, 0.001, Figure 3. This finding demonstrates that the
effect of crowding on visual performance decreased
with target–flanker distance. However, the magnitude
of this effect was comparable between the two groups:
No interaction between Diagnosis and Target–Flanker
Distance was observed, F(5, 165)¼0.667, p , 0.626, gp

2

¼ 0.02. Finally, no main effect of Diagnosis was
observed, F(1, 33)¼ 2.782, p , 0.105, gp

2¼ 0.077,
indicating overall comparable performance between the
two groups. In sum, individuals with and without ASC
demonstrated a comparable release from the crowding

effect on visual performance with increasing target–
flanker distances.

Reaction times in both groups were comparable
[main effect of Diagnosis: F(1, 33)¼ 1.683, p , 0.204],
and were not significantly modulated by Distance [main
effect of Distance: F(5, 165) ¼ 2.090, p , 0.086]. No
interactions involving Diagnosis were observed [Diag-
nosis3Target–Flanker Distance, F(5, 165)¼0.961, p ,

0.431]. To explore potential group differences in
performance while accounting for any potential speed–
accuracy trade-offs, we also analyzed performance
using a combined metric of accuracy and response time
(inverse efficiency scores: �1 3 median reaction time /
accuracy). Results of this analysis revealed a strong
modulation of efficiency by Distance, F(5, 165)¼
10.815, p , 0.001, but no interactions or main effects
involving Diagnosis were observed (all p . 0.11). In
sum, individuals with and without ASC evidenced a
comparable magnitude of crowding, which decreased
with target–flanker distance at a comparable rate.

Figure 3. Results from Experiment 3. Mean accuracy of the two groups at the six target–flanker distances and the estimated critical

distance for each group (inset). Error bars represent one standard error of the mean. Performance increased significantly with

increasing target–flanker distance in both groups. The rate of this change was comparable between the two groups, and there was no

overall difference in performance.
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Experiment 3: Equivalent critical distances in
both groups

To test whether the spatial extent of crowding
differed between individuals with and without ASC, we
calculated each individual’s critical distance, the target–
flanker distance at which performance reaches 90% of
the plateau value. To do so, we fit an inverse
exponential curve to each participant’s data. This curve
allowed us to estimate plateau performance for the two
groups. We found no significant difference in this
plateau value between groups [mean Control: 90.6% 6
8.3%, mean ASC: 87.0% 6 7.3%, t(32) ¼ 1.361, p ¼
0.183], or between the estimated plateau value and the
value achieved at the target–flanker distance of 2.258
[mean Control: 1.7% 6 4.4%, mean ASC: 1.0% 6
4.1%, t(32)¼ 0.462, p¼ 0.647]. The critical distance was
not significantly different between the two groups,
U(17, 18)¼ 109, p , 0.63; mean ASC: 1.118 6 0.328,
mean Control: 1.178 6 0.388; Cohen’s d¼ 0.17,
indicating that crowding takes place across a similar
spatial extent between participants with and without
autism. Finally, no correlations between the critical
distance and measures of symptomatology were ob-
served (AQ: p , 0.928, ADOS: p , 0.940).

Equivalent fixation stability in both groups

We analyzed gaze data to determine stability of
fixation in both groups. We excluded trials in which it
was impossible to determine eye position due to lack of
sampling, and trials in which the median eye position
was more than 28 of visual angle from the fixation point
(excluded trials: 17% CON group, 23% ASC group).
Participants were excluded for poor gaze stability if
more than 50% of trials were excluded at any
experimental distance, to ensure accuracy could be
adequately estimated at that distance. There was no
difference in the amount of trials excluded in the two
groups, t(33) ¼ 0.703, p , 0.487, indicating that
differences in fixation patterns between groups are
unlikely to influence our results.

Discussion

We aimed to test the magnitude and spatial extent of
crowding in individuals with autism spectrum condi-
tions during a peripheral orientation discrimination
task. We demonstrate typical orientation discrimina-
tion thresholds in ASC, which are affected by crowding
to a similar degree as in controls. Further, we find that
the spatial extent of crowding is typical in ASC:
Crowding effects decline with increasing target–flanker

distances at a comparable rate as in controls. These
findings suggest that the bias towards local visual
processing often reported in autism is unlikely to stem
from a reduction in visual crowding.

Previous findings of typical contrast sensitivity (Koh,
Milne, & Dobkins, 2010) and visual acuity (Albrecht et
al., 2014; Bölte et al., 2012; Kéı̈ta et al., 2010) in
individuals with ASC suggest that many measures of
low-level perception are typical in the condition. Our
findings add to this pattern of results, indicating that
this low-level measure of visual function, cardinal
orientation discrimination, is also typical in autism.
Importantly, cardinal orientation thresholds are known
to exhibit a narrow dynamic range relative to oblique
thresholds (Appelle, 1972) and rely on different neural
mechanisms (Li, Peterson, & Freeman, 2003). One
recent investigation found superior oblique orientation
discrimination in typical individuals with higher
autistic traits (Dickinson, Jones, & Milne, 2014).
Therefore, future work should compare oblique and
horizontal orientation discrimination in individuals
with ASC.

Despite many reports of typical low-level visual
function in ASC, numerous reports of atypical spatial
processing of local visual information exist in the
literature, especially in the context of cluttered visual
displays (Almeida, Dickinson, Maybery, Badcock, &
Badcock, 2012; O’Riordan et al., 2001; Plaisted et al.,
1998). Previous research has also documented a
sharper fall-off in visual performance with distance
from a cued location in ASC, which strongly predicted
autistic symptomatology (Robertson et al., 2013).
However, both of these findings could arise from
either a sharper allocation of attention in space
(Robertson et al., 2013; Ronconi, Gori, Ruffino,
Molteni, & Facoetti, 2013), a difference in the
receptive field size of individuals with ASC
(Schwarzkopf, Anderson, Haas, White, & Rees, 2014),
or alterations at both levels of visual processing.

Our findings suggest that crowding is unlikely to be a
component mechanism of the putative superior spatial
range of visual processing in ASC. In this study, we
specifically used Gabor targets because of their relative
simplicity, predictions for a pooling model of crowding
(Parkes et al., 2001), and relative insusceptibility to
effects of attention load during crowding (Dakin, Bex,
Cass, & Watt, 2009). We cannot rule out that attention
may contribute to the effects observed here, as spatial
attention is known to reduce the critical distance during
crowding (Yeshurun & Rashal, 2010), although recent
reports indicate a typical effect of attention on the
critical distance during crowding among letter stimuli
in ASC (Grubb et al., 2013).

It is unlikely that we failed to reject the null
hypothesis of our study—that crowding is comparable
between individuals with and without autism—by
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chance. Our experimental paradigm produced large
and reliable effects of Target–Flanker distance on
crowding in both groups, indicating that our manipu-
lation was successful. Further, the variability in this
effect within each group was larger than the variability
between groups (F-value for a Group3Target–Flanker
Distance interaction was , 1), suggesting that the
group difference in crowding is smaller than even
individual differences in crowding.

Our findings add to mounting evidence for typical
crowding effects in ASC using a wide range of visual
stimuli. Two previous papers reported no difference
between participants with and without ASC using
multifeature stimuli (letters and objects, Constable et
al., 2010; Grubb et al., 2013). One paper reported a
post-hoc difference between an ASC and Control
group in crowding at close distances using object
stimuli, but this finding was not supported by a
significant Group 3 Distance interaction in the study
(Kéı̈ta et al., 2010). Although one paper reported a
striking absence of crowding in ASC using Gabor
patches (Baldassi et al., 2009), methodological dif-
ferences may explain these apparently discrepant
results. Baldassi et al. reported crowding effects as
normalized by raw orientation discrimination
thresholds, which was reported to be worse in their
ASC group. It is therefore difficult to establish
whether their findings are driven by worse orientation
discrimination in ASC. Additionally, it is important
to note that the only previous study to control for eye
movements found typical crowding effects in ASC
(Grubb et al., 2013). Together with previous reports,
our findings of typical crowding effects in ASC using
orientation stimuli suggest that the reported abnor-
malities in spatial processing observed in ASC are
unlikely to arise from atypical crowding in the
condition.

Conclusions

In conclusion, we provide evidence for typical
crowding in the peripheral visual fields of individuals
with autism spectrum conditions. We find that the
magnitude and spatial extent of crowding during a
simple orientation discrimination paradigm in individ-
uals with ASC are strong and indistinguishable from
age- and IQ-matched controls. We also provide
evidence of typical cardinal orientation discrimination
in the condition. In sum, these results suggest that
crowding is unlikely to drive the atypical spatial
processing of visual information reported in ASC.

Keywords: autism, crowding, orientation discrimina-
tion, spatial vision
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