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A mechanical Turing machine:
blueprint for a biomolecular computer
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We describe a working mechanical device that embodies the theoretical computing machine
of Alan Turing, and as such is a universal programmable computer. The device operates on
three-dimensional building blocks by applying mechanical analogues of polymer elongation,
cleavage and ligation, movement along a polymer, and control by molecular recognition
unleashing allosteric conformational changes. Logically, the device is not more complicated
than biomolecular machines of the living cell, and all its operations are part of the standard
repertoire of these machines; hence, a biomolecular embodiment of the device is not
infeasible. If implemented, such a biomolecular device may operate in vivo, interacting
with its biochemical environment in a program-controlled manner. In particular, it may
‘compute’ synthetic biopolymers and release them into its environment in response
to input from the environment, a capability that may have broad pharmaceutical and
biological applications.
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1. INTRODUCTION

In 1936, Turing [1] proposed a ‘pencil-and-paper’ com-
puting device, now called the Turing machine, as a
formalization of the notion of a procedure. Although
the Turing machine is prevalent in theoretical computer
science and is theoretically a universal computer, it
was never realized as an actual computing device. All
present day computers are based on a different architec-
ture, the electronic computer architecture devised by
von Neumann and colleagues in the 1940s [2], which
uses random (logarithmic) access to stored-programs
and data, as opposed to the linear sequential access
employed by the universal Turing machine. In 1994,
Adleman [3] showed how to compute using DNA mol-
ecules and standard molecular biology laboratory
techniques. Adleman’s method involves encoding com-
binatorial search problems with DNA sequences, and
using in vitro selection techniques to synthesize and iso-
late DNA sequences that encode solutions to these
problems. Subsequent works [4,5] further developed
and expanded this research direction.

Adelman, apparently not being aware of the work of
Bennet [6] discussed below, concluded his seminal paper
by saying: ‘In the future, research in molecular biology
may provide improved techniques for manipulating
macromolecules. Research in chemistry may allow
for the development of synthetic designer enzymes.
One can imagine the eventual emergence of a general-
purpose computer consisting of nothing more than a
single macromolecule conjugated to a ribosome-like
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collection of enzymes that act on it’. Here, we attempt
to advance this vision by proposing a detailed logical
design for such a computer, with the ultimate goal of
constructing a general-purpose programmable compu-
ter that can operate in vivo and interact with its
biochemical environment. As the tools of molecular
biology and chemistry are insufficient at present to rea-
lize this design with biomolecules, we realized it in a
working mechanical implementation. This mechanical
device serves as a proof-of-concept of the logical
design as well as a high-level operational specification
for a biomolecular implementation.
2. RESULTS

The mechanical computer employs a chain of basic
building blocks (figure 1a), referred to as alphabet mono-
mers, to represent the Turing machine’s tape, and uses
another set of building blocks (figure 1b), referred to as
transition molecules, to encode the machine’s transition
rules. The transition encoding is similar to a Wang [7]
tile construction, which is also at the basis of DNA
computing via self-assembly [8], and also to the concept
of modified tRNA proposed as part of a ribosome-like
computing device [9]. A transition molecule loaded
with an alphabet monomer specifies a computational
step of the computer similar to the way an aminoacyl-
tRNA specifies a translation step of the ribosome [10].
The set of loaded transition molecules constitutes the
computer’s program (figure 1c).

The computer operates on two chains of building
blocks simultaneously (figure 1d). One chain, referred
to as the tape polymer, represents the Turing machine’s
tape and is edited by the computer similar to the way a
This journal is q 2012 The Royal Society
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Figure 1. Transition molecules and operation of a parenthesis checker program. A parenthesis checker verifies that a string con-
sisting of left and right parentheses is well-formed. For example, ‘()’, ‘(())’ and ‘(())()’ are well-formed, whereas ‘(()’, ‘)(’ and
‘()())’ are not. It operates by marking pairs of matching parentheses inside-out and left-to-right, until all parentheses have
been marked in which case it accepts the string. Otherwise, the string is rejected. The figure illustrates the program and its oper-
ation. (a) Alphabet molecules are considered one unit wide. They have a side-group representing the symbol, and left and right
links for forming the tape polymer. (b) Transition molecules are two units wide and two units high. The molecule shown
implements the left transition abbreviated (,S1! S0,# and read: If the control state is S1 and the head reads symbol ‘(’ to
the left, then change state to S0, write symbol #, and move left one cell. The molecule has a recognition site for the symbol ‘( ’
and the state S1 on its lower side, a side-group representing the new state S0 above and a missing upper-right quadrant that
accommodates the new symbol to be written, #, as well as left and right links enabling it to be part of the tape polymer.
(c) These eight transition molecules shown schematically constitute the parenthesis checker program. The top row includes
right transition molecules, which are read similarly to a left transition molecule (see (b)) with ‘right’ replacing ‘left’ through
the description. The bottom row includes left transition molecules. The last transition enters into state S3 and accepts the
string. Blank recognizes the end of the non-blank part of the tape, namely the case where the transition molecule is at the
end of the tape polymer. (d) Example transition that occurs during a computation on the string ‘(()()())’. The configuration
consists of a tape polymer (1) and a trace polymer (2). An incoming right transition molecule S0,)! #,S1 (3) loaded with
an alphabet molecule # (4) that matches the current state of the current active molecule (5) and the alphabet symbol to its
right (6). The updated configuration shows the displaced transition molecule (5) and displaced alphabet molecule (6) that are
now part of the elongated trace polymer (2), with the incoming transition molecule (3), now the active transition molecule
and the incoming alphabet molecule (4), both form part of updated the tape polymer (1).
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Turing machine modifies its tape. The other chain,
referred to as the trace polymer, is a by-product of the
computation constructed incrementally from displaced
Interface Focus (2012)
transition molecules and displaced alphabet monomers,
and has no analogue in the theoretical Turing machine.
A transition molecule, referred to as the active
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Figure 2. Mechanical computer. (a) The computer is 18 � 29 � 9 cm. The small tunnel (1) is part of the small subunit and is two
units wide. The large tunnel (2) is part of the large subunit and is three units wide, so that it can accommodate the displaced
transition molecule and the new active transition molecules. The small and large subunits can move one unit sideways relative
to each other. Such movement is necessary following a change of direction of the computation. An incoming transition molecule
(3) is approaching the active transition molecule (4) and the alphabet molecule to its right (5). The tape polymer can move left or
right one unit, aligning the active transition molecule to the left or to the right side of the large tunnel. Such movement is necess-
ary to accommodate consecutive transitions in the same direction. (b) Five mechanisms in the small tunnel prevent erroneous
transitions from occurring. All mechanisms are based on a spring-loaded bellcrank/cam (a) which is connected to a linkage
(b) which in its free state blocks passage of the approaching transition molecule. Each bellcrank/cam checks for a certain con-
dition and if the condition is met, then is rotated. The connected linkage then moves out of the way of the approaching
transition molecule, essentially effecting a conformational change in the tunnel. Two mechanisms (1, 2) detect that the (left
or right) transition molecule is loaded with an alphabet molecule. Two mechanisms (3, 4) detect that a Blank recognition site
matches the (left or right) end of the tape polymer and one mechanism (5) detects that the recognition site of the incoming tran-
sition molecule matches the state side-group of the active transition molecule and the alphabet symbol to its right. The computer
was designed using SolidWorks Corporation’s SOLIDWORKS 98 software, and was manufactured on a 3D Systems Inc. SLA-5000
Stereolithography Apparatus by Scicon Technologies of Valencia, CA, USA. Material is a Dupont 8110 epoxy/polypropylene/
polyethylene blend.
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transition molecule, joins the two polymers. The active
transition molecule is embedded in the tape polymer
and represents the location of the Turing machine’s
read/write head as well as the machine’s internal
state. At the same time, the active transition molecule
is the terminal molecule of the trace polymer, represent-
ing the most recent transition of the computation.
(Note that in this design, the read/write head is
Interface Focus (2012)
located between adjacent tape cells, not on a specific
cell, unlike a standard Turing machine [1]; this change
does not affect the computational capabilities of
the machine.)

The computer (figure 2a) is made of two subunits,
referred to as small and large, each with a tunnel
called the small tunnel and the large tunnel, respect-
ively. The small tunnel provides incoming loaded
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transition molecules with access to the active transition
molecule and to its adjacent alphabet monomer. Access
is controlled by gating mechanisms (figure 2b) which
block transition molecules that are ill-formed or do
not match the current state and current tape symbol.
These mechanical analogues of allosteric conformation-
al changes open the channel only when a valid incoming
transition molecule approaches. The large tunnel holds
the active transition molecule and the tail of the trace
polymer being constructed.

The computer operates in cycles, processing one tran-
sition molecule per cycle. In each cycle, an incoming
loaded transition molecule that matches the current
state and its adjacent alphabet monomer becomes the
new active transition molecule and its accompanying
alphabet monomer is incorporated into the tape poly-
mer. This is achieved by displacing the currently active
transition molecule and the matched alphabet monomer,
effectively editing the tape polymer, and elongating the
trace polymer by the displaced molecules (figure 1d).
Specifically, when processing a left transition molecule
the computer moves left to accommodate the molecule,
if necessary, and displaces the currently active transition
molecule and the alphabet monomer to its left by the
new molecule. The computer processes a right transition
molecule similarly by moving right and displacing the
alphabet monomer to the right of the active transition
molecule. The theoretical Turing machine has an infinite
tape, with only a finite portion of it being non-blank at
any point during the computation. For obvious reasons,
and in line with natural information representation by
biopolymers, the mechanical Turing machine represents
the two infinite blank portions of the tape implicitly.
A special mechanism, shown in figure 2, detects the left
and right ends of tape and treats each as a blank
symbol. Special left blank transition molecules detect if
the state they specify is at the left end of the tape and
if so write a symbol and move to the left by activating
this mechanism. Right blank transition molecules
achieve the symmetric effect. The size of the mechanical
Turing machine and its components do not make it
susceptible to Brownian motion. Hence, assembly of
transition molecules, pushing transition molecules
down the small tunnel, and moving the small as well as
large subunits relative to each other and relative to the
tape polymer, all need to be carried out manually.
The small as well as large units are designed and con-
nected so that the small unit can wobble one symbol to
the left or to the right relative to the large unit. In the
left position, the current state and the symbol to
its left are exposed to incoming left move transitions.
Similarly, in the right position, right-move transitions
may take effect. A peculiar aspect of the design is that
this non-deterministic wobble precedes and enables the
application of a corresponding move transition, and
the transition taken has the effect of moving the
wobble range one symbol in its direction (left or right).
The computer is designed to be robust to Brownian
motion in that only a transition which matches the cur-
rent state and symbol can release the levers that would
allow it to take effect.

When considering a future biomolecular realization of
the mechanical Turing machine, one must realize that
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the device was designed to operate on three-dimensional
building blocks by applying mechanical analogues of
polymer elongation, cleavage and ligation, movement
along a polymer, and control by molecular recognition
unleashing allosteric conformational changes. Logically,
the device is not more complicated than biomolecular
machines of the living cell, and all its operations are
part of the standard repertoire of these machines;
hence, a biomolecular embodiment of the device is
not infeasible. Specifically, a transition can be effected
through the Brownian motion of an applicable loaded
transition molecule into the tunnel of the small unit,
followed by molecular recognition between the current
state and symbol, and the state and symbol of the
loaded transition molecule that triggers an allosteric con-
formation change. The conformational change in turn
enables the incorporation of the new state and symbol
instead of the old state and symbol, presumably through
two cleavages and two ligations of the tape polymer.

The mechanical computer is similar to the ribosome
in several other respects. Both operate on two polymers
simultaneously, and their basic cycle consists of proces-
sing an incoming molecule that matches the currently
held molecules on the first polymer, elongating the
second polymer and moving sideways. Like the ribo-
some in the living cell, the computer requires
supporting devices similar in function to aminoacyl-
tRNA synthetases to load bare transition molecules
with correct alphabet monomers, and a device similar
in function to proteases to decompose the trace polymer
and make its components available for reuse. However,
unlike the ribosome, which only ‘reads’ the messenger
RNA in one direction, the computer edits the tape
polymer and may move in either direction.

The trace polymer created during the computation
represents past state changes and head movements, as
well as the symbols that were ‘erased’ from the tape
during each transition, and as such has several impor-
tant advantages. First, the trace polymer renders the
computer reversible. Bennett [6] claims that, owing to
thermodynamic considerations, von Neumann elec-
tronic computers are inherently energy-inefficient
because their basic ‘store to memory’ operation irrever-
sibly erases the content of the memory location. To
remedy this inefficiency, Bennett proposed reversible
computing, and in this context described a ‘hypotheti-
cal enzymatic Turing machine’. This hypothetical
device is similar to our computer in representing the
Turing machine’s tape as a polymer of basic building
blocks and in being dependent on the ‘Brownian
motion’ of its building blocks to effect a computation.
Because the trace polymer of the mechanical Turing
machine embodies a complete record of the compu-
tation, a molecular implementation of the computer
will be subject to the speed/energy consumption trade-
off of reversible devices. Furthermore, computation
traces, in general, and the trace polymer, in particular,
enable many ‘software’ program analysis and debugging
tools [11], which are critically needed for large-scale
applications. In addition, the trace polymer enables
‘hardware’ error detection and correction. One expects
that any biomolecular implementation of the computer
may exhibit a non-negligible error rate. By cascading
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computers along the same trace polymer, errors pro-
duced by one computer can be detected, and possibly
also corrected, by its successor.

Perhaps the most important property of the mechan-
ical computer is that it is reactive [12]: it can have an
ongoing, program-controlled, interaction with its
environment. This capability is a result of the biologi-
cally inspired architecture of the computer rather
than inherited from the theoretical Turing machine,
which was conceived as a ‘batch’ computing device
that receives its input at the beginning of the compu-
tation and produces an output if and when the
computation ends. The ribosome, for example, suspends
the construction of a polypeptide chain when a required
amino acid is unavailable. Similarly, our computer
can be ‘programmed’ to suspend until a specific mol-
ecule is available. The availability of such a control
molecule can be tied to other relevant environmental
conditions, thus triggering a computation only when
these conditions prevail.

The Turing machine is a non-deterministic comput-
ing device [1] in that it can make choices during a
computation, and so is our computer. Not only it can
have left and right transitions applicable simul-
taneously, but also it can have two or more left (or
right) transitions with the same recognition site but
with different target states or new symbols to be writ-
ten. In a biomolecular implementation, this capability
can be used to have the environment affect the
course of a computation, based on the relative concen-
trations of molecules that enable one computational
step compared with molecules enabling a different com-
putational step. Using these two capabilities, the
computer can be programed so that both the timing
and the course of a computation are affected and
controlled by the biochemical environment.

We endow the computer with an output device as
follows. A simple extension to the Turing machine
design is an instruction that erases the tape segment
to the right of the read/write head. This instruction
does not change the computing power of the machine,
and for the theoretical model does not seem useful
either. However, we interpret this instruction in our
context to mean: ‘cleave the tape polymer to the right
of the active transition molecule and release this tape
polymer segment to the environment’. With this
instruction, the computer can create and release any
effectively computable polymer of alphabet monomers,
in any number of copies, in the course of a computation.
A cleaved tape polymer segment released by one
computer can serve as the initial tape for the compu-
tation of another computer, or it can be ligated under
certain conditions to the tape of another computer,
thus enabling parallel processing, communication and
synchronization among multiple operating computers.
3. DISCUSSION

The computer design allows it to respond to the avail-
ability and to the relative concentrations of specific
molecules in its environment, and to construct program-
defined polymers as well as release them into the
Interface Focus (2012)
environment. Hence, if implemented using biomolecules,
then the computer can be part of biochemical pathways.
In particular, given a biomolecular implementation
of the computer that uses ribonucleic acids as alphabet
monomers, one can envision how cleaved tape polymer
segments can function as messenger RNA, effecting
program-directed synthesis of proteins in response to
specific biochemical conditions within the cell. Such an
implementation can provide a family of computing devices
with broad biological and pharmaceutical applications.
4. POSTSCRIPT

The mechanical Turing machine presented above was
designed, constructed, written up and patented [13] in
1998, and presented in the fifth International Meeting
on DNA-based computers in MIT, Boston (MA, USA)
on 14–15 June 1999 [14]. The presentation included a
slide, titled ‘Medicine in 2020’, showing a hypothetical
biomolecular computer operating inside a living cell,
sensing molecular disease symptoms and releasing a
drug molecule in response. The slide, dubbed as
‘Doctor in a Cell’, drew the criticism of being over opti-
mistic and was subsequently revised to ‘Medicine in
2050’ squelching any further criticism. Contemporary
articulation of the vision of DNA computing being the
basis of future smart drugs include the works of Cox
et al. and Yurke et al. [15,16].

Subsequent attempts to publish the paper were not
successful, so it was placed in the drawer for more
than a decade; this paper, excluding §4, is essentially
the shelved paper with some added explanations and
references to address this journal’s editor and reviewers
comments. During that decade, much progress has been
made in biomolecular computing towards the vision—
outlined by this paper—of autonomous, programmable
biomolecular computing devices capable of interacting
with the biological environment [17–29], as well as in
related directions [23,27,28,30–33], incorporating ear-
lier conceptual work on molecular Turing machines
[32,34] and advanced in synthetic biology [35,36]. In
particular, the prediction that an autonomous, pro-
grammable molecular computing device may ‘compute
synthetic biopolymers and release them into its environ-
ment in response to input from the environment’ is now
a reality [19,29]. The realization that such a capability
‘may have broad pharmaceutical and biological appli-
cations’ being the basis of a new type of drugs is now
a central tenet of the field of biomolecular computing,
supplanting the initial noble, but apparently mis-
guided, goal of beating electronic computers in their
own game.

The Turing machine was perceived for decades as a
theoretical widget devoid of practical relevance,
especially given the overwhelming success of its younger
alternative, the von Neumann stored-program compu-
ter architecture [2]. However, as our understanding of
molecular cell biology and biochemistry unfolded, it
became ever clearer that the concepts underlying
the Turing machine are deeply rooted in nature. The
Turing machine infinite tape, in which each cell may
store one symbol taken from a finite alphabet, cannot
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be more similar, mathematically, to DNA, a potentially
unbounded polymer in which each monomer is one of
four letters. Molecular machines such as DNA poly-
merase, RNA polymerase and the ribosome are most
naturally understood as simple finite-state transducers,
a special case of the Turing machine.

A full-fledged realization of a biomolecular Turing
machine according to the blueprint presented above,
or a different one, is still a fairly distant reality, as
much progress has to be made in protein and enzyme
engineering before the necessary biomolecular building
blocks can be fabricated to order and enable the realiz-
ation of such a design. However, one can imagine
that several decades hence, perhaps in an iGEM
(International Genetically Engineered Machine)-like
competition celebrating the 150th Turing anniversary,
teams of students will be given the blueprint described
in this paper and will be asked to realize it with their
available tools. The ‘acid test’ of this paper would be
whether these students would need further explanations
or details to go about this task beyond what’s shown in
the paper. We argued that the mechanical Turing
machine is in effect a functional specification for a bio-
molecular implementation, and we will ultimately be
proved correct by the vote of such future students. As
specifications and implementations go, we expect that
with a rich enough biomolecular toolbox, many valid
molecular implementations of this specification would
be possible, the more the merrier.
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Korteks and M. Schilling from Schilling 3D Design Inc.
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preparing the paper. Ehud Shapiro is the incumbent of the
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